新藤黄酸抗肿瘤作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     中药藤黄(Gamboge)系藤黄科植物藤黄树(Garcinia hanburyi Hook. F. G)所分泌出的干燥树脂,近年来,其抗肿瘤作用受到高度关注。已经有研究表明,新藤黄酸(neogambogic acid. NGA)为藤黄抗肿瘤作用的主要有效成分之一,有望开发成抗肿瘤新药。但目前对其抗瘤谱的筛选尚不完全,尚未查阅到给药后新藤黄酸在体内分布的资料,对其抗肿瘤作用机制的研究也仅限于新藤黄酸对白血病细胞周期的影响,许多对该药物的应用较为重要的资料仍不完善。鉴于此,本文旨在进一步探讨新藤黄酸的体外和体内抗肿瘤活性,并在此基础上从细胞凋亡、细胞周期、细胞信号转导、端粒酶活性以及血管生成等角度入手,探索新藤黄酸的抗肿瘤作用机制,为新藤黄酸的开发及临床应用奠定理论基础。
     方法与结果
     1新藤黄酸的体外抗肿瘤作用
     运用MTT法和CCK-8法,通过测定新藤黄酸对体外培养肿瘤细胞的抑制率求出新藤黄酸对各肿瘤细胞株的IC50(半数抑制浓度),考察新藤黄酸对体外培养肿瘤细胞的抗增殖作用,结果发现新藤黄酸对非选择性获得的16株肿瘤细胞均具有抗增殖作用,IC50在1.14~4.25μg/mL之间,说明新藤黄酸具有确切的体外抗肿瘤活性(IC50<10μg/mL)。对人正常肝细胞株HL-7702的抗增殖实验结果显示,新藤黄酸对人正常肝细胞HL-7702的IC50为5.23±0.04μg/mL,新藤黄酸对人肝细胞癌Hep G2细胞株的IC50为1.22±0.12μg/mL,提示新藤黄酸对正常肝细胞的增殖有一定的抑制作用,但作用强度较其对肿瘤细胞的作用强度弱,推论在一定浓度范围内(1.25-2.50μg/mL)新藤黄酸具有选择性抑制肿瘤细胞增殖的作用。
     2新藤黄酸的体内抗肿瘤作用
     经过急性毒性试验,运用SPSS11.5统计学软件按机率单位加权回归法(Bliss法)计算得出新藤黄酸对小鼠的LD50(半数致死量)为36.66mg/kg,在此基础上确定小鼠实验的高、中、低三个剂量分别为8.0 mg/kg、4.0 mg/kg、2.0 mg/kg.采用荷S180腹水瘤小鼠模型,以存活时间为指标,观察新藤黄酸对动物肿瘤的体内抗肿瘤作用。结果显示,NGA中剂量(4.0 mg/kg)对延长荷瘤小鼠的存活时间效果最好,明显高于阳性对照药氟尿嘧啶(5-FU) (10.0 mg/kg)的疗效(P<0.05),但NGA高剂量(8.0 mg/kg)和NGA低剂量(2.0 mg/kg)的疗效均低于5-FU (10.0 mg/kg)的疗效(P<0.05),且NGA低剂量的平均存活时间与阴性对照组的差异无统计学意义(P>0.05)。提示新藤黄酸发挥治疗作用的剂量范围较窄,高剂量组的疗效比中剂量组差可能是由新藤黄酸的毒副作用所引起的。
     在建立小鼠血液及器官组织中新藤黄酸的HPLC测定方法后,建立荷S180实体瘤模型,考察给药后新藤黄酸在小鼠体内的分布情况。结果显示,腹腔注射后新藤黄酸在心、肝、肺、脾、肾及肿瘤组织中的峰浓度值分别为9.58±2.79、16.49±4.17、14.51±3.68、8.23±1.88、8.85±2.37、10.28±2.75μg/g,但在试验条件下,未能在脑组织中检测到新藤黄酸,其原因可能是新藤黄酸未能通过血脑屏障或者浓度水平未达到检测限。
     根据体内分布实验结果和体外实验结果,确定裸小鼠移植瘤模型的瘤株为人肝细胞癌Hep G2细胞株,建立人肝细胞癌Hep G2裸小鼠移植瘤模型,以相对肿瘤体积(relative tumor volume, RTV)和抑瘤率(inhibition rate of tumor growth, TGI)为指标考察新藤黄酸对人肿瘤的体内抗肿瘤作用,结果显示,新藤黄酸对人肝细胞癌Hep G2裸小鼠移植瘤的生长具有明显的抑制作用,在实验时间范围内,给药8d后,可观察到RTV随着给药剂量的增大而减小,给药14d后,阴性对照组、5-FU组、NGA高剂量(8.0 mg/kg)组、中剂量(4.0 mg/kg)组和低剂量(2.0 mg/kg)组的RTV分别为10.72±4.83、7.57±2.24、1.34±0.36、2.52±1.37和7.02±1.94;5-FU组、NGA高剂量(8.0 mg/kg)组、中剂量(4.0 mg/kg)组和低剂量(2.0 mg/kg)组的TGl分别为46.54%、83.75%、68.09%和22.14%;提示在一定剂量范围内,新藤黄酸具有确切的体内抗肿瘤作用。3新藤黄酸的抗肿瘤作用机制
     在确定新藤黄酸具有确切的抗肿瘤作用后,从细胞凋亡、细胞周期、细胞信号转导、端粒酶活性和肿瘤血管生成五个方面进一步研究新藤黄酸的抗肿瘤作用机制。
     采用Annexin V-FITC/PI双染流式细胞术检测新藤黄酸干预后体外培养HepG2细胞的早期凋亡率,结果显示,早期凋亡率的最大值为(49.44±3.12)%,且出现在给药后24h,说明新藤黄酸具有诱导体外培养Hep G2细胞早期凋亡的作用。琼脂糖凝胶电泳DNA片段化分析的结果显示,新藤黄酸能使Hep G2细胞核DNA发生明显的降解,但未观察到细胞凋亡的特征DNA梯状条带,其原因可能是细胞在发生早期凋亡后,DNA又被进一步降解成200bp左右的片段。
     为了进一步研究细胞凋亡的机制,采用Western blot法检测给药后Hep G2细胞中凋亡相关蛋白Bax、Bcl-2的水平,结果显示,Bax呈浓度依赖性升高,Bcl-2呈浓度依赖性降低;对照组、NGA(1.0μg/mL)组、NGA(2.Oμg/mL)组和NGA(3.0μg/mL)的Bax/Bcl-2比值分别为0.06、0.29、2.25和21.14。说明新藤黄酸在一定浓度范围内可以上调体外培养Hep G2细胞的Bax/Bcl-2比值。免疫组化法检测人肝细胞癌Hep G2裸小鼠移植瘤组织Bax、Bcl-2蛋白水平的结果显示,NGA低剂量(2.0mg/kg)组的Bax蛋白水平和Bcl-2蛋白水平与阴性对照组相比无显著差异(P>0.05),NGA中剂量(4.0mg/kg)组和NGA高剂量(8.0mg/kg)组的Bax蛋白水平明显高于阴性对照组,而Bcl-2蛋白水平明显低于阴性对照组;阴性对照组、NGA(2.0mg/kg)组、NGA(4.0mg/kg)组和NGA(8.0mg/kg)的Bax/Bcl-2比值分别为0.729、0.808、1.679和1.688。提示新藤黄酸在一定剂量范围内可以上调Hep G2裸小鼠移植瘤组织的Bax/Bcl-2比值。可见,体外试验结果和体内试验结果均支持新藤黄酸可通过上调Bax的水平和(或)下调Bcl-2的水平,从而升高Bax/Bcl-2比值诱导细胞凋亡。
     在对细胞周期进展的影响方面,采用PI单染流式细胞术检测处于各细胞周期时相的细胞数占总细胞数的百分比,结果显示,与对照组相比,给药后12~36h,S期细胞明显增多,在给药后48h,G0/G1期细胞增多,说明新藤黄酸能使细胞阻滞在S期,且随着时间的延长,能进一步使细胞阻滞在G0/G1期。
     在对MAPK细胞信号转导通路的影响方面,采用免疫组化法检测Ras/Raf/MEK/ERK级联通路中ERK和MEK的活化形式p-ERK1/2和p-MEK1/2的水平,结果显示,新藤黄酸可下调ERK1/2蛋白和MEK1/2蛋白的磷酸化水平,说明新藤黄酸可以通过下调ERK信号通路的信号引起细胞周期阻滞从而抑制细胞的增殖。但其调节点可能在Ras/Raf/MEK/ERK级联通路中MEK的上游,因为MEK的活化形式p-MEK1/2的水平也得到了下调。
     在对端粒酶活性的影响方面,采用荧光定量PCR法,检测端粒酶逆转录酶(human telomerase reverse transcriptase,hTERT)的mRNA水平来间接反映端粒酶的活性。结果显示,新藤黄酸给药各组Hep G2细胞的hTERT mRNA水平都明显低于对照组(P<0.05),且新藤黄酸给药各组的Hep G2细胞hTERT mRNA水平随给药浓度的升高而降低,各组间均有显著差异(P<0.05)。说明新藤黄酸对端粒酶活性具有抑制作用,且表现为浓度依赖性增强。据此推断,新藤黄酸可通过抑制端粒酶活性发挥体外抗肿瘤作用。
     在对肿瘤细胞血管生成的影响方面,运用免疫组化法检测Hep G2裸小鼠移植瘤组织中CD31(血小板内皮细胞粘附分子)的水平,从而反映新藤黄酸对肿瘤血管生成的影响,实验结果显示,新藤黄酸3个给药组的CD31阳性表达量IOD值均明显低于阴性对照组,且差异具有统计学意义(P<0.05),提示在一定浓度范围内,新藤黄酸可降低实体瘤组织的CD31水平,说明新藤黄酸对实体肿瘤的血管生成有一定的抑制作用。
     结论
     新藤黄酸具有广谱的体外抗肿瘤作用,在一定浓度范围内,新藤黄酸可选择性抑制肿瘤细胞的增殖,而对正常细胞的抗增殖作用相对较弱。
     新藤黄酸给药后能在小鼠体内广泛分布,其中以肝脏分布最高,在肿瘤组织中也有较高的分布;新藤黄酸可显著延长荷S180腹水瘤小鼠的存活时间,说明新藤黄酸对动物肿瘤具有确切的体内抗肿瘤活性;新藤黄酸能显著减小人肝细胞癌Hep G2裸小鼠移植瘤的相对肿瘤体积,抑瘤率可达到83.75%,说明新藤黄酸对人肝细胞癌Hep G2裸小鼠移植瘤具有确切的体内抗肿瘤活性。
     新藤黄酸可通过诱导细胞凋亡、阻滞细胞周期进展、抑制肿瘤血管生成而发挥抗肿瘤作用。新藤黄酸诱导肿瘤细胞凋亡与其对上调Bax/Bcl-2的比值有关。另外,新藤黄酸尚可通过下调MAPK/ERK信号通路关键酶的活性阻断MAPK级联反应,从而引起细胞周期阻滞,产生抗增殖作用;同时,细胞周期阻滞尚可诱导肿瘤细胞程序性死亡。
Background and purpose
     Gamboge is the dry resin secreted from Garcinia hanburyi Hook.F.G. In recent years, the anti-tumor effect of Gamboge has been gradually and greatly concerned. Studies have confirmed that neogambogic acid (NGA) is one of the main active ingredients of the anti-tumor effect of Gamboge and that it is expected to be developed into a new anti-tumor drug. But the research on its anti-tumor spectrum has not yet completed. It has not been found that the information of distribution of NGA in the organs and tissues. In addition, the research on its mechanism was limited to NGA impacting on cell cycle of leukemia. Much more important information concerning the application of NGA was far from perfect. In view of this, the dissertation aims to further elaborate the anti-tumor activity of NGA in vitro and in vivo. And on this basis, from apoptosis, cell cycle, cell signal transduction, telomerase activity and angiogenesis, we tried to explore the anti-tumor mechanism of NGA and its molecular basis, which would establish the theoretical basis for the development and clinical application of NGA.
     Methods and results
     1 The anti-tumor effect of NGA in vitro
     MTT and CCK-8 were used to assay the inhibition rate of tumor cells treated with NGA in different concentration. According to the inhibition rate, the IC50 (50 percent inhibitory concentration) of each tumor cell line was calculated, which was used to evaluate the anti-proliferative effect of NGA on tumor cells in vitro. The results showed that NGA could play anti-proliferative effect on 16 tumor cell lines. Their IC50 was between 1.14μg/mL and 4.25μg/mL, indicating that NGA has exact anti-tumor activity in vitro (IC50<10μg/mL). The experimental results of the normal human liver cell line HL-7702 treated with NGA showed that the IC50 of NGA on HL-7702 cell line was 5.23±0.04μg/mL, and the IC50 of NGA on human hepatoblastoma Hep G2 cell line was 1.22±0.12μg/mL. In addiction, the results also showed that in a certain concentration range (between 1.25μg/mL and 2.50μg/mL) NGA could selectively play strong anti-proliferative effect on tumor cells while play weaker anti-proliferative effect on normal liver cells.
     2 The anti-tumor effect of NGA in vivo
     After acute toxicity test, we calculated the LD50 (median lethal dose) of NGA on mice by statistical software SPSS11.5. The result showed that the LD50 was 36.66mg/kg. On this basis, we determined that the high, medium and low doses of the mice experiments were 8.0mg/kg,4.0mg/kg and 2.0mg/kg respectively. The anti-tumor effect of NGA on mice bearing S180 ascitic tumor was evaluated by survival time of tumor-bearing mice. The results showed that NGA at medium dose (4.0 mg/kg) has the best effect on prolonging survival time of tumor-bearing mice, which was significantly higher than the efficacy of the positive control drug 5-FU (fluorouracil)(10.0 mg/kg)(P<0.05). But the efficacies of the high dose (8.0 mg/kg) and low dose (2.0 mg/kg) were lower than the efficacy of 5-FU (10.0 mg/kg) (P<0.05). And the average survival time of low dose group and negative control group had no significant difference (P>0.05). These suggested that NGA played therapeutic effect in a narrow dosage range, and that the efficacy of high dose group was worse than the efficacy of medium dose group may be caused by the toxic side effects of NGA.
     After establishing the high performance liquid chromatography (HPLC) determination method of NGA in blood and the tissues of organs, the bearing S180 solid tumor model was established to study the distribution of NGA in mice. The results showed that the peak concentration of NGA in heart, liver, lung, spleen, kidney and tumor tissues were 9.58±2.79、16.49±4.17、14.51±3.68.8.23±1.88、8.85±2.37、10.28±2.75μg/g respectively. But in the experimental conditions, NGA failed to be detected in brain tissue, whose reason may be that NGA failed to pass the blood-brain barrier or its concentration level was lower than the detection limit.
     According to the results of distribution experiment and the results of the experiments in vitro, human hepatoblastoma cell line Hep G2 was determined to be the cell line of the tumor xenograft model in nude mice. Then human hepatoblastoma Hep G2 cell xenograft model in nude mice was established. And the anti-tumor effect of NGA on human tumor in vivo was evaluated by the relative tumor volume (RTV) and tumor growth inhibition rate (TGI). The results showed that the NGA could significantly inhibit the growth of the human hepatoblastoma xenograft in nude mice. In the experimental time frame, after 8 days of treatment, it could be observed that RTV decreased along with the increase of dose. After 14 days of treatment, RTV of the negative control group,5-FU group, NGA high dose (8.0mg/kg) group, medium dose (4.0mg/kg) group and low dose (2.0mg/kg) group were 10.72±4.83,7.57±2.24,1.34±0.36,2.52±1.37 and 7.02±1.94 respectively. TGI of 5-FU group, NGA high dose (8.0mg/kg) group, medium dose (4.0mg/kg) group and low dose (2.0mg/kg) group were 46.54%,83.75%,68.09% and 22.14% respectively. These suggested that in a certain dosage range, NGA had exact anti-tumor effect in vivo.
     3 The anti-tumor mechanism of NGA
     After determining NGA having the exact anti-tumor effects in vivo and in vitro, we exerted further research on the anti-tumor mechanism of NGA from apoptosis, cell cycle, cell signal transduction, telomerase activity and angiogenesis.
     After cells stained by Annexin V-FITC/PI, flow cytometry analysis showed that the maximum percentage of apoptosis appeared and reach to (49.44±3.12)% at 24 hours after Hep G2 cells were exposed to 2.0μg/mL NGA, indicating that NGA could induce early apoptosis of Hep G2 cells in vitro. Analysis by agarose gel electrophoresis showed that NGA could induce the DNA in nucleus of Hep G2 evidently to be degraded, but no DNA ladder was observed. Its reason might be that after cells occurring early apoptosis, DNA was further degraded into fragments of about 200 base pairs (bp).
     To further research on the mechanism of apoptosis, the levels of apoptosis-related proteins Bax and Bcl-2 in Hep G2 cells exposed to NGA in vitro were detected by Western blot. The results showed that Bax increased along with the increase of drug concentration while Bcl-2 decreased along with the increase of drug concentration. The Bax/Bcl-2 ratios of the control group, NGA (1.0μg/mL) group, NGA (2.0μg/mL) group and NGA (3.0μg/mL) group were 0.06,0.29,2.25 and 21.14 respectively, indicating that NGA in a certain concentration range could increase the Bax/Bcl-2 ratio of Hep G2 cells in vitro.
     The levels of Bax and Bcl-2 in human hepatoblastoma Hep G2 cell xenograft in nude mice was assayed by immunohistochemistry. The results showed that the levels of Bax and Bcl-2 of NGA low dose (2.0mg/kg) group and that of negative control group had no significant difference (P>0.05). For NGA medium dose (4.0mg/kg) group and NGA high dose (8.0mg/kg) group, the levels of Bax were significantly higher than the negative control group, while the levels of Bcl-2 were significantly lower than the negative control group. The Bax/Bcl-2 ratios of the negative control group, NGA (2.0mg/kg) group, NGA (4.0mg/kg) group and NGA (8.0mg/kg) group were 0.729,0.808,1.679 and 1.688 respectively, indicating that NGA in a certain dosage range could increase Bax/Bcl-2 ratio of human hepatoblastoma Hep G2 cell xenograft in nude mice. Evidently, both the results in vitro and in vivo supported the hypothesis that NGA could increase the level of Bax and (or) reduced the level of Bcl-2, which increased Bax/Bcl-2 ratio to induce apoptosis.
     In terms of the progression of the cell cycle, Hep G2 cells treated with 2.0μg/mL NGA for different time were collected and assayed by flow cytometry. Cell phase analysis showed that compared with the control group, the indexes of the cells arrested in S phase significantly increased during the first 0-36 hours and the indexes of the cells arrested in G0/G1 phase significantly increased when treated with NGA for 48 hours, indicating that NGA could induce cells to be arrested in S phase and to be further arrested in G0/G1 phase with the time passing by.
     In terms of the MAPK signal transduction pathway, the levels p-ERK1/2 and p-MEK1/2, the activated forms of MEK and ERK of Ras\Raf\MEK\ERK cascade pathway, were assayed by immunohistochemistry. The results showed that NGA could down-regulate the levels of p-ERK1/2 and p-MEKl/2, indicating that NGA could play anti-proliferative effect by reducing the signals of ERK signaling pathway to arrest cell cycle. But the adjustment point may be in the upstream of MEK in Ras/Raf/MEK/ERK cascade pathway, as the level of p-MEK1/2, the MEK activation form, had also been reduced.
     In terms of telomerase activity, the level of hTERT (human telomerase reverse transcriptase) mRNA was assayed by FQ-PCR (fluorescence quantitative polymerase chain reaction) to reflect telomerase activity. The results showed that the levels of hTERT mRNA of each group of Hep G2 cells treated with NGA was significantly lower than the control group (P<0.05). The level of hTERT mRNA of each group of Hep G2 cells treated with NGA decreased along with the increase of drug concentration, and there is significantly difference among each group (P<0.05). These indicated that NGA could inhibit telomerase activity in drug concentration dependently. Consequently, we inferred that NGA could play anti-tumor effect by inhibiting telomerase activity.
     In terms of the angiogenesis of tumor, the level of CD31 (platelet endothelial cell adhesion molecule) in Hep G2 tumor tissue in nude mice was assayed by immunohistochemistry. The results showed that CD31-positive expression IOD (integrated option density) values of three groups treated with NGA were significantly lower then that of the negative control group, and the differences were statistically significant (P<0.05). These indicated that NGA could reduce the levels of CD31 in solid tumor tissue in a certain dosage range, suggesting that NGA could inhabit angiogenesis in solid tumors to some extent.
     Conclusions
     NGA has a broad spectrum anti-tumor effect in vitro, In a certain concentration range, NGA can selectively play strong anti-proliferative effect on tumor cells and relatively weaker anti-proliferative effect on normal cells.
     NGA can be widely distributed in mice. The maximum concentration was found in liver followed by that of the lung. NGA can significantly prolong the life span of the S180 ascites tumor bearing mice, indicating that NGA has an exact anti-tumor activity on animal tumors in vivo. NGA can significantly reduce the RTV of human hepatoblastoma Hep G2 xenografts in nude mice and increase TGI to 83.75%, indicating that NGA has an exact anti-tumor activity on human hepatoblastoma Hep G2 xenografts in nude mice in vivo.
     NGA can play an anti-tumor effect by inducing apoptosis, arresting cell cycle, inhibiting telomerase activity and inhibiting angiogenesis. NGA inducing tumor cells apoptosis is by increasing the ratio of Bax/Bcl-2. In addition, NGA can blocks MAPK cascade by reducing the activity of key enzymes in MAPK/ERK signaling pathway, causing cell cycle arrest and resulting in anti-proliferative effect. Meanwhile, cell cycle arrest can still induce tumor cell programmed cell death.
引文
[1]杨企铮,贾淑杰,李德华.中药藤黄的近代研究[J].中国肿瘤临床,1994,21(6):464-466.
    [2]王鸣,冯煦,赵友谊.中药藤黄的研究和应用[J].中国野生植物资源,2003,220):1~3.
    [3]刘幸平,程康华.薄层扫描法测定不同地区藤黄炮制品中藤黄酸及新藤黄酸的含量[J].中成药,1995,17(10):20~21.
    [4]刘幸平,程康华.薄层扫描法测定不同温度藤黄炮制品中藤黄酸及新藤黄酸的含量[J].南京中医药大学学报,1995,11(6):33~34.
    [5]冯传平.新藤黄酸冻干粉针剂的制备工艺研究[D].合肥:安徽中医学院,2006:10~30,65~67.
    [6]曲宝玺,纪远中,章萍,等.藤黄Ⅱ号对白血病L1210细胞杀伤动力学研究I-显微分光光度计观察[J].中国肿瘤临床,1991,18(1):53~56.
    [7]曲宝玺,郝晓阁,李德华,等.藤黄Ⅱ号抗癌作用的实验研究[J].中国肿瘤临床,1991,18(1):50-52.
    [8]程卉,彭代银,王效山,等.新藤黄酸体内外抗肿瘤作用研究[J].中草药,2008,39(2):236~240.
    [9]邹明宏,杜丽清,曾辉,等.藤黄属植物(Garcinia)资源与利用研究进展[J].热带作物学报,2007,28(4):124~127.
    [10]孔令东,叶定江,吴浩.藤黄的炮制及其现代研究概况[J].中国中药杂志,1995,20(2):89~91.
    [11]W. D. Ollis, M. V. J. Ramsay, I. O. Sutherland, Stang Mongkolsuk. The Constitution of Gambogic Acid[J]. Tetrahedron.1965,21(6):1453~1470.
    [12]吕归宝,杨秀贤,黄乔书.藤黄中新藤黄酸的分离及其结构[J].药学学报,1984,19(8):636-639.
    [13]Lee-Juian Lin, Long-Ze Lin, Pezzuto, et al. [J]. Magnetic Resonance in Chemistry.1993,31(1):340~347.
    [14]Jun Asano, Kazuhiro Chiba, Masahiro Tada, et al. [J].Phytochemistry,1996, 41(3):815~820.
    [15]贺百花,彭求贤,高倩,等.中药藤黄药理作用研究进展[J].河北北方学院学报(医学版).2009,26(5):71~72.
    [16]杨虹,丛晓东,王峥涛.药用藤黄化学成分的研究[J].中国药学杂志,2008,43(12):900~902.
    [17]贾明美,寿清耀,谭青,等.藤黄化学成分的研究[J].化学学报,2008, 66(22):2513~2517.
    [18]李占林,王丽莉,华会明.藤黄抗肿瘤活性成分的研究[C].第七届全国天然有机化学学术研讨会论文集:66.
    [19]雷秋模,刘金妹.藤黄(总体)抗癌实验与临床研究报告[J].江西医药,1982,(03):5~9.
    [20]刘若庸,王洁,李德华,等.藤黄制剂与放疗合用对小鼠肿瘤MA-737的疗效观察[J],天津药学,1989,(06):8~11.
    [21]WU Zhao-Qiu, GUO Qing-Long, YOU Qi-Dong, et al. Growth Inhibitory Effect of GGAs on Experimental Tumor in Mice and Human Tumor Cell Cultured in vitro[J]. Chin J Nat Med.,2003,1(2):99.
    [22]GUO Qing-Long, WU Zhao-Qiu, YOU Qi-Dong, et al. GGAs Inhibited Growth of Human hepatoma SMMC-7721 cells in vitro and in nude mice[J]. Acta Pharmacol Sin,2004,25(6):769~774.
    [23]柳文嫒.抗肿瘤新药藤黄酸的结构、代谢产物及构效关系的研究[D].中国药科大学,2004:6~8.
    [24]陈葆仁.藤黄抗癌成分的研究Ⅰ-藤黄酸的分离和结构鉴定[J].江西医学院学报,1980,(2):1~7.
    [25]柳文媛,冯锋,尤启冬,等.RP-HPLC法测定总藤黄酸中藤黄酸的含量[J].中草药,2003,34(8):706~707.
    [26]顾红燕,郭青龙,尤启冬,等. 藤黄酸促进bax和p53表达诱导人肝细胞癌细胞SMMC-7721凋亡[J].中国天然药物,2005,3(3):168~172,i002.
    [27]WU Zhao-Qiu, GUO Qing-Long, YOU Qi-Dong, et al. Growth Inhibitory Effect of GGAs on Experimental Tumor in Mice and Human Tumor Cell Cultured in vitro[J]. Chin J Nat Med.,2003,1(2):99.
    [28]Han-Zhong Zhang, Shailaja Kasibhatla, Yan Wang, et al. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay [J]. Bioorganic & Medicinal Chemistry,2004,12(2):309~317.
    [29]Shu WX, Chen Y, He J. Effects of gambogic acid on the regulation of nucleoporin Nup88 in HL-60 cells [J]. Zhonghua Zhong Liu Za Zhi.2008, 30(7):484~489.
    [30]吴照球.藤黄酸抗肺癌作用及机制的实验研究[D].南京:中国药科大学,2003:56-60.
    [31]郭青龙,赵丽,尤启冬,等.藤黄酸诱导人胃腺癌SGC-7901细胞的凋亡作用[J].中国天然药物,2004,2(2):106~110.
    [32]刘静冰,秦叔逵,李进.藤黄酸抗胰腺癌作用的实验研究[J].临床肿瘤学杂 志,2005,10(3):274~277.
    [33]舒文秀,陈燕,何静,等.藤黄酸对急性白血病细胞U937增殖和凋亡的影响及对核孔蛋白Nup88的调控作用[J]。中草药,2008,39(1):74~78.
    [34]Xu Xiaoyuan, Liu Yeqiang, Wang Ling, et al. Gambogic acid induces apoptosis by regulating the expression of Bax and Bcl-2 and enhancing caspase-3 activity in human malignant melanoma A375 cells [J]. International Journal of Dermatology,2009,48(2):186~192(7).
    [35]朱润衡.中药藤黄外用治疗带状疱疹及单纯疱疹110例[J].中医皮肤外科杂志,1984,17(1):18.
    [36]Prerz R, Wu N, Klipfel AA, et al. A better cell cycle target for gene therapy of colorectal cancer:cyclin G. J Gastrointest Surg [J].2003,7(70):884~889.
    [37]Laiho M, Latonen L. Cell cycle control, DNA damage checkpoints and cancer. Am Med [J].2003,35(6):391~397.
    [38]Malumbres M, Carnero A. Cell cycle cycle deregulation:a common motif in cancer. Prog Cell Cycle Res [J].2003, (5):5~18.
    [39]ANTO, RUBYJOHN MUKHOPADHYAY, ASOK DENNING, et al. Curcumin (diferuloyImethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome C release:its suppression by ectopic expression of Bcl-2 and Bcl-xl [J]. Carcinogenesis,2002,23(1):143~150.
    [40]MACKEY T J, BORKOWSKI A, AMIN P, et al. Bcl-2/Bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer[J]. Urology,1998,52(6):1085~1090.
    [41]许爱华,陈华圣,孙步蟾,等.银杏外种皮多糖对人胃癌细胞凋亡及其调亡诱导基因表达的影响[J].中药药理与临床,2003,19(3):11~13.
    [42]张可杰,张明智,刘文励,等.夏枯草对Raji细胞生长和凋亡相关基因蛋白表达的影响[J].中药材,2006,29(11):1207~1208.
    [43]费晓方,王本祥,田代真一,等.人参皂苷Rh2对人黑色素瘤细胞A375-S2的促凋亡作用[J].中国药理学报,2002,23(4):315~322.
    [44]CHENG Y L, CHANG W L, LEE S C, et al. Acetone extract of Angelica sinensis inhibits proliferation of human cancer cells via inducing cell cycle arrest and apoptosis[J]. Life Sciences,2004,75(13):1579~1594.
    [45]李梨,周岐新,石京山.淫羊藿苷药理作用研究进展[J].中国药房,2005,16(12):952~954.
    [46]Soignet SL, Frankel SR, Douer D, et al. United States multicenter study of arsenic troxide in relapsed acute promyelocytic leukemia [J]. Clin Oncol, 2001,19(18):901~904.
    [47]何全清,周清华,袁淑兰,等.丹参酮诱导人肺癌细胞凋亡及其分子机制[J].中国肺癌杂志,2002,5(4):257~259.
    [48]石玉枝,柳兰英,霍建民,等.三氧化二砷诱导肺癌细胞凋亡及p53、bcl-2基因表达的研究[J].中华结核和呼吸杂志,2002,25(11):665~666.
    [49]张森,万德森,肖锡宾,等.大蒜油激活鼠肝枯否细胞抗癌作用的实验研究[J].大肠肛门病外科杂志,2005,11(4):257~259.
    [50]贺新怀,席孝贤.中医药免疫学[M].北京:人民卫生出版社,2002:345~364.
    [51]李宏军,俞莉章,郭应禄.Fas系统在肿瘤研究中的应用[J].中华外科杂志,1997,359:59~62.
    [52]Cui H, El-Khatib M, Sherr DH, et al. Characterization of lpr-derived T cell hybridomas:Fas deficient hybridomas are deathless, growth-arrested, and cytotoxic upon activation[J]. Cell Immunol,1996, (167):302~312.
    [53]MORAGODA L, JASZEWSKI R, MAJUMDAR AP, et al. Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells [J]. Anticancer Res,2001,21(2A):873~878.
    [54]郑国灿,李智英.丹参酮Ⅰ对Hep G2细胞抑制作用的体外实验研究[J].现代医学,2004,32(5):296~298.
    [55]雷铁池,朱支元,夏明玉.人参皂苷Rg1对体外培养鼠黑色素瘤细胞系的化疗增敏作用[J].中华皮肤科杂志,2000,33(5):338~341.
    [56]陈思宇,刘陕西,李信民.雄黄对急性早幼粒细胞白血病细胞诱导调亡中和促进分化的双重作用[J].西安交通大学学报:医学版,2002,23(4):401~404.
    [57]张谨,张洵,王永泉,等.藤黄酸对肿瘤细胞诱导分化作用的探讨[J].实用癌症杂志,2003,18(1):9~10.
    [58]哈敏丈,袁媛.大蒜素诱导人胃癌细胞M期阻滞的研究[J].中华肿瘤杂志,2004,26(10):585~589.
    [59]毕黎琦,李红军,张玉华.中药天花粉蛋白时黑色素瘤细胞凋亡及细胞周期的影响[J].中国中西医结合杂志,1998,18(1):35~37.
    [60]李毓,胡祖光,胡笑克.薏苡仁酯对人鼻咽癌细胞周期的影响.华夏医学,2004,(2):8~9.
    [61]MACK P, HA X F, CHENG L Y. Efficacy of intra-arterial norcantharidin in suppressing tumor 14C-labelled glucose oxidative metabolism in rat morris hepatoma [J]. HPB Surg,1996,10(2):65~72.
    [62]石灵春,汪波,吴万垠,等.莪术油对小鼠肝癌细胞抑制作用的分子机理[J].中药药理与临床,2002,18(1):6~7.
    [63]李贵海,潘成业,孙付军,等.中药生物碱逆转小鼠S180肉瘤细胞获得性多药耐药相关生物因子的过度表达[J].中国中药杂志,2005,30(3):1844~1848.
    [64]张玲,王芸,毛海婷,等.淫羊藿苷抑制肿瘤细胞端粒酶活性及其调节机制的研究[J].中国免疫学杂志,2002,18(3):191~196.
    [65]李洁,石俊英.半枝莲对人肺巨细胞癌细胞株PG细胞端粒酶活性的影响[J].中药药理与临床,2006,22(3):113~114.
    [66]王介明.绿茶多酚抑制前列腺癌的作用[J].国外医学中医中药分册,2005,27(4):155.
    [67]王灏,胡伟国.羟基喜树碱治疗进展期大肠癌[J].中国癌症杂志,1998,8(1):63~64.
    [68]HASHIMOTO S, JING Y, KAWAZOA N, et al. Bufalin reduces the level of topoisomerase Ⅱ in human leukemia cells and affects the cytotoxicity of anticancer drugs [J]. Leuk Res,1997,21(9):875~883.
    [69]陈陵际,韩家娴,杨蔚怡,等.灵芝精粉和孢子粉混合物抑制肿瘤细胞生长的实验研究[J].癌症,2002,21(12):1341~1344.
    [70]陈葳,李厂元.绞股蓝总皂甙对体外培养肝癌细胞核和蛋白质合成的影响[J].西安医科大学学报,1993,14(1):14~16.
    [71]孙波,吴云林,王升华,等.鸦胆子油乳抗人胃腺癌细胞增殖作用的初步研究[J].上海医学,2001,24(8):481~483.
    [72]陈小义,徐瑞成,陈莉,等.蟾蜍灵对人胃癌细胞MGC-803的生长抑制作用[J].中草药,2000,31(12):920~922.
    [73]于春艳,李 薇,刘玉和,等.白花蛇舌草提取物体外抗肿瘤作用及机制研究[J].北华大学学报(自然科学版),2004,(5):29~33.
    [74]CHUNG J G, WU L T, CHU C B, et al. Effects of berberine on arylamine N-acetyltransferase activity in human bladder tumour cells [J]. Food Chem Toxicol,1999,37(4):319~326.
    [75]李勇,刘冀红,赵群,等.大蒜素对人胃腺癌BGC-823细胞影响的研究[J].中国中西医结合外科杂志,2001,7(5):307.
    [76]张炜.白花蛇舌草对肿瘤细胞信号传导通路的抑制[J].食品与生物技术学报,2006,25(1):50~53.
    [77]王亚茹,邓高松,李 云,等.秋水仙碱对微管蛋白的作用机制及其细胞效应研究进展[J].西北植物学报,2010,(12):214~220.
    [78]崔萍,霍长虹,李力,等.作用于微管的天然产物[J].中草药,2010,(1):148~156.
    [79]吴海鹰,管忠震,何友兼.国产紫杉醇治疗恶性肿瘤的Ⅲ期临床研究报告[J]. 肿瘤,1998,18(6):394~399.
    [80]杨岚,梁蓉,袁跃传,等.川芎嗪联合环胞霉素A逆转白血病多药耐药的研究[J].癌症,2000,19(4):304~306.
    [81]毕小利,张炜,余小萍,等.薏苡仁提取物注射液对非小细胞肺癌多药耐药基因影响的研究[J].肿瘤防治杂志,2000,17(6):662~664.
    [82]姜晓峰,甄永苏.大黄素逆转肿瘤细胞多药抗药性的作用[J].药学学报,1999,34(3):164~167.
    [83]潘启超,田辉.多种中药单体逆转肿瘤多药耐药性[J].科学通报,1995,40(20):1901~1904.
    [84]刘广遐,王婷婷,魏嘉,等.4种中药提取物对多西紫杉醇耐药胃癌细胞的作用[J].江苏中医药,2008,40(4):64~66.
    [85]Tingting Wang, Jia Wei, Xiaoping Qian, et al. Gambogic acid, a potent inhibitor of survivin, reverses docetaxel resistance in gastric cancer cells [J]. Cancer Letters,2008,262(2):214~222.
    [86]张慧珠,杨林,任雷鸣,等.中药活性成分逆转肿瘤细胞多药耐药作用的体外筛选[J].华北煤炭医学院学报,2003,5(3):265~267.
    [87]孙婧璟,周信达,刘银坤.丹参对肝癌转移复发防治作用的研究[J].中国中西医结合杂志,1999,19(5):292~295.
    [88]林洪生,李树奇,裴迎霞,等.川芎嗪、苦参碱对癌细胞与内皮细胞黏附及黏附分子表达的影响[J].中国新药杂志,1999,8(6):384~386.
    [89]黄煜伦,周幽心,周岱,等.雷公藤红素抑制血管生成的实验研究[J].中华肿瘤杂志,2003,25(5):429~432.
    [90]高勇,王杰军,梅长林.红素抑制血管生长的实验研究[J].肿瘤,1998,18(4):280~281.
    [91]孔庆志,黄涛,黄冬生,等.苦参素对小鼠移植性S180肉瘤血管形成的抑制作用[J].中国药师,2003,6(12):769~771.
    [92]冯 刚,孔庆志,黄冬生,等.薏苡仁注射液对小鼠移植性S180肉瘤血管形成抑制的作用[J].肿瘤防治研究,2004,31(4):229~230.
    [93]张妮娜,卜平,朱海杭,等.半枝莲抑制肿瘤血管生成的作用及其机制研究[J].癌症,2005,24(12):1459~1463.
    [94]黄兆明,何小琴.丹参、赤芍、莪术对小鼠Lewis肺癌血管生成的影响[J].实用中西医结合临床,2006,6(1):74~75.
    [95]宁安红,曹婧,黄敏,等.灵芝多糖对小鼠肿瘤的抑制作用及免疫指标的观察[J].肿瘤研究与临床,2006,16(3):147~149.
    [96]高丽君,王建华,崔建华,等.白首乌多糖1a的免疫调节作用研究[J].中国 中药杂志,2005,30(17):1352~1355.
    [97]吕世静,黄槐莲,袁汉尧,等.白茅根多糖对人淋巴细胞免疫调节效应的研究[J].中国新药杂志,2004,13(9):834~835.
    [98]胡志全,郭辉,谌科,等.姜黄素诱导雄激素非依赖性前列腺癌PC3细胞周期阻滞和凋亡研究[J].中华实验外科杂志,2005,22(10):1222~1224.
    [99]李忠.临床中医肿瘤学[M].沈阳:辽宁科学技术出版社,2002:30.
    [100]刘幸平,郭戎.炮制对藤黄中新藤黄酸含量的影响[J].中成药,1996,18(3):17~18.
    [101]冯传平,周娟,黄鹏,等.HPLC测定新藤黄酸的含量[J].安徽中医学院学报,2006,25(5):48~49.
    [102]周安,李庆林,彭代银,等.HPLC法测定藤黄中藤黄酸和新藤黄酸的含量[J].中国中医药信息杂志,2008,15(8):53~54.
    [103]朱金燕,胡容峰.高效液相色谱法测定新藤黄酸纳米粒中新藤黄酸的含量和包封率[J].安徽中医学院学报,2009,28(1):49~51.
    [104]刘修树,周娟,黄鹏,等.新藤黄酸提取工艺的优化研究[J].安徽中医学院学报,2007,26(1):54~55.
    [105]王可,周娟,周安,等.正交试验法优选新藤黄酸的醇提工艺[J].安徽医药,2009,13(1):15~16.
    [106]王可,俞娟,周安,等.七种大孔树脂对新藤黄酸吸附分离的初步研究[J].安徽化工,2009,35(2):39~41.
    [107]赵煤矿,周晶,周娟,等.新藤黄酸亲水凝胶骨架缓释片的处方工艺研究[J].安徽化工,2007,33(5):32~33.
    [108]周晶,王效山,赵煤矿,等.新藤黄酸亲水凝胶骨架片的制备和体外释放度研究[J].中国药业,2008,17(18):22~23.
    [109]方玲,孟楣,夏伦祝,等.新藤黄酸脂质体冻干粉的制备及其包封率测定[J].安徽医药,2009,13(6):596~597.
    [110]赵斌,葛金芳,朱娟娟,等.小议在MTT法测细胞增殖抑制率中IC50的计算方法[J].安徽医药,2007,11(9):834~835.
    [111]袁伯俊,王治乔.新药临床前安全性评价与实践[M].北京:军事医学科学出版社,1997,11:23~36.
    [112]周一平.SPSS软件计算新药的LD50[J].药学进展,2003,27(5):314~316.
    [113]吴燕红,苏子仁,陈建南,等.从小鼠体内血药浓度时间曲线与组织分布特征评价葛根素的给药途径[J].中药新药与临床药,2005,16(2):112~115.
    [114]李军,李福涛,开丽,等.采用Hep G2细胞株建立裸鼠肝癌模型的方法[J].四川生理科学杂志,2002,24(2):80~81.
    [115]徐叔云,卞如濂,陈修.药理实验方法学[M],北京:人民卫生出版社,2002:100~104.
    [116]Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death [J]. Cell, 1993,74(4):609~619.
    [117]Garcia-Saez AJ, Coraiola M, Dalla Serra M, et al. Peptides derived from apoptotic Bax and Bid reproduce the poration activity of the parent full-length proteins [J]. Biophys J,2005,88(6):3976~3990.
    [118]Dejean LM, Martinez-Cabllero S, Guo L, et al. Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel[J]. Mol Biol Cell,2005,16(5): 2424-2432.
    [119]Lin Y, Kokontis J, Tang F, et al. Androgen and its receptor promote Bax-mediated apoptosis [J]. Mol Biol Cell,2006,26(5):1908~1916.
    [120]Gerhard Krauss. Translated by Sun Chao, et al. Biochemistry of Signal Transduction and Regulation (3rd edition) [M], Beijing:Chemