海洋能多能互补智能供电系统总体开发方案研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,海洋能的开发与利用是国内外的研究热点之一。各国学者局限于对海洋能发电装置的研发,普遍遇到发电不平稳、难以实现并网、缺乏海上测试平台以及无统一的装置工作性能评估方法等瓶颈问题。本文针对以上瓶颈问题,结合我国海洋能能流密度偏低的现状,提出海洋能多能互补智能供电系统。海洋能多能互补智能供电系统综合利用交叉变化的海洋能,将海洋能发电装置产生的多路不平稳电力输入转化为单路平稳电力输出,独立为海岛供电或并入电网。海洋能多能互补智能供电系统的提出可以解决海洋能发电遇到的瓶颈问题,推动我国海洋能的产业化进程。
     本文主要研究海洋能多能互补智能供电系统的关键技术,探讨普遍适用的理论、方法,并将这些理论、方法应用于500kW海洋能独立电力系统示范工程的建设实践中。其中,关键技术包括四个方面:建立适用于海洋能多能互补智能供电系统的资源评估方法;建立适用于海洋能多能互补智能供电系统选址方案比选的方法;确定海洋能发电装置的选型参数和布置参数;海洋能多能互补智能供电系统的总体设计。在明确关键技术的同时,编写海洋能多能互补智能供电系统的开发流程。本文的主要内容即围绕关键技术与开发流程两条主线展开。
     本文根据开发流程划分资源评估阶段,同时明确评估内容。然后,给出不同评估内容不同阶段的资源调查方法、精度要求以及调查结果描述方法。给出资源条件的分析方法,包括预测方法与精度要求,数据分析参数及相应的计算方法。给出资源条件的估算方法以及资源评价方法。
     本文对传统的层次分析法进行改进,给出改进层次分析法的计算方法。通过某码头平面布置方案比选实例,将改进的层次分析法与传统的层次分析法进行对比,验证简化算法的正确性。同时,编写通用程序,以便改进的层次分析法在工程领域的推广使用。建立评价指标体系,并针对评价指标定性、定量混杂,量纲不一致以及导向不一致的特点,给出不同评价指标的规范化方法。最后,将改进的层次分析法应用于海洋能多能互补智能供电系统选址方案比选中,构建四层次递阶模型。
     本文明确装置选型参数,识别出目前国内外已经成形的潮流能发电装置和波浪能发电装置的相关参数,为装置选型提供信息基础。同时,明确装置的布置参数,为站址以及布置方案的确定提供指导。
     海洋能多能互补智能供电系统由海洋能发电装置、电缆以及中央控制室组成。本文对海洋能发电装置的通信及连接方式、淹没装置的离岸标识、海底电缆、陆上电缆、中央控制室电力系统、中央控制室、计量设备、辅助设备以及其他设备等进行总体设计,给出设计方法、设计内容以及优选方案。
     500kW海洋能独立电力系统示范工程是在青岛市斋堂岛建设的海洋能多能互补智能供电系统示范项目。本文通过资料搜集调查斋堂岛的地理位置、功能区划、海岛面积、人口及人口分布、电力来源等社会经济条件和环境约束。通过现场实测、资料搜集调查斋堂岛的水深地形、潮汐、地质、陆域条件、气象条件以及波浪等自然条件要素。同时基于小麦岛观测站1983-2005年风、波浪年极值序列推算各方向多年一遇大风极值、波高极值以及周期极值,并使用SWAN模型模拟了斋堂岛海域的波浪场。风、波浪多年一遇极值是潮流能发电装置结构设计的基础。将潮流资源评估划分为开发海岛评估阶段以及站址评估阶段。分别通过同步观测、走航观测和定点观测调查潮流能资源,并采用不同的调和常数进行调和分析。然后,分别使用COHEREN-SED模型、Delft3D模型对潮流场进行数值模拟,并通过观测资料对计算结果进行验证。通过验证,计算值与实测值符合良好。最后,通过对计算结果的分析确定站址及潮流能发电装置布置方案。此外,确定承担的100kW潮流能发电装置类型,并通过数值模拟、物理模型试验完成装置的初步设计,确定设计参数。
In recent years, the development and utilization of marine energy is one of the hotissues at home and abroad. Scholars from various countries focus on the research anddevelopment of marine energy devices and lots of new types of devices have emerged.However, there are many bottlenecks problems to be solved, such as unstable powergeneration, hard to be incorporated into the grid, lack of test platforms at sea, as well as lackof uniform device performance evaluation methods. Considering the unsettled problemsabove and the status of low marine energy flow density in China, the hybrid marine energyintelligent power supply system is proposed. The hybrid marine energy intelligent powersupply system can comprehensively utilize the cross-changing marine energy and convertthe multiple unstable power input into single stable power output, which can supply powerfor island inhabits or incorporate the electricity power into the grid. The hybrid marineenergy intelligent power supply system can solve the bottleneck problems in marine energypower generation, and promote the industrialization process of marine energy in ourcountry.
     The paper mainly studies on the key technologies of hybrid marine energy intelligentpower supply system, and explores universally applicable methods and theories, which areused in the construction practice of500kW marine stand-alone power system demonstrationproject. The key technologies include the following four aspects: the establishment ofresources assessment methods applicable for the hybrid marine energy intelligent powersupply system; the establishment of the method for site alternatives comparison; theestablishment of type selection parameters and layout parameters of marine energygeneration devices; the overall design of the hybrid marine energy intelligent power supplysystem. Meanwhile, the development process for the hybrid marine energy intelligent powersupply system is also determined. The main contents of this paper commence around thekey technologies and the development process.
     The resource assessment stage has been determined according to the development process, as well as the resource assessment contents. Then the resources surveymethodology, the accuracy requirements as well as description methods of survey results atdifferent stages are given. Some other elements have also been determined, such as resourceconditions analysis methods, including forecasting methods and accuracy requirements,data analysis parameters and calculation methods, resource conditions estimation methodsand resource assessment methods.
     The calculation method of improved Analytic Hierarchy Process has been proposedunder the basis of traditional Analytic Hierarchy Process and it has been verified to becorrect and simple through an example of the comparison of a wharf’s plane layoutalternatives. The universal calculation program is given in order to promote the use ofimproved Analytic Hierarchy Process in engineering fields. The evaluation index system isestablished and the different standardization methods are proposed considering theconfusion of qualitative and quantitative indicators, dimensional inconsistencies, as well asevaluation orientation inconsistencies. At last, the improved Analytic Hierarchy Process isapplied to the site selection of hybrid marine energy intelligent power supply system, and afour-level hierarchical model is built.
     The type selection parameters of marine energy device are determined by the way ofidentifying various tidal current energy generation devices and wave power generationdevices at home and abroad, which can provide basic information for the device selection.Meanwhile, the layout parameters of marine energy device are identified too, which cansupply guidance for the station site selection and the layout plan determination.
     The hybrid marine energy intelligent power supply system is composed of powergeneration unit, cable, as well as the central control room. The overall design has beengiven for the following items, such as communication and connection method, offshore logoof submerged installation, submarine cable and land cable, the central control room powersystem, metering equipment, auxiliary equipment and other equipment, etc. Meanwhile, thedesign method, design content and optimization program have also been presented.
     The500kW marine stand-alone power system is a demonstration project of hybridmarine energy intelligent power supply system constructed at Zhaitang island of Qingdaocity. The socio-economic conditions and environmental constraints for Zhaitang island have been investigated by data collection, such as location, function zoning, island area,population and population distribution, power source, etc. The elements of the naturalconditions of Zhaitang island are investigated by field measurement and data collection,such as water depth, topography, tides, geology, land conditions, weather conditions andwave. According to the annual wind and wave extreme value sequences of Xiaomai islandduring the year1983to2005, the wind speed extreme value, wave height extreme value andwave period extreme value of multiple year return period are calculated and the wave fieldnear Zhaitang island is simulated using the SWAN model. The wind and wave extremevalues of multiple year return period are the basis for the structural design of the tidalcurrent energy generation devices. The tidal current resource assessment is divided into twostages which are the island assessment and the station site assessment. The survey of thetidal current resources is conducted by simultaneous observation, moving vesselobservation and fixed-point observation, and the harmonic analysis is done using differentharmonic constants. Then the COHEREN-SED model and the Delft3D model are used tosimulate the tidal current field and the calculation results show good consistency withobservational data. At last, the station site for tidal current energy generation devices andthe layout plan are determined according to the calculation results. In addition, the type ofthe100kW tidal current energy generation device is determined, and the preliminary designfor the device is completed through numerical simulation and physical model tests,obtaining the final design parameters.
引文
[1] Toshiaki K. Dream of marine-topia: new technologies to utilize effectively renewable energiesat offshore. Current Applied Physics,2010,10(2): s4~s8
    [2]王传崑,卢苇.海洋能资源分析方法及储量评估.北京:海洋出版社,2009.213
    [3]刘臻.岸式振荡水柱波能发电装置的试验机数值模拟研究:[博士学位论文].青岛:中国海洋大学,2008
    [4]王坤林,游亚戈,张亚群.海岛可再生独立能源电站能量管理系统.电力系统自动化,2010,34(14):13-17
    [5]熊焰,王海峰,崔琳,等.大管岛多能互补独立供电系统总体设计研究.海洋技术,2008,27(4):78~82
    [6] Energy Technology Support Unit, DTI. Tidal stream energy review,1993
    [7] Paish O, Fraenkel P, Gava P. The exploitation of tidal and marine currents, EuropeanCommission, Non-nuclear Energy-JOULEⅡ, wave energy project results, directorate-generalscience, research and development. Luxembourg: Office for Official Publications of the EuropeanCommunities. ISSBN92-827-5658-0, ECSC-EC-EAEC, Brussels Luxembourg.1996
    [8] Bahaj A. S, Myers L. E. Analytical estimates of the energy yield potential from the AlderneyRace (Channel Islands) using marine current energy converters. Renewable Energy,2004,29:1931~1945
    [9] Myers L. E, Bahaj A. S. Simulated electrical power potential harnessed by marine currentturbine arrays in the Alderney Race. Renewable Energy,2005,30:1713~1731
    [10] Bryden I. G, Couch S. J, Owen A, et al. Tidal current resource assessment. In: Proceedings ofthe Institution of Mechanical Engineers, Number2Professional Engineering Publishing,2006
    [11] Bryden I. G, Grinsted T, Melville G. Assessing the potential of a simple tidal channel todeliver useful energy. Applied Ocean Research,2004,26:198~204
    [12] Bryden I. G, Couch S. J. ME1-marine energy extraction: Tidal resource analysis. RenewableEnergy,2006(31):133~139
    [13] Bryden I. G, Melville G. Choosing and evaluating sites for tidal current development.Proceedings of the Institution of Me-chanical Engineers, Part A: Journal of Power and Energy,2004,218(A8):567~577
    [14] Black&Veatch Consulting Ltd., UK, Europe, and Global Tidal Energy Resource Assessment.Marine energy challenge report.2004
    [15] Hagerman G, Polagye B, Bedard R. Methodology for estimating tidal current energyresources and power production by tidal in-stream energy conversion(TISEC) devices, reportEPRI-TP-001NA Rev3. Electrical Power Research Institute.2006
    [16] Cornett A. Inventory of Canada’s marine renewable energy resources. Report CHC-TR2041.Ottawa: National Research Council and Canadian Hydraulics Centre,2006
    [17] Tarbotton M, Larson M. Canadian ocean energy atlas (Phase1): Potential tidal current energyresources—Analysis background. Report prepared for NRC-Canadian Hydraulics Centre as part ofcontract to Natural Resources Canada. Vancouver: Triton Consultants Ltd.,2006
    [18] Garrett C, Cummins P. Generating power from tidal currents. Waterway Port Coastal OceanEng.,2004,130:114~118
    [19] Garrett C, Cummins P. The power potential of tidal current s in channels. Proc. Roy. Soc. A.,2005,461:2563~2572
    [20] Sutherland G, Foreman M, Garrett C. Tidal current energy assessment for Johnstone Strait.Vancouver Island, Proceedings of the Institution of Mechanical Engineers, Part A: Journal ofPower and Energy,2007,221(2):147~157
    [21]何世钧.舟山地区潮流特征和参数.能源工程,1982,4.
    [22]匡国瑞,周德坚.成山角潮流能的初步估算.海洋技术,1987,6(2):44~48
    [23]郑志南.海洋潮流能的评估.海洋通报,1987,6(4)
    [24] Panicker N. N. Energy from ocean surface wave. The Energy Technology Conference,1977
    [25] Hogbon N, Blumb F. E. Ocean wave statistics, HMSO,1976
    [26] Tornkvist R. Ocean wave power station. Report28, Swedish Technical Scientific Academy,Helsinki Finland,1975
    [27] Pierson W. J., Salfi R. E. The temporal and spatial variability of power from ocean wavealong the west coast of north America. Wave and Salinity Gradient Energy Conversion Workshop,University of Delaware,1976,76~3105
    [28] South West Regional Development Agency. Sea power southwest review,2004
    [29]田瑞竹千穗,柳生忠彦,福田功.在日本沿岸的波浪能.港湾技术研究资料,1980,364:1~20
    [30] Roger B. Wave energy forecasting accuracy as a function of forecasting time horizon.EPRI-WP-013,2009
    [31]王传崑等.中国沿海农村海洋能资源区划,1989
    [32] Lu Wei. Information system for ocean wave resources and its application to wave powerutilization. China Ocean Engineering,1977,11(3):325~334
    [33]卢苇.海洋波能资源信息与分析系统的研制与应用.新能源,1996,18(11):1~5
    [34]卢苇,苏秋成,翟兵.汕尾市遮浪角波浪资源分析,南海资源开发研究.广州:广东经济出版社,1998,843~851
    [35] Lu Wei, Su Qiucheng. The analysis on the wave power resources of100kW shoreline wavepower station at Zhelang.3rd European Wave Energy Conference,1998
    [36]马怀书,于庆武.我国毗邻海区表面波能的初步估算.海洋通报,1983,2(3):73~81
    [37]李陆平,田素珍,徐来声.渤海、黄海波能的估算及其对波能转换前景的评价.黄渤海海洋,1984,2(2):14~23
    [38]郑友华,郑崇伟,李训强.基于ICOADS海浪资料的全球海域波浪能研究.可再生能源,2011,29(5):108~112
    [39]郑崇伟,李训强.基于WAVEWATCH-Ⅲ模式的近22年中国海波浪能资源评估.中国海洋大学学报,2011,41(11):5~12
    [40]任建莉,罗誉娅,陈俊杰.海洋能波浪信息资源评估系统的波力发电应用研究.可再生能源,2009,27(3):93~97
    [41]任建莉,罗誉娅,钟英杰.波力资源分析系统的实现及波能发电应用.浙江工业大学学报,2008,36(2):186~191
    [42]王传崑,卢苇.海洋能资源分析方法及储量评估.北京:海洋出版社,2009.199~200
    [43] Climaco J. Multicriteria analysis. New York: Springer-Verlag,1997
    [44]徐玖平,吴巍.多属性决策的理论与方法.北京:清华大学出版社,2006.3
    [45] Hobbs B. F, Meirer P. M. Multicrerion methods for resource planning: an experimentalcomparison. IEEE Transactions on Power Systems,1994,9(4):1811~1817
    [46] Huang J. P, Poh K. L, Ang B. W. Decision analysis in energy and environmental modeling.Energy,1995,20(9):843~855
    [47] Lahdelma R, Salminen P, Hokkanen J. Using multicriteria methods in environmental planningand management. Environmental Management,2000,26(6):595~605
    [48] Karni R, Feigin P, Breiner A. Multicriterion issues in energy policy making. European Journalof Operational Research,1992,56:30~40
    [49] Mirasgedis S, Diakoulaki D. Multicriteria analysis vs. externalities assessment for thecomparative evaluation of electricity generation systems. European Journal of OperationalResearch,1997,102(2):364~379
    [50] Salminen P, Hokkanen J, Lahdelma R. Comparing multicriteria methods in the context ofenvironmental problems. European Journal of Operational Research,1998,104:485~496
    [51] Cai Y. P, Huang G. H, Yang Z. F, et al. Community-scale renewable energy systems planningunder uncertainty—an interval chance-constrained programming approach. Renewable andSustainable Energy Reviews,2009,13(4):721~35
    [52] Connolly D, Lund H, Mathiesen B. V, et al. A review of computer tools for analyzing theintegration of renewable energy into various energy systems. Applied Energy,2010,87(4):1059~1082
    [53] Benini E, Toffolo A. Optimal design of horizontal-axis wind turbines using blade-elementtheory and evolutionary computation. Journal of Solar Energy Engineering,2002,124(4):357~363
    [54] Mustakerov I, Borissova D. Wind turbines type and number choice using combinatorialoptimization. Renewable Energy,2010,35(9):1887~1894
    [55] L en E. Use of multicriteria decision analysis methods for energy planning problems.Renewable and Sustainable Energy Reviews,2007,11:1584~1595
    [56] San Cristobal J. R. Multi-criteria decision-making in the selection of a renewable energyproject in Spain: The Vikor method. Renewable Energy,2011,36:498~502
    [57] Parrissia O. S, Zoulias E, Stamatakis E, et al. Integration of wind and hydrogen technologiesin the power system of Corvo Island, Azores: A cost-benefit analysis. International Journal ofHydrogen Energy,2011,36:8143~8151
    [58] Saaty T. L. Modeling unstructured decision problems: a theory of analytical hierarchies. In:Proceedings of the First International Conference on Mathematical Modeling. University ofMissoure Rolla,1977
    [59] Saaty T. L. The analytic hierarchy process. NewYork: McGraw-Hill,1980
    [60] Xu J. P, Wu W. Multiple attribute decision making theory and methods. Beijing: TsinghuaUniversity Press,2006
    [61] Wang J. J, Jing Y. Y, Zhang C. F, et al. Application of multi-criteria decision making tosustainable energy planning—a review. Renewable and Sustainable Energy Reviews,2009,13:2268~2278
    [62] Ramanathan R, Ganesh L. S. Energy resource allocation incorporating quantitative andqualitative criteria: an integrated model using goal programming and AHP. Socio EconomicPlanning Sciences,1995,29:197~218
    [63] Mohsen M. S, Akash B. A. Evaluation of domestic solar water heating system in Jordan usinganalytic hierarchy process. Energy Conversion and Management,1997,38:1815~1822
    [64] Chattopadhyay D, Ramanathan R. A new approach to evaluate generation capacity bids. IEEETransactions on Power Systems,1998,13:1232~1237
    [65] Wang X. H, Feng Z. M. Sustainable development of rural energy and its appraising system inChina. Renewable and Sustainable Energy Reviews,2002,6:395~404
    [66] Kablan M. M. Decision support for energy conservation promotion: an analytic hierarchyprocess approach. Energy Policy,2004,32:1151~1158
    [67] Aras H, Erdo mu, Ko E. Multi-criteria selection for a wind observation station locationusing analytic hierarchy process. Renewable Energy,2004,29:1383~1392
    [68] Nigim K, Munier N, Green J. Pre-feasibility MCDM tools to aid communities in prioritizinglocal viable renewable energy sources. Renewable Energy,2004,29:1775~1791
    [69] Chatzimouratidis A. I, Pilavachi P. A. Objective and subjective evaluation of power plantsand their non-radioactive emissions using the analytic hierarchy process. Energy Policy,2007,35:4027~4038
    [70] Chatzimouratidis A. I, Pilavachi P. A. Multicriteria evaluation of power plants impact on theliving standard using the analytic hierarchy process. Energy Policy,2008,36:1074~1089
    [71] Chatzimouratidis A. I, Pilavachi P. A. Sensitivity analysis of the evaluation of power plantsimpact on the living standard using the analytic hierarchy process. Energy Conversion andManagement,2008,49:3599~3611
    [72] Jaber J. O, Jaber Q. M, Sawalha S. A, et al. Evaluation of conventional and renewable energysources for space heating in the household sector. Renewable and Sustainable Energy Reviews,2008,12:278~289
    [73] Arán Carrión J, Espín Estrella A, Aznar Dols F, et al. Environmental decision-support systemsfor evaluating the carrying capacity of land areas: optimal site selection for grid-connectedphotovoltaic power plants. Renewable and Sustainable Energy Reviews,2008,12:2358~2380
    [74] Pilavachi P. A, Stephanidis S. D, Pappas V. A, et al. Multi-criteria evaluation of hydrogen andnatural gas fuelled power plant technologies. Applied Thermal Engineering,2009,29:2228~2234
    [75] Chatzimouratidis A. I, Pilavachi P. A. Technological, economic and sustainability evaluationof power plants using the Analytic Hierarchy Process. Energy Policy,2009,37:778~787
    [76] Mirza U. K, Ahmad N, Harijan K, et al. Identifying and addressing barriers to renewableenergy development in Pakistan. Renewable and Sustainable Energy Reviews,2009,13:927~931
    [77] Lee A. H, Chen H. H, Kang H. Y. Multicriteria decision making on strategic selection of windfarms. Renewable Energy,2009,34:120~126
    [78]余有芳,盛奎川.基于层次分析法的可再生能源开发及投资决策.农机化研究,2006,2:61~66
    [79]王仲瑀.基于模糊层次分析法的黑龙江新能源开发决策分析.大庆石油学院学报,2007,2:96~98
    [80]洪浩林.保定新能源产业集群竞争力评价与分析研究:[硕士学位论文].保定:华北电力大学,2008
    [81]孟浩,陈颖健.基于层次分析法的新能源产业发展能力综合评价.中国科技论坛,2010,6:53~58
    [82] Marine Current Turbines Ltd. SeaFlow completed,2003, Available from:www.marineturbines.com
    [83] Marine Current Turbines Ltd. SeaGen completed: World’s First Megawatt scale tidal turbineinstalled,2008, Available from: http://www.marineturbines.com
    [84] SMD Hydrovision Ltd. Tidel stream generator,2012, Available from:http://smd.co.uk/products/
    [85] Ocean Flow Energy Ltd. Development status,2012, Available from:http://www.oceanflowenergy.com/development-status.htm
    [86] Tidal Energy Ltd. The technology,2012, Available from:http://www.tidalenergyltd.com/?page_id=640
    [87] Lunar Energy Ltd. RRT-the product,2012, Available from:http://www.lunarenergy.co.uk/productOverview.htm
    [88] Neptune Renewable Energy Ltd. Tidal technology–the Neptune Proteus NP1000,2012,Available from: http://www.neptunerenewableenergy.com/tidal_technology.php
    [89] IHC Engineering Business Ltd. Stingray tidal stream generator,2012, Available from:http://www.engb.com/
    [90] Pulse Generation Ltd. Our technology,2012, Available from:http://pulsetidal.com/our-technology.html
    [91] Hammerfest Strom AS. Tidal turbine technology,2012, Available from:http://www.hammerfeststrom.com
    [92] Verdant Power Ltd. Verdant power’s free flow turbines,2012, Available from:http://verdantpower.com
    [93] GCK Technology Ltd. The Gorlov Helical Turbine,2012, Available from:http://www.gcktechnology.com/GCK/pg2.html
