地下水多变量空间聚类分析和空间变异性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着淡水资源日益紧缺,合理利用和保护地下水资源逐渐得到社会的广泛关注,水质与水流模拟与预测是评价和保护地下水工作中不可或缺的重要程序。
     地下水既是宝贵的自然资源,也是与人类生存密切相关的环境要素之一,与地下水有关的科学研究,包括其资源属性和灾害属性两个方面,始终是地球科学家非常重视的课题之一。地下水环境规划也是水环境规划的重要组成部分。但是规划目标的确定以及方案的决策选取,则直接依赖于现有资料的获取。在现存地下水检测网站中,观测站点分布的任意性、随意性和层次不清以及观测数据的冗余性等问题普遍存在,这些问题制约着观测网提供可靠和有效数据信息的能力。
     地下水污染物兼具随机性与结构性二重属性,所以,用完全确定性的数学方法或经典概率统计方法来研究、描述这类性质的变量都是困难的或根本不可能的,地统计学的出现为这种变量的描述与预测提供了理论基础。这就可为环境监测点的重新布置提供了理论依据,使提高监测效率与监测点的代表性、优化监测网格成为了可能。
     本文经过系统研究,得出以下结论:(1)在理论分析、专家咨询的基础上,利用整体性、科学性、规范性等原则设计、确立了空间变异性影响综合指标体系,形成了总目标层、准则目标层和具体指标层三级的层次结构;(2)采用层次分析法确定了空间变异性影响综合指标体系中各种指标的权重关系,该权重分配比较充分的体现了空间变异性影响因素的重要程度,经分析发现,溶质属性在空间变异性影响指标中占有很大比重;(3)运用解析结构模型法对具体指标进行系统分析,建立了系统递阶结构解析模型,认为具体指标层中各指标影响具备层次传递性;(4)应用空间聚类原理,对所选研究区域监测点位及监测指标分别进行了空间聚类分析,认为空间聚类分析优于传统聚类分析;(5)对原始数据和经聚类处理后的数据分别进行了空间变异性评价,结果显示空间聚类分析是有效合理的。
How to use and protect the groundwater source has been causing social attention widely with the freshwater being in short day by day.
    Groundwater is not only precious natural resource to us all, but also one of the factors which have close relation to human lives. The scientific studies on groundwater, including its natural and disaster attribute, have been being one of the most important items that cause the geosciences experts' attention. Groundwater environmental planning is also an important part in water environmental planning. But the determination on the goal of the planning and decision and choice making of the programs are depended on the existing information acquisition. There are lots of problems in the implantation of monitoring points, such as the randomness and turbid hierarchical structure of the monitoring points 、 the redundancy of the monitoring data and so on, which have restricted the capability of the monitoring net to supply reliable and available information.
    The groundwater pollutants migration parameters have dual attributes of designability and randomicity. So it's very difficult or even impossible to study and describe such variables through deterministic mathematic methods and classic probabilistic methods. The appearance of the geostatistics has provided theoretical principles to the description and prediction of such parameters, which has provided the theoretical principles to the re- implantation of the monitoring net, and the possibility to improve the representativeness of the monitoring net.
    The conclusions are as follow: (1) Based on the theoretic analysis and consultation, by means of some principles such as global ,scientific, normative and so on, an indicators system of impact indicator system of spatial virariety is set up and three layers of total target layer ,rule target layer and specific indicators layer are established; (2) through the Analytic Hierarchy Process (AHP) method, we established a weight system to show the weight distribution of the indicators, which reflected the relative materiality of the indicators,it had been found that the attributes of solutes was the most important; (3) through the Interpretive Structural Modeling (ISM) method, we analyzed specific indicators ,and established ISM with four layers,the impact of certain factor had levels transitivity,which had provided basis for further study; (4) through the spatial clustering principles, we did cluster analysis of the monitoring points and the monitoring indicators of chose region,it had been found that the the spatial clustering was better than the traditional clustering ; (5) the assessment and contrast of the variability of the original data and the transacted data by cluster analysis had been done, which had proved the cluster analysis was reasonable and valid.
