大面积皮革表面的视觉检测技术与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技发展及社会生活水平的提高,家用沙发、汽车座椅、皮衣、皮鞋等皮革制品的应用越来越广泛,对皮革制品加工质量与效率的要求也越来越高。由于皮革原料取自动物毛皮(牛皮、羊皮、猪皮等),其表面不可避免地存在疤痕、斑点、皱褶、孔洞和凹陷等多种瑕疵,因此在皮革原料加工中必须检测出可用的有效区域(剔除瑕疵,获取可用区域范围)。
     长期以来皮革制品加工生产中,皮面检测、排样、切割主要依靠人工完成,存在劳动强度大、主观因素影响严重、一致性差、皮革原料浪费率高等问题。为了有效利用皮革原料、提高产品质量和生产效率、降低生产成本,皮革制品加工工艺与设备逐步向高效、可靠的自动化方向发展,特别是皮革表面的人工检测工艺已逐步被机器视觉检测所替代。
     本学位论文以浙江省科学技术厅科技攻关重大项目“皮革制品准柔性制造技术开发(项目编号:2003C11023)”为背景,针对大面积皮革原料(牛皮)表面可用区域的机器自动识别需求,采用机器视觉检测方法获取可用区域,研究皮革表面瑕疵检测和可用区域提取的理论方法,解决若干关键技术,研制相应的样机,并通过实验研究验证理论方法的可行性和系统的有效性。论文的主要研究内容包括:
     1.综述目前图像去噪方法的基本原理及特点,针对皮革图像采集过程中混合噪声对图像质量影响问题,在不破坏皮革纹理细节信息的条件下,研究基于小波自适应阈值和中值滤波相结合的联合去噪技术,准确保留皮革边界及线条、斑点、皱褶、孔洞、疤痕和凹陷等重要皮革表面信息,并通过实验验证其可行性。
     2.针对工业CCD视场小、皮革材料柔软特性和皮革裁剪机结构限制等问题,从理论和实用角度探讨工业现场中图像拼接的实时性和可靠性,研究基于Gabor-Zernike矩几何相似三角纹理特征块的图像拼接技术,结合硬件条件,解决图像拼接算法复杂、速度慢等问题,以实现大面积皮革视觉检测中序列图像的快速精确拼接,获得皮革的整体轮廓特征,展现大面积皮革的全局信息。
     3.针对皮革纹理和瑕疵全局随机性、特征提取难和计算量大等问题,研究基于粒子群优化模糊聚类方法的皮革表面瑕疵实时检测技术,利用粒子群快速全局寻优,结合模糊聚类的特点,采用类间最大距离和类内最小距离的方法快速提取瑕疵区和优质皮区的最佳特征,解决传统模糊聚类算法基于梯度下降的迭代耗时过程,提升全局搜索能力和提高聚类效率,实现瑕疵区域和皮革优质区域的快速聚类,通过图像分割处理得出可用区域。针对皮革瑕疵检测的实时性问题,通过对每一幅待检皮革图像进行多层正交小波分解,提取各层低频子图像的能量和局部同质性等共生矩阵特征进行分析,自动确定分辨率级数和选取分解子图像的小波频带进行重构,最后在重建图像中采用自适应的二值阈值法分割出皮革的瑕疵区域和优质区域,把纹理表面图像的瑕疵检测转化为非纹理图像的瑕疵检测。
     4.为实现皮革样件智能排样和数控裁剪等后续工序,对皮革可用区域边界和轮廓进行位图矢量化处理。针对在生成复杂不规则皮革可用区域边界与轮廓矢量图形时的断点、不连续和支线等问题,提出一种改进链码表示的轮廓边界位图矢量化技术,以实现皮革可用区域矢量化图形的任意编辑,满足智能排样要求,实现皮革样件的无图纸加工。
     5.采用基于机器视觉的检测技术研制大面积皮革原料表面的视觉检测系统,实现图像采集、拼接、瑕疵识别与可用区域提取等功能,满足工业生产的技术需求。
     6.结合理论研究,在皮革数控裁剪机上进行混合噪声去噪处理、纹理特征块图像拼接、瑕疵检测及皮革可用区域轮廓位图矢量化试验,验证各项技术方案的可行性与系统工作的有效性。
With the development of science and technology and the improvement of standard of living, home sofa, car seat, leather garments, leather shoes and other leather products are used more and more widely, leather products processing quality and efficiency requirements are also getting higher and higher. As a result of leather raw materials from animal fur (leather, sheepskin, pigskin), its surface will inevitably exist various defects, such as spots, wrinkles, scars, holes and other defects, therefore in the raw leather processing, the available efficient area (excluding defective, acquiring available area) must be first detected.
     Long term since the leather products processing in detection, layout, cutting mainly rely on manual completed, the labor intensity is large, the subjective factors influencing severity, poor consistency, raw leather waste rate high. In order to make effective use of leather raw materials, improve product quality and production efficiency, reduce production costs, leather products processing technology and equipment gradually to the efficient, reliable automated direction, especially the leather surface artificial detection technology has gradually been replaced by machine vision detection.
     This dissertation combines Zhejiang province key science and technology project" leather products pseudo flexible manufacturing technology development (Grant NO.2003C11023)", for the large area of raw materials for leather (cowhide) surface using computer vision detection method to get the available area, study of leather surface defects detection and the available area extraction theory method, to solve some key technologies, the corresponding development the prototype, and through the experimental research to validate the feasibility of theoretical method and the effectiveness of system. The main contents of this paper include:
     First, This paper summarizes the current image denoising methods of basic principle and characteristics, In view of the problem of mixed noise influence on image quality in the process of leather image acquisition.In the conditions of do not damage the leather texture detail information, Study on the joint denoising technology of based on wavelet adaptive threshold and median filtering, Accurate retention important leather surface information of leather boundary, lines, spots, wrinkles, scars, depressions, holes and other defects, And through experimental verification of the denoising effect.
     Second, In view of the problems of small field of view in industrial CCD, leather soft material properties and leather cutting machine structure of restrictions and other issues, from theoretical and practical perspective to study on industrial scene image mosaic of the real-time and reliability, Research the image splicing technology based on the Gabor_Zernike moments of geometric similarity triangle texture block, combined with the hardware conditions, to solve the problems of image mosaicing algorithm complex, slow speed. In order to realize a large area of leather fast and accurate image sequence stitching in visual detection, to obtain the overall characteristics of leather, show large leather global information.
     Third. In view of the problems of leather texture and defects of global random, feature extraction is difficult and the large amount of calculation. Study on fuzzy clustering based on Particle Swarm Optimization of leather surface defect real-time detection technology, the use of particle swarm fast global optimization, combining fuzzy clustering features, using the maximum distance between and within class minimum distance method for rapid extraction the best feature of defect area and high grade skin area, instead of the traditional fuzzy clustering algorithm based on gradient descent iterative process, enhance the ability of global search and improve the clustering efficiency, realize the defect region and leather quality region rapid clustering, Through image segmentation is processed to derive usable area. Aiming at the problem of real-time leather flaw detection, by each of a detected leather image wavelet decomposition. Extraction of each layer of low frequency sub image energy and local homogeneity feature analysis. Automatically determine the resolution series and select decomposition sub image of wavelet frequency to reconstruct, finally in the reconstructed image by using the adaptive threshold method to divide into the defect area and the quality area, the texture image defect detection is converted into a non-texture image defect detection..
     Fourth, In order to realize the leather sample intelligent nesting and cutting process, for leather available area boundary and contour vectorization of bitmap processing. In view of the problems of breakpoint, discontinuous and branch lines in the generation of complex irregular leather available area boundary and contour vector graphics, a new contour bitmap vectorization technology of improved chain code representation is presented, realization of vector graphics arbitrary edit for leather available area. To meet the requirements of intelligent nesting, implementation of the leather sample without drawing processing.
     Fifth, Based on machine vision detection technology to build a large leather raw surface of the vision detection system, Implementation the functions of image acquisition, stitching, defect recognition and the available area extraction, to meet technical requirements of the industrial production.
     Sixth. The combination of theoretical research. In the numerical control leather cutting machine for test of mixed noise denoising effect, texture block image stitching, defect detection and leather available region contour vectorization of bitmap, validation of the technical feasibility and system working effectiveness.
引文
[1]郑南宁.计算机视觉与模式识别.北京:国防工业出版社,1998.
    [2]边肇祺,张学工等.模式识别(第2版).北京:清华大学出版社,2000.
    [3]李介谷.计算机视觉的理论和实践.上海:上海交通大学出版社,1999.
    [4]贾石得.机器视觉.北京:科学出版社,2000.
    [5]章毓晋.图像分析(第2版).北京:清华大学出版社,2005.
    [6]Henry Y.T. Ngan. Automated fabric defectdetection-A review. Image and Vision Computing,2011,7 (29):442-458.
    [7]http://www.gerbertechnology.com.
    [8]http://www.lectra.com.
    [9]Elias N. Malamas, Euripides G. M. Petrakis, Michalis Zervakis, Laurent Petit, Jean-Dither Legat, A survey on industrial vision systems. Image and Vision Computing,2003,21(1):171-188.
    [10]高新波.模糊聚类分析及其应用.西安:西安电子科技大学出版社,2004.
    [11]Adelson, E. H., C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M.Ogden. Pyramid methods in image processing. RCA Engineer,1984,29(6):33-41.
    [12]Fu, Z., Y. Zhao, Y. Liu, Q. Cao, M. Chen, J. Zhang, and J. Lee, Solar cell crack inspection by image processing, in Proc. Int. IEEE Conf. Business of Electronic Product Reliability and Liability, Shanghai, China,2004,76-80.
    [13]Kapur, J. N., P. K. Sahoo, and A. K. C. Wong. A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision Graphics Image Process,1985,29(3):273-284.
    [14]Peleg S., Naor J.,Hartley R.,Avnir D. Multiple resolution texture analysis and classification. IEEE Trans. Pattern Recognition,1984,6(5):518-523.
    [15]Pentland A P. Fractal based on description of natural scences. IEEE Trans on PAMI,1984,6:661-674.
    [16]Kittler J, J Illingworth. Minimum error thresholding. Pattern Recognition,1986,19(1):41-47.
    [17]Lidiya Georgieva, Kaloyan Krastev, Nikola Angelov. Identification of surface leather defects. International Conference on Computer Systems and Technologies CompSys Tech'2003.
    [18]韩彦芳.机器视觉中聚类检测新算法[博士学位论文].上海,上海交通大学,2006.
    [19]Lutz, R. K. An algorithm for the real time analysis of digitized images. The Computer Journal,1980, 23(3):262-269.
    [20]Ng, H.-F. Automatic thresholding for defect detection. The 3rd International Conference on Image and Graphics, Hong Kong, China,2004,532-535.
    [21]Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Systems Man and Cybernetics,1979,9(1):62-66.
    [22]Sezgin, M,B. Sankur. Survey over image thresholding techniques and quantitative performance evaluation. Electronic Imaging,2004,13(1):146-165.
    [23]Suzuki, K., I. Horiba, N. Sugie.Fast connected-component labeling based on sequential local operations in the course of forward raster scan followed by backward raster scan. in Proc.15th Int. Conf. Pattern Recognition, Barcelona, Spain,2000,3(7):434-437.
    [24]Du-Ming Tsai, Cheng-Huei Chiang. Automatic band selection for wavelet reconstruction in the application of defect detection. Image and Vision Computing,2003,21(5):413-431.
    [25]Du-Ming Tsai, S-M Chao. An anisotropic diffusion-based defect detection for sputtered surfaces with inhomogeneous textures. Image and Vision Computing,2005,23(3):325-338.
    [26]Du-Ming Tsai, W-H. Moment-preserving thresholding:a new approach.Computer Vision Graphics and Image Processing.1985,29(3):376-393.
    [27]Xie X, M Mirmehdi. Texture exemplars for defect detection on random textures, in Proc.3rd Int. Conf. Advances in Pattern Recognition, Bath, UK,2005,22(1):404-413.
    [28]Yin, P-Y, L-H Chen. A fast iterative scheme for multilevel thresholding methods. Signal Processing, 1997,60(3):305-313.
    [29]Du-Ming Tsai, Chien-Ta Lin. Fast normalized cross correlation for defect detection. Pattern Recognition letters,2003,24(1):2625-2631.
    [30]Du-Ming Tsai, C.-Y.Hsieh. Automated surface inspection for directional textures. Image Vision Computing,1999,18(l):49-62.
    [31]Du-Ming Tsai,Ya-Hui Tsai. Defect detection in textured surfaces using color ring-projection correlation. Machine Vision and Applications,2003,13(4):194-200.
    [32]Du-Ming Tsai, C.-P. Lin. Fast Defect detection in textured surfaced using 1D Gabor. Advanced Manufacturing Technology.2002,20:664-675.
    [33]Du-Ming Tsai, S.-K. Wu. Automated surface inspection using Gabor fileters. Advanced Manufacturing Technology.2002,16:474-482.
    [34]Du-Ming Tsai, Tse-Yun Huang. Automated surface inspection for statistical textures. Image Vision Computing.2003,21 (1):306-323.
    [35]K. Hoang, W. Wen,et al. Achieving automation in leather surface inspection. Computer in Industry 1997,34(1):43-54.
    [36]Branca A, Tafuri M. Automated system for detection and classification of leather defects.Optical Engineering,1996,35(12):3485-3494.
    [37]Choonjong Kwaka, Jos'e A. Venturab. Automated defect inspection and classification of leather fabric. Intelligent Data Analysis.2001,5 (1):355-370.
    [38]Antonio F.Limas Serafim. Segmentation of natural images based on multiresolution pyramids linking of the parameters of an autoregressive rotation invariant model:Application to leather defects detection. Proceedings of the 11th International Conference on Pattern Recognition.
    [39]Polzleitner W, Niel A. Automatic inspection of leather surfaces. Society of Photooptical Instrumentation Engineers,1994,9:50-58.
    [40]C. Yeh D.-B. Perng. A reference standard of defect compensation for leather transactions. Advanced Manufacturing Technology,2004.
    [41]He Fuqiang, Wang Wen, Chen Zichen. Automatic defects detection based on adaptive wavelet packets for leather manufacture.International Technology and Innovation Conference 2006, ITIC 2006,2024-2027.
    [42]Soo Chang Kim, Tae Jin Kang. Texture classification and segmentation using wavelet packet frame and Gaussian mixture model. Pattern Recognition,2007,40 (1):1206-1212.
    [43]Soo Chang Kim, Tae Jin Kang. Texture classification and segmentation using incomplete tree structured wavelet packet frame and Gaussian mixture model. IEEE International Workshop on Imaging Systems and Techniques,2005, Page(s):46-51.
    [44]Ajay Kumar, Grantham Pang. Defect detection in textured materials using Gabor filters. IEEE Transaction on Industry Applications.2002,38(2):425-440.
    [45]Hao Liu, Jiuqiang Han. Defect detection in textiles using optimal Gabor wavelet filter. Proceedings of the 6th World Congress on Intelligent Control and Automation,2006,4(6):10004-10007.
    [46]Kim Kyoung-jae, Ahn Hyunchul. A recommender system using GA K-means clustering in an online shopping market. Expert Systems with Applica-tions,2007,33(2):316-332.
    [47]Kaloyan Krastev, Lidiya Georgieva. Identification of leather surface defects using fuzzy logic.International Conference on Computer Systems and Technologies CompSysTech' 2004.3(1):121-126.
    [48]Yeh C., D. B. Perng. Establishing a demerit count reference standard for the classification and grading of leather hides. The International Journal of Advanced Manufacturing Technology.2001.18:731-738.
    [49]Roever D, W. Wen, H. Kaebernick, K. Hoang. Visual inspection system for leather hide. US Patent 6 157730,2000.
    [50]王凌.智能优化算法及其应用.北京:清华大学出版社,2001.
    [51]Ching-Yi Chen,Fun Ye. Particle swarm optimization algorithm and its application to clustering analysis. Proceedings of the 2004 IEEE International Conference on Networking, Sensing & Con-trol,2004, 2(3):21-23.
    [52]Kennedy J., Eberhart R. C., Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks,1995,1942-1948.
    [53]Eberhart R. C. Kennegy J., A new optimizer using particle warm theory. Proceedings of the sixth international symposium on micro machine and human science, Nagoya, Japan,1995,39-43.
    [54]Eberhart R. C., Simpson P. K., bobbins R. W., Computational intelligence PC tools. Boston, MA:Academic Press Professional,1996.
    [55]Clerc M, Kennedy J. The particle swarm-explosion, stability and convergence in a multidimensional complex space. IEEE Transactions on evolutionary computation 2002,6 (1):58-73.
    [56]Kennedy J, Eberhart R C, A discrete binary version of the particle swarm algorithm. Proceedings of the world multiconference on systemics, cybernetics and informatics. Piscataway, NJ:IEEE service center, 1997,4104-4109.
    [57]Kennedy J, Stereotyping:Improving particle swarm performance with cluster analysis. Proceedings of the Congress on Evolutionary Computing. Piscataway, NJ:IEEE Service Center,2000,1506-1512.
    [58]Shi Y., Eberhart R. C. A modified particle swarm optimizer. Proceedings of IEEE international conference on evolutionary computation(CEC 1998),1998,69-73.
    [59]Shi Y., Eberhart R. C., Empirical study of particle swarm optimization. Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics,Orlando, FL,2000,1945-1950.
    [60]Clerc M. The swarm and the queen:towards a deterministic and adaptive particle swarm optimization. Proceedings of the congress on evolutionary computation. Piscataway, NJ:IEEE service center, 1999,1951-1957.
    [61]李宏.自适应粒子群优化算法及其在图像分割中的应用[硕士学位论文].大连,大连理工大学,2006.
    [62]邱茂林,马颂德,李毅.计算机视觉中摄像机标定综述.自动化学报,2000,26(1):43-55.
    [63]Grosky WI, Tamburino L A. A unified approach to the linear camera calibration problem. IEEE Trans on PAMI-12,1990,663-671.
    [64]王建民,浦昭邦,赵辉,鲁振智.一种新的二维图像测量系统标定方法.哈尔滨工业大学学报.2000,32(3):36-41.
    [65]林晓峰,石少莉.CCD摄像法在工件尺寸测量中的应用.光学仪器.2002,24(3):11-13.
    [66]周富强,郯继贵,杨学友,叶声华.CCD摄像机快速标定技术.光学精密工程.2000,8(1):95-100.
    [67]S. J k o, Lee Y H. Center weighed median filters and their Application to image enhancement. IEEE Trans. Circuits Syst,1991,38(9):984-993.
    [68]Yang Ruikang. Optimal weighed median filtering under structural constraints.IEEE Transactions on Signal Processing,1995,43(3):591-603.
    [69]Donoho D L. Adapting to unknown smoothness via wavelet shrinkage Jamer Statist Assoc,1995,90(l): 1200-1224.
    [70]Donoho D L, Johnstone I. Wavelet shrinkage asymptopia. Journal of Royal Statistical Society, 1995,57(2):301-369.
    [71]Shi zhong, Cherkassky V ladimir. Image denoising using wavelet thresholding and model selection.International Conference on Image Processing(ICIP),Vancouver BC,Canada, 2000,3(1):263-265.
    [72]Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage.Biometrika,1994, 81(1):425-455.
    [73]Donoho David L. De-noising by soil-thresholding. IEEE Trans on Information Theory,1995, 41(3):613-627.
    [74]Chang S G, Yu Bin, Vetterli M. Adaptive wavelet thresholding for image denoising and comopression.IEEE Trans Image Processing.2000,9(9):1532-1546.
    [75]张光新,崔扬,周泽魁.基于小波包分解的纹理图像去噪.华南理工大学学报(自然科学版),2005,33(3):31-34.
    [76]文莉,刘正士,葛运建.小波去噪的几种方法.合肥工业大学学报(自然科学版),2002,25(2):167-172.
    [77]Arifin, A. Z. and A. Asano. Image segmentation by histogram thresholding using hierarchical cluster analysis. Pattern Recognition Letters,2006,27(13):1515-1521.
    [78]Farnoosh, R., G. Yari, and B. Zarpak. Image segmentation using Gaussian mixture models. In Proc. 26th Int. Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Paris, France,2006,8(13):26-27.
    [79]Quan Pan,Lei Zhang.Two denoising methods by wavelets transform[J].IEEE Trans Palt Aua,Machine Intell,1989,11(7):674-693.
    [80]Barbara Zitova, Jan Flusser, Image registration methods:a survey image and vision computing 2003, (21):976-1000.
    [81]Mallat S, Zhong S. Characterization of signals form multiscale edges, IEEE Trans. Pattern Analysis and Machine Intelligence,1992,14 (7):710-732.
    [82]钟力,胡晓锋.重叠图像拼接算法.中国图像图形学报,1998,(5):366-37.
    [83]屈志毅,王玉珍,钟声伟.图像拼接中特征块的选取.计算机工程,2002,28(9):165-166.
    [84]方贤用.图像拼接技术研究[博士学位论文].杭州,浙江大学,2005.
    [85]杨占龙.基于特征点的图像配准与拼接技术研究[博士学位论文].西安,西安电子科技大学大学, 2008.
    [86]R. Szeliski. Video mosaics for virtual environments. IEEE Computer Graphics and Applications, 1996,16:22-30.
    [87]R. Szeliski, Heungyeung Shum, Creating full view panoramic image mosaics and environment maps. In Proc of ACMSIGGRAPH'97, Addison Wesley, Turner Whitted, ed., Los Angeles, California,1997, 251-258.
    [88]Kyung Ho Jang, Soon Ki Jung, and Minho Lee, Constructing cylindrical panoramic image using equidistant matching. IEEE Electronics Letters,1999,35:1715-1716.
    [89]H. Pan., General stereo image matching using symmetric complex wavelets. In Wavelet Applications in Signal and image Processing,1996,4:696-721.
    [90]P.J. Burt and E.H. Adelson. A multiresolution spline with application to image mosaics, ACM Transactions on Graphics,1983,2:216-236.
    [91]Harris C, Stephens M.A combined corner and edge detector.4th Alvey Vision Conference.1988,146-151.
    [92]S.E. Chen. QuickTiaie VR-an image based approach to virtual environment navigation, SIGGRAPH'95, 1995,29-38.
    [93]C.T. Hsu and JaiLirLg Wu. Multiresolution mosaic, IEEE Transactions on Consumer Electronics, 1996,42(3):981-990.
    [94]Smith S M, Brady J M. SUSAN-A new approach to low level image processing. Journal of Computer Vision,1997,23(1).
    [95]H.Y. Shum and R. C, zeliski. System and experiment paper:construction of panoramic image mosaics with global and local alignment, International Journal of Computer Vision,2000,36(2):101-130.
    [96]Teague M. Image analysis via the general theory of moments. J.Opt.Soc.Amer.,1980,70(8):920-930.
    [97]Lowe, D.G Object recognition from local scale-invariant features. In International Conference on Computer Vision, Corfu, Greece,1999,1150-1157.
    [98]J.Sato, R.Cipolla.Image registration using multi-scale texture moment. Image and Vision Computing, 1995,13:341-353.
    [99]A. Khotanzad and Y. H. Hongs. Invariant image recognition by Zernike moments. IEEE Trans. on Pattern Analysis and Machine Intelligence,1990,12(5):489-497.
    [100]Kim H. and Kim J. Region-based shape descriptor invariant to rotation, scale and translation. Signal Processing:Image Communication,2000,16:86-93.
    [101]R. Mukundan and K.R. Ramakrishnan, Moment functions in image analysis-theory and applications, World Scientific Publishing Co. Pte Ltd, Singapore,1998.
    [102]樊庆文,王小龙,侯力,黄成祥.基于等距序列图像的快速拼接技术.四川大学学报(工程科学版),2005,37(1):139-142.
    [103]L. G Brown. A survey of image registration techniques. ACM Computer Surveys,1992,24 (4):325-376.
    [104]朱远平,夏利民.一种适用于图像拼接的自适应模板匹配算法.计算机工程与应用.2003,31:109-111.
    [105]Peleg S,Rousso B.Mosaicing on adaptive manifolds.IEEE Transaction on Pattern and Machine Intelligence.2000,22(10):1144-1154.
    [106]B.Likar, F.Pernus. Automatic extraction of corresponding points for the registration of medical images.Medical Physics.1999,26:1678-1686.
    [107]X.Dai, S.Khorram. Development of a feature-based approach to automated image registration for multitemporal and multisensor remotely sensed imagery. International Geoscience and Remote Sensing Symposium IGARSS'97. Singapore,1997,243-245.
    [108]Kyung Ho Jang, Soon Ki Jung, and Minho Lee, "Constructing cylindrical panoramic image using equidistantmatching," 1EE Electronics Letters 35,1999,1715-1716.
    [109]A.Goshtasby, G.C.Stockman,C.V.Page.A region-based approach to digital image registration with subpixel accuracy.IEEE Transaction on Geoscience and Remote Sensing.1986,24:390-399.
    [110]X.Dai, S.Khorram. A feature-based image registration algorithm using improved chain-code representation combined with invariant moments.IEEE Transactions on Geoscience and Remote Sensing.1999,37:2351-2362.
    [111]J.Flusser, J.Boldys,B.Zitova. Moment forms invariant to rotation and blur in arbitrary number of dimensions.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25:234-246.
    [112]M.K.Hu.Visual pattern recognition by moment invariant. IRE Trans Information Theory,1962, 1(8):179-187.
    [113]章毓晋.图像处理和分析(上).北京:清华大学出版社,1999.
    [114]Cho Huak The,Roland T Chin.On image analysis by the methods of moments.IEEE Transcation on Pattern Analysis and Machine Intelligence,1988(10):496-513.
    [115]A.Khotanzad et al. Zernike moment based rotation invariant features for pattern recognition.SPIE 1988,1002:212-219.
    [116]M.Brown. Multi-Image matching using invariant features.PhD.Thesis, The University of British Columbia,2005.
    [117]刘进,张天序.图像不变矩的推广.计算机学报,2004,27(5):668-674.
    [118]J.Flusser and T.Suk. A moment-based approach to registration of images with affine geometric distortion.IEEE Transactions on GeoScience and Remote Sensing,1994,32(2)382-387.
    [119]Kennedy J, Eberhart R C. Particle swarm optimization. Proceedings of the IEEE International Joint Conference on Neural Networks, IEEE Press,1995,1942-1948.
    [120]Babu G P, Murty M N. Clustering with evolution strategies.Pattern Recognition,1992(27):321-329.
    [121]G Friedland, K Jantz, L Knipping, et al. Image segmentation by uniform color clustering approach and benchmark results. Department of computer Science, Freie Universitat Berlin, Tech Rep:B-05-07. 2005.
    [122]K. Y. Song, J. Kittler and M. Petrou, Defect detection in random colour textures. Image and Vision Computing,1996,14(9):666-683.
    [123]Ajay Kumar, Grantham Pang. Identification of surface defects in textured materials using wavelet packets. Industry Applications Conference,2001.247-251.
    [124]Lee.C.S, Choi.C.-H, Choi. J.Y, Kim.Y.K, Choi, S.H. Feature extraction algorithm based on adaptive wavelet packet for surface defect classification. International Conference on Image Processing,1995. 12:673-676.
    [125]Fuqiang He, Wen Wang, Zichen Chen. Automatic visual inspection for leather manufacture, Key Engineering Materials.2006,326-328:469-472.
    [126]Hamed Hamid Muhammed. Unsupervised fuzzy clustering and image segmentation using weighted neural networks. Proceedings of the 12th International Conference on Image Analysis and Processing (ICIAP'03),2003,13(6)583-589.
    [127]崔扬.图像检测技术在皮革缺陷检测中的应用研究[博士学位论文].杭州,浙江大学,2004.
    [128]邹超,朱德森,肖力.基于类别共生矩阵的纹理疵点检测方法,华中科技大学学报(自然科学版),2006,34(6):25-28.
    [129]邹超,朱德森,肖力.基于模糊类别共生矩阵的纹理疵点检测方法.中国图形图像学报,2007,12(1):92-97.
    [130]M.Unser. Texture classification and segmentation using wavelet frames, IEEE Transaction on Image Processing,1995,4(11):1549-1560.
    [131]Amet, A., Ertuzun, A., Ercil, A. An efficient method for texture defect detection using Sub-band domain cooccurrence matrices, Image and Vision Computing,2000,18:543-553.
    [132]S.A. Shilo, A.S. Levda. Detecting defects of leather material on the base of radiometric method in mm-wave band.MSMW'07 Symposium Proceedings. Kharkov, Ukraine,2007,881-883.
    [133]Jang Woo Kwon, Young Yeol Choo,Development of leather quality discrimination system by texture analysis. IEEE Region 10 Conference,2004,1:327-330.
    [134]K. Hoang, A. Nachimuthu. Image processing techniques for leather hide ranking in the footwear industry. Machine Vision and Applications.1996,9:119-129.
    [135]许清明,鞠鲁粤.数控线裁剪自动编程系统中的图像矢量化技术.机电一体化,2001,7(6):42-45.
    [136]刘国景.光栅图像矢量化技术研究[硕士学位论文].西安,西安电子科技大学,2002.
    [137]DoriD, Liuw. Sparse pixel verectorization:An algorithm and its performance evaluation[J]. Pattern Analysis and Machine Intelligence,1999,21(3):202-215.
    [138]张明君.基于位图的自动矢量化技术研究[硕士学位论文].西安,西安电子科技大学,2004.
    [139]刘玉兰,葛庆平.一种间接提取轮廓特征点的算法.计算机工程与应用,2004,40(10):51-52.
    [140]贺福强,王文,陈子辰.基于小波重构的皮革表面检测方法.仪器仪表学报,2006,27(6):316-318.
    [141]魏天全.皮革常见缺陷及解决方法.中国皮革,2000,29(15):37-38.
    [142]韩力群.基于自组织神经网络的皮革纹理分类.中国皮革,1997,26(6):11-13.
    [143]蔡岷,李来水.皮料自动分类中纹理分析方法的研究.北京轻工业学院学报,1995,13(2)33-39.
    [144]蔡岷,韩力群.计算机皮革图像检测与分类系统.自动化仪表,1999,20(5):25-27.
    [145]Kettaf F Z,BI D,Asselin J P. A Comparison study of image segmentation by clustering techniques.In Proceedings of ICSP'95.Beijing China.1995.1280-1290.
    [146]Bezdek J C.Pattern Recognition with fuzzy objective function algorithms.New York:Plenum Press,1981.
    [147]Bezdek J C. A Convergence theorem for the fuzzy ISODATA clustering algorithm. IEEE PAMI,1980,1(2):1-8.
    [148]Dunn J C.A Fuzzy Relative of The ISODATA Process and Its Use in Detecting Compact Well Separated Cluster.J Cybernet,1974,3:32-57.
    [149]Rosenberger C,Chehdi K.Unsupervised clustering method with optimal estimation of the number of clusters:Application to Image Segmentation.In Proceedings of 15th International Conference on Pattern Recognition.Barcelona Spain.2000,1:656-659.
    [150]丁震,胡钟山,扬静宇等.一种基于模糊聚类的图像分割方法.计算机研究与发展,1997,7:536-541.
    [151]Ke J.Fast accurate fuzzy clustering through reduced precision.Master's Thesis, University of South Florida,1999.
    [152]Patricio Villar, Marco Mora and Paulo Gonzalez.A new approach for wet blue leather defect segmentation. Progress in Pattern Recognition,2011, Volume 7042/2011,591-598.
    [153]Priya S, Kumar T.A, Paul V. A novel approach to fabric defect detection using digital image processing, 2011 International Conference on Signal Processing, Communication, Computing and Networking Technologies (ICSCCN),228-232.
    [154]Sabeenian R.S, Paramasivam M.E. Defect detection and identification in textile fabrics using Multi Resolution Combined Statistical and Spatial Frequency Method.2010 IEEE 2nd International Advance Computing Conference (IACC),162-166.
    [155]Li Jian, Han Wei, He Bin. Research on inspection and classification of leather surface defects based on neural network and decision tree.2010 International Conference on Computer Design and Applications (ICCDA), v2:381-384.
    [156]Amorim W.P, Pistori H. Attributes reduction applied to leather defects classification,2010 23rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI),353-359.
    [157]李健,韩玮,郑东.一种皮革表面缺陷检测分类方法的研究.计算机测量与控制,2010,12,273-275.
    [158]余亚东,于梅,叶森钢.基于小波分析的皮革疵点机器视觉检测方法.微计算机信息,2010,26,232-233.
    [159]于彩香.基于纹理分析的皮革可视缺陷检测方法的研究[硕士学位论文].山东轻工业学院,2009.
    [160]陈世哲.微电子产品视觉检测中关键技术研究[博士学位论文].哈尔滨,哈尔滨工业大学,2006.
    [161]朱凯.分形维数在皮革分类中的应用研究[硕士学位论文].四川师范大学,2010.
    [162]宋春刚.基于图像的皮革颜色纹理检测分类方法研究及系统研制[硕士学位论文].浙江大学,2006.
    [163]倪虹霞,杨信昌,陈贺新.基于小波自适应阈值的图像去噪方法.吉林大学学报(信息科学版),2005,23(4):445-448.
    [164]杜林,周新明,李征,黄晓芳.一种基于小波变换的自适应阈值图像去噪方法.数字通信,2010,4:55-57.
    [165]崔艳秋.基于小波域统计模型的图像去噪算法研究[博士学位论文].吉林大学,2005.
    [166]周怀来,李录明,罗省贤,李枚.基于小波变换的改进阈值函数自适应去噪方法.物探化探计算技术,2006,2:173-177.
    [167]李淑霞,王汝霖,李春梅,许亮,李国新.基于噪声方差估计的小波阈值图像去噪新方法.计算机应用研究,2007,1:220-221.
    [168]项昱晖.大面积鞋帮面接缝的自动提取及矢量化[硕士学位论文].华侨大学,2006.
    [169]Sabeenian. Defect detection and identification in textile fabrics using multi-resolution combined statistical and spatial frequency method. Advance Computing Conference (IACC),2010 IEEE 2nd International, Page(s):162-166.
    [170]陈虹.基于纹理分析的皮革缺陷检测的应用研究[硕士学位论文].四川师范大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700