    [94] Open-Hydro Ltd. Open Center technology,2012, Available from:http://www.openhydro.com/techOCT.html
    [95] Atlantis Resources Corporation Ltd. AS series,2012, Available from:http://www.atlantisresourcescorporation.com/marine-power/atlantis-technologies/as-series.html
    [96] Atlantis Resources Corporation Ltd. AN series,2012, Available from:http://www.atlantisresourcescorporation.com/marine-power/atlantis-technologies/an-series.html
    [97] Blue Energy Ltd. Tidal Bridge,2012, Available from:http://www.bluenergy.com/technology_method_tidal_bridge.html
    [98] Ponte di Archimede SpA Ltd. Kobold,2012, Available from:http://www.pontediarchimede.it/language_us/progetti_det.mvd?RECID=2&CAT=002&SUBCAT=&MODULO=Progetti_ENG&returnpages=&page_pd=d
    [99]张洋.漂浮式潮流电站锚泊系统的设计和计算:[硕士学位论文].哈尔滨:哈尔滨工程大学,2004
    [100]詹明珠.潮流电站稳定性分析及锚泊系统的设计计算:[硕士学位论文].哈尔滨:哈尔滨工程大学,2006
    [101] Wang S. J, Li D, Li H. J, et al. Study and innovation of a flexible blade turbine, a new typeof tidal current generating device. Engineering Science,2010,8(1):5~10
    [102] Wang S. J, Li D, Yuan P. Recent progress in flexible blade turbine: scale model testing-seatrial. In: The4th East Asian Workshop for Marine Environments. Jeju Island,2009.193~202
    [103]王树杰.柔性叶片潮流能水轮机水动力学性能研究:[博士学位论文].青岛:中国海洋大学,2009
    [104]林勇刚,李伟,刘宏伟,等.水下风车海流能发电技术.浙江大学学报,2008,42(7):1242~1246
    [105] Liu H. W, Li W, Lin Y. G, et al. Model analysis and test research of horizontal-axial marinecurrent turbine. Acta Energiae Solaris Sinica,2009,30(5):633~638
    [106] Ma S, Li W, Liu H. W. Experimental investigation of a horizontal axial tidal current energyconversion system. In: International Ocean Energy Symposium. China,2009.64~71
    [107] Thorpe T. W. An overview of wave energy technologies: status, performance and costs,wave power: moving towards commercial viability. London,1999.11~16
    [108] Alcorn R. G, Beattie W. C. Observations of time domain data on the Wells Turbine in theIslay wave power plant. In: Proceedings of the Eighth International Offoreshore and PolarEnigeering Conference. Montreal, Canada: International Society of Offshore and Polar Engineers,1998.12~18
    [109] Heath T, Whittaker T, Boake C. B. The design, construction and operation of theLIMPET wave energy converter (Islay Scotland). In: The Fourth European Wind EnergyConference. Aalborg, Denmark,2000.78~83
    [110] Voith Hydro Wavegen Ltd. LIMPET Islay,2012, Available from:http://www.wavegen.co.uk/what_we_offer_limpet_islay.htm
    [111] Kraemer D. R. B, Ohl C. O. G, McCormick M. E. Comparison of experimental andtheoretical results of the motions of a McCabe Wave Pump. In: The4th European Wind EnergyConference. Aalborg, Denmark,2000.34~38
    [112] Nielsen K, Plum C. Comparison of experimental and theoretical results of the motions of aMcCabe Wave Pump. In: The4th European Wind Energy Conference. Aalborg, Denmark,2000.56~62
    [113] Henderson R. Design, simulation, and testing of a novel hydraulic power take-off system forthe Pelamis wave energy converter. Renewable Energy,2006,31:271~283
    [114] Retzler C. Measurements of the slow drift dynamics of a model Pelamis wave energyconverter. Renewable Energy,2005,31:257~269
    [115] Washio Y, Osawa H, Nagata Y, et al. The offshore floating type wave power device ‘MightyWhale’: open sea tests. In: Proceedings of the Tenth International Offshore and Polar EngineeringConference. Seattle, USA: International Society of Offshore and Polar Engineers,2000.373~380
    [116] Kondo H, Katoh M, Ohta N. A new system of wave power extraction and shore protection aterosive Coasts. In: The3rd European Wind Energy Conference. Patras, Greece,1998.34-38
    [117] Alves M, Melo A. B, Sarmento A. J. N. A. Numerical modeling of the pendulum ocean wavepower converter using a Panel Method. In: Proceedings of the12th International Offshore andPolar Engineering Conference. Kitakyushu, Japan: International Society of Offshore and PolarEngineering,2002.1:655-661
    [118] Keulenaer H. D. Seawave Slot-Cone generator. The Power of the Oceans-Leonardo Energy.2007,1~6
    [119] Margheritini L, Vicinanza D, Frigaard P. SSG wave energy converter: design, reliability andhydraulic performance of an innovative overtopping device. Renewable Energy,2009,34:1371-1380
    [120] Kofoed J. P, Frigaard P, Serenson H. C, et al. Development of the wave energy converter-Wave Dragon. In: Proceedings of the Tenth International Offshore and Polar EngineeringConference. Seattle, USA: International Society of Offshore and Polar Engineers,2000.1:405~412
    [121] Frigaard P, Kofoed J. P, Rasmussen M. R. Overtopping measurements on the Wave DragonNissum Bredning prototype. In: Proceedings of the Fourteenth International Offshore and PolarEngineering Conference. Toulon, France: International Society of Offshore and Polar Engineers,2004.1:210~216
    [122] Leijon M, Danielsson O, Eriksson M. An electrical approach to wave energy conversion.Renewable Energy,2006,31:1309~1319
    [123] Lagstroem G. Sea power international—Floating Wave Power Vessel, FWPV. WavePower—Moving towards Commercial Viability. London, UK: Institution of Mechanical EngineersSeminar,1999.8~12
    [124] Gardner F E. Learning experience of AWS pilot plant test offshore Portugal. In: Proceedingsof the sixth European Wave Energy Conference.2005,149-154
    [125] Prado M. Archimedes Wave Swing (AWS). In: Cruz J, editor. Ocean Wave Energy. Berlin,2008.7-39
    [126] Weber J, Mouwen F, Parrish A, et al. Wavebob-research&development network and toolsin the context of systems engineerings. In: Proceedings of8th European Wave Tidal EnergyConference.2009,416-429
    [127] Weinstein A, Fredrikson G, Parks M. J, et al. AquaBuOY, the offshore wave energyconverter numerical modeling and optimization. In: Proceedings of MTTS/IEEETechno-Ocean’04Conference. Kobe, Japan,2004.4:1854-1859
    [128] Falca o A. F. Design and construction of the OWC wave power plant at the Azores. In:Wave Power—Moving towards Commercial Viability. London, UK: Institution of MechanicalEngineers Seminar,1999.35~42
    [129] Falca o A. F. The shoreline OWC wave power plant at the Azores. In: The fourth EuropeanWind Energy Conference. Aalborg, Denmark,2000.123~129
    [130] Wave Energy Centre. Demonstration OWC,2012, Available from:http://en.wavec.org/index.php/34/owc-pico-plant/
    [131]余志.海洋能利用技术进展与展望.太阳能学报,1999,特刊,214-226
    [132]梁贤光,蒋念东,王伟,等.5kW后弯管波力发电装置的研究.海洋工程,1999,17(4):55-63
    [133]杨国华.不规则波作用下沉箱防波堤兼作岸式波力发电装置性能研究:[硕士学位论文].青岛:中国海洋大学,2010
    [134]刘娅君.碟型越浪式波能发电装置的系统设计及优化研究:[博士学位论文].青岛:中国海洋大学,2011
    [135] Shi H. D,Shao M. A new dot-matrix oscillating type wave energy converter. The fifth EastAsian Workshop for Marine Environments. Tokyo, Japan,2011,55-69
    [136] Karki R, Billinton R. Reliability/cost implications of PV and wind energy utilization insmall isolated power systems. IEEE Transactions on Energy Conversion,2001,16(4):368~373
    [137] Billinton R, Karki R. Capacity expansion of small isolated power systems using PV andwind Energy. IEEE Transactions on power systems,2001,16(4):892~897
    [138] Dufo-Lopez R, Bernal-Agustin J. L. Design and control strategies of PV-diesel systemsusing genetic algorithms. Solar Energy,2005,(79):33~46
    [139] Shakya B. D, Lu A, Musgrave P. Technical feasibility and financial analysis of hybridwind-photovoltaic system with hydrogen storage for Cooma. International Journal of HydrogenEnergy,2005(30):9~20
    [140] Onar O. C, Uzunoglu M, Alam M. S. Dynamic modeling design and simulation of awind/fuel cell/ultra-capacitor-based hybrid power generation system. Journal of Power Sources,2006,161(1):707~722
    [141] Senjyu. T, Hayashi D, Yona A, et al. Optimal configuration of power generating systems inisolated island with renewable energy. Renewable Energy,2007,32(11):1917~1933
    [142] Diaf S, Diaf D, Bel Hamel M, et al. A methodology for optimal sizing of autonomous hybridPV/wind system. Energy Policy,200735(11):5708~5718
    [143] Nema P, Nema R. K, Rangnekar S. A current and future state of art development of hybridenergy system using wind and PV-solar: a review. Renewable and Sustainable Energy Reviews,2009,13(8):2096~2103
    [144]王凡.风能太阳能互补的发电方式.华东电力,1999,4:56~57
    [145]茆美琴,何慧若.风-光复合发电系统的优化设计.合肥工业大学学报(自然科学版),2001,24(6):1036~1039
    [146]肖毅.风光互补发电系统的优化设计:[硕士学位论文].西安:西安交通大学,2001
    [147]定世攀.独立运行风光互补电站控制监控系统的研究:[硕士学位论文].北京:中国科学院电工研究所,2002
    [148]艾斌,杨洪兴,沈辉,等.风光互补发电系统的优化设计(I):CAD设计方法.太阳能学报,2003,24(4):541~547
    [149]张荣甫,高树发,邵振付.风能/太阳能综合电源系统设计.电源技术,2003,27(1):36~41
    [150]杨苹,杨金明,张吴.新型太阳能-风能混合发电系统的研制.华北电力技术,2004,1:12~15
    [151]张淼,吴捷.基于分级模糊控制风力太阳能混合发电控制系统的研究.太阳能学报,2006,27(12):1208~1213
    [152]陈新,赵文谦,万久春,等.风光互补抽水蓄能电站系统配置研究.四川大学学报(工程科学版),2007,39(1):53~57
    [153] Kaldellis J.K, Kavadias K, Christinakis E. Evaluation of the wind–hydro energy solution forremote islands. Energy Conversion and Management,2001,42(9):1105~1120
    [154] George C. B. Feasibility study of a hybrid wind/hydro power-system for low-cost electricityproduction. Applied Energy,2002,72(3):599~608
    [155] Camille Bélangera, Luc Gagnon. Adding wind energy to hydropower. Energy Policy,2002,30(14):1297~1284
    [156] Jaramillo O. A., Borja M. A., Huacuz J. M. Using hydropower to complement wind energy:a hybrid system to provide firm power. Renewable Energy,2004,29:1887~1909
    [157] Lund H. Large-scale integration of optimal combinations of PV, wind and wave power intothe electricity supply. Renewable Energy,2006,31(4):503~515
    [158] Babarit A, Ahmed H. B, Clément A.H. Simulation of electricity supply of an Atlantic islandby offshore wind turbines and wave energy converters associated with a medium scale localenergy storage. Renewable Energy,2006:31(2):153~160
    [159] Hammons T. J. Integrating renewable energy sources into European grids. InternationalJournal of Electrical Power&Energy Systems,2008,30(8):462~475
    [160] Wang L, Lee D. J, Lee W. J, et al. Analysis of a novel autonomous marine hybrid powergeneration/energy storage system with a high-voltage direct current link. Journal of Power Sources,2008,185(2):1284~1292
    [161] Fusco F, Nolan G, Ringwood J. V. Variability reduction through optimal combination ofwind/wave resources-an Irish case study. Energy,2010,35(1):314~325
    [162] Stoutenburg E. D, Nicholas J, Jacobson M. Z. Power output variations of co-locatedoffshore wind turbines and wave energy converters in California. Renewable Energy,2010,35:2781~2791
    [163] The European Marine Energy Center Ltd. Available from: http://www.emec.org.uk/
    [164]熊焰,王海峰,崔琳,等.大管岛多能互补独立发电系统的发电量设计.海洋技术,2009,28(1):101~103
    [165]张亚群,游亚戈,王坤林.海岛独立可再生能源系统蓄电池模型.中国可再生能源学会2011年学术年会.浙江,2010,212~219
    [166]游亚戈,盛松伟,王坤林,等.海岛可再生独立能源系统研建报告.广东:广州能源研究所,2010
    [167] Shao M, Shi H. D, Liang B. C. Study on the layout scheme of an ocean energy isolatedpower system. In: Civil Engineering and Energy Engineering Conference. Inner Mongolia, China,2011.6185-6190
    [168]邵萌,史宏达,梁丙臣.500kW海洋能独立电力系统示范工程选址方案研究.中国可再生能源学会2011年学术年会.北京,2011,137
    [169]吕忻.潮流能资源调查与评估标准研究:[硕士学位论文].青岛:中国海洋大学,2011
    [170]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T12763.2-2007.海洋调查规范第2部分:海洋水文观测.2007
    [171]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T12763.8-2007.海洋调查规范第8部分:海洋地质地球物理调查.2007
    [172] Athanassoulis G. A, Pontes M. T, Tsoulos L. European wave energy atlas: an interactivePC-based system. The Second European Wave Power Conference,1995,20~27
    [173] Saaty T. L. Decision making-the Analytic Hierarchy and Network Processes (AHP/ANP).Journal of Systems and Systems Engineering,2004,13(1):1-35
    [174] Shao M, Shi H. D. A developed AHP method applied to the comparison of port projects’plane layout alternatives, The Proceedings of Twentieth International Offshore and PolarEngineering Conference,2010,989-994
    [175] Charles W. F, Roger C. Electrical power generation from ocean currents in the Straits ofFlorida: some environment considerations. Renewable and Sustainable Reviews,2009,13(9):597~604
    [176] Ponta F. L, Jacovkis P. M. Marine-current power generation by diffuser-augmented floatinghydro-turbines. Renewable Energy,2008,33(4):65~73
    [177] Bahaj A. S, Batten W. M. J, McCann G. Experimental verifications of numerical predictionsfor the hydrodynamic performance of horizontal axis marine current turbines. Renewable Energy,2007,32(15):79~90
    [178] Fergal O. R, Fergal B, Anthony R. Renewable energy resources and technologies applicableto Ireland. Renewable and Sustainable Energy Reviews,2009,13(8):75~84
    [179]孙洪,李永祺.中国海洋高技术及其产业化发展战略研究.青岛:中国海洋大学出版社,2003.3~15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700