引文
[1] 蔡长林.解释结构模型中系统的骨十矩阵表示[J].系统工程的理论与实践,1993,13(4):45-48
    [2] 蔡长林.系统的可达矩阵与解释结构模型[J].系统工程学报,1992,7(1):145-152
    [3] 蔡长林等.解释结构模型中的非超系统与超级扩展系统[J].四川大学学报(自然科学版)2002,39(2):184-188
    [4] 常玉等.应用解释结构模型(ism)分析高新技术企业技术创新能力[J].科研管理2003,24(2):41-48
    [5] 陈明.区域化变量的空间聚类分析[J].长春科技大学学报,1995,25(2):223-228
    [6] 陈武,艾俊哲,李凡修,等.地下水水质综合评价方法探讨[J].地下水,2002,24(2):74—75.
    [7] 戴晓燕,过仲阳,李勤奋等,空间聚类的研究现状及其应用[J].上海地质,2003,4:41-46
    [8] 冯玉国.用灰色聚类方法综合评价地下水水质[J].重庆环境科学,1991,13(3):35—37.
    [9] 葛军,葛伦应.层次分析法确定水质指标权重[J].当代建设,1999,5:12-15
    [10] 候景儒,尹镇南,李维明等.实用地质统计学[M].北京,地质出版社,1998:112-117
    [11] 胡克林,李保国,陈德立.区域浅层地下水埋深和水质的空间变异性特性[J].水科学进展,2000,11(4):408-415
    [12] 胡小冬,吴小明.应用系统聚类分析法进行水质分类评价[J].人民珠江,1994,(1):2—5
    [13] 黄丽,蔡长林.模糊解释结构模型[J].四川大学学报,1999,36(11):6-10
    [14] 雷志栋,杨诗秀,许志荣等.土壤特性空间变异性初步研究[J].水利学报,1985,9:10-21
    [15] 李镜培,高大钊.土性指标的变异特性研究[J].中国港湾建设,2001,6:26-30
    [16] 李明辉,彭少麟,申卫军等.丘塘景观土壤养分的空间变异[J].生态学报,2004,24(9):1839-1845
    [17] 李翔,潘瑜春,赵春江,等.基于空间连续性聚类算法的精准农业管理分区研究[J].农业工程学报,2005,21(8):78-82
    [18] 李小昱,雷廷武,王为.农田土壤特性的空间变异性及分形特征[J].干旱地区农业研究,2000,18(4):61-65
    [19] 李毅,刘建军.土壤空间变异性研究方法[J].石河子大学学报(自然科学版),2000,4(4):331-337
    [20] 林冬云,刘慧平,应用空间聚类进行点数据分部研究[J].北京师范大学学报(自然科学版)2006,4(42):419-423
    [21] 陆洲,夏秋颖,周琳等.等斜率灰色聚类法在地面水环境质量评价中的应用[J].环境保护科学,2000,26(101):43-46
    [22] 慕金波,侯克复.灰色聚类法在水环境质量评价中的应用[J].环境科学,2000,12(2):86-89
    [23] 潘成忠,上官周平.土壤空间变异性研究评述[J].生态环境,2003,12(3):371-375
    [24] 潘国成.地质统计学中结构分析的理论与方法[J].世界地质,1997,16(3):70-73,41-48
    [25] 齐鑫山,王晓明,张玉芳.环境监测数据空间分布规律的研究方法及应用_趋势面分析法[J].环境保护,2000,(10):20-22
    [26] 秦耀东.土壤空间变异研究中的半方差问题[J].农业工程学报,1998,12:42-46
    [27] 冉启全,周南祥.油气藏非均质性的地质统计学描述[J].大庆石油地质与开发,1993,(2):42-46
    [28] 沈迅伟,袁春伟,王世和.基于模糊聚类分析的水污染评价[J].南京化工大学学报,1998,20(增刊):30-34.
    [29] 沈珍瑶.地面水环境质量评价评价方法的比较[J].辐射防护通讯,1993,(6):152-157
    [30] 史海滨.表层土壤盐分空间变异性及合理采样数与信息估计[J].内蒙古农牧学院学报,1996,17(04):74-81
    [31] 宋新山,邓伟,闫百兴.松嫩平原西部水环境中各盐碱化成分的变异特征[J].东北水利水电,2002,20(218):45-47
    [32] 苏里坦,宋郁东,张展羽.新疆渭干河流域地下水含盐量的空间变异特征[J].环境科学学报,2001,21(03):349-353
    [33] 孙英君,王劲峰,柏延臣.地统计学方法进展研究[J].地球科学进展,2004,19(2):268-274
    [34] 泰寿康.综合评价原理与应用[J].北京:电子工业出版社,2003
    [35] 谭跃进等.系统工程原理[J].北京:国防科技大学出版社,1999
    [36] 汤玉福.地下水环境质量评价方法的一种新尝试[J].地下水,2000,22(4):178-179.
    [37] 陶澎.应用数理统计方法[M].北京:中国环境科学出版社,1994,51-56
    [38] 汪景宽,赵永存,张旭东等.海伦县土壤重金属含量的空间变异性研究[J].土壤通报,2003,34(5):398-403
    [39] 王军,傅伯杰,邱扬等.黄土丘陵小流域土壤水分的时空变异特征:半变异函数[J].地理学报,2000,55(4):428-438
    [40] 温淑瑶,层次分析法在区域湖泊水资源可持续发展评价中的应用[J].长江流域资源与环境,2000,9(2):196-201
    [41] 吴启勋.环境单元的模糊聚类分析[J].青海师专学报(自然科学),2002,(5):44-46
    [42] 肖朝明,张征,鞠硕华.水环境模拟中多孔介质场空间变异性研究方法述评[J].安全与环境学报,2004,4(3):88-92
    [43] 肖朝明.渗流水位空间变异性分析的分形估值方法[D].北京林业大学硕士学位论文,2004:1-89
    [44] 修先约,殷效彩.Q型系统聚类分析方法在水环境质量评价中的应用[J].青岛大学学报,1998,12(5):12-15
    [45] 徐吉炎.土壤调查数据地域统计的最佳估值研究:彰武县表层土全氮量的半方差图和块状Kriging估值[J].土壤学报,1983,20(4):419-430
    [46] 许红卫,王珂.田间土壤采样数据的统计特征与空间变异性研究.浙江大学学报(农业与生命 科学版),2000,26(6):665-669
    [47] 杨维,潘俊,陈曦,等.模糊聚类法在地下水质量评价中的应用[J].沈阳建筑工程学院学报,2001,17(4):281-283.
    [48] 袁弘任.第六篇:水资源保护[M].《长江志》卷四:治理开发(上).1999
    [49] 曾杉.ArcGIS地统计分析实用指南[M].2002,北京:ArcInfo中国技术咨询与培训中心
    [50] 张朝生,章申,何建邦.长江水系沉积物重金属含量空间分布特征研究_地统计学方法[J].地理学报,1997,52(2):185-192
    [51] 张鸿志,晏飞.水体的污染源模糊聚类分析[J].内蒙古水利科技,1992,(1):31-34,49.
    [52] 张乃明,李保国,胡克林.太原污灌区土壤重金属和盐分含量的空间变异特征.环境科学学报,2001,21(3):349-353
    [53] 张淑娟,何勇,方慧.基于GPS和GIS的田间土壤特性空间变异性的研究[J].农业工程学报,2003,19(2):39-44
    [54] 张松滨,陈庆福.幂指数聚类分析及水质质量评价[J].环境科技,1991,11(4):28-32
    [55] 张燕文.基于空间聚类的区域经济差异分析方法[J],经济地理,2006.26(4):557-560
    [56] 张展羽,郭相平,詹红丽.微咸水灌溉条件下土壤和地下水含盐量空间变异分析[J].灌溉排水,2001,20(3):6-9
    [57] 张征,解明曙,王毅力等.环境模拟与评价中多变量空间结构模型及应用[J].北京林业大学学报,2003,25(5):59-64
    [58] 张征,沈珍瑶,韩海荣.环境评价学[M].北京:高等教育出版社,2004
    [59] 赵良菊,肖洪浪,郭天文.甘肃灌漠土土壤肥力的空间变异性典型研究[J].中国沙漠,2004,4(4):451-455
    [60] 赵永存.吉林公主岭土壤中砷、铬和锌含量的空间变异性及分布规律研究[J].土壤通报,2002,33(05):372-376
    [61] ANDREW W W, CUNTER B, RODGER B G. Geostatistical characterisation of soil moisture pattens in Tarrawarra catchment[J]. Joumal of Hydrology, 1998, 205:20-37
    [62] BAHRI A, BERNDTSSON R. Nitrogen source inlpact on the spatial variability of organic carbon and nitrogen in soil[J]. Soil Sci, 1996, 161(5): 288-297
    [63] Burrough P A. Multiscale sources of spatial variability in soil variation[J]. Soil. Sci., 1983, 34: 577-579
    [64] C. A. Marriott, G. Hudson, D. Hamiltonl. Spatial variability of soil total C and N and their stable isotopes in an upland Scottish grassland[J]. Plant and Soil, 1997, 196:151-162
    [65] CAMPBELL J B. Spatial variation of sand content and PH within single contiguous delineation of two soil mapping units[J]. Soil Sci Soc Am J, 1978, 42:460-464
    [66] DAVID L. PETERSON. Monitoring Air Quality in Mountains Designing an Effective Network. [J]. Environmental Monitoring and Assessment, 2000, 64:81-91
    [67] E .Stanley Lee (李建斌). 模糊空间统计[J].化工冶金, 1995, 16 (3) :242-246
    [68] G PASSARELLA, M. VURRO, V. D'AGOSTINO et al. Cokriging Optimization of Monitoring Network Configuration Based on Fuzzy and Non-Fuzzy Variogram Evaluation[J]. Environmental Monitoring and Assessment, 2003,82: 1-21
    [69] Goovaerts P and Webster R. Scale-dependent correlation between topsoil copper and cobalt concentrations in Scotland[J].Euro J Soil Sci, 1994,45:79-95
    [70] Hillel D. Research in soil physics: a review[J]. Soil Sci, 1991, 151: 30-34
    [71] K. H. MICHAEL KWAN, HING MAN CHAN, YVES DE LAFONTAINE. Metal Contamination in Zebra Mussels (Dreissena Polymorpha) Along the st. Lawrence River[J]. Environmental Monitoring and Assessment, 2003, 88: 193-219
    [72] LARISA POZDNYAKOVA, RENDUO ZHANG Geostatistical Analyses of Soil Salinity in a Large Field[J]. Precision Agriculture, 1999, 1:153-165
    [73] M.R. Hoosbeek, J. Bouma. Obtaining soil and land quality indicators using research chains and geostatistical methods[J]. Nutrient Cycling in Agroecosystems, 1998, 50: 35-50
    [74] Mohammed B. Lahkim, Luis A. Garcia, John R. Nuckols. spatial and temporal properties of environmental exposure assessments related to ground water contamination[J]. Environmental Modeling and Assessment, 1999,4: 165-178
    [75] P.A.BURROUGH. GIS and geostatistics: Essential partners for spatial analysis[J].Environmental and Ecological Statistics,2001,8:361-377
    [76] Parks Kevin P, Bentley Laurence R. Enhancing data worth of EM survey in site assessment by cokriging[J]. Ground Water, 1996, 34 (4) : 597-604
    
    [77] R. Isla, R. Aragü'es, A. Royo. Spatial variability of salt-affected soils in the middle Ebro Valley (Spain) and implications in plant breeding for increased productivity[M]. Euphytica, 2003, 134: 325-334
    [78] RICHARD K,BACCHI 0 S S.Hydraulic varinbility in space and time in a dark red latosol of the tropics[J].Geoderma, 1993,60: 159-168
    [79] SERGEI V. ANDRONIKOV, DONALD A. DAVIDSON, RONALD B. SPIERS. Variability in Contamination by Heavy Metals Sampling Implications[J]. Water, Air, and Soil Pollution, 2000, 120:29-45
    [80] SHAKEEL AHMED. Geostatistical Estimation Variance approach to optimizing an air temperature monitoring network[J]. Water, Air, and Soil Pollution, 2004, 158: 387-399
    [81] Shannon L. Henshaw, Frank C. Curriero, Timothy M. Shields et al. Geostatistics and GIS: Tools for Characterizing Environmental Contamination[J]. Journal of Medical Systems, 2004, 28 (4) :335-348
    [82] V. F. Brekhovskikh, Z. V. Volkova, and A. G. Kocharyan. Heavy Metals in the Ivan'kovo ReservoirBottom Sediments. Water Resources[J], 2001, 28 (3): 278-287
    [83] Yi-ju Chien, Dar-Yuan Lee, Horng-Yuh Guo et al. 1997. Geostatistical analysis of soil properties of mid-west Taiwan soils[J]. Soil Sci,162 (4):291-298

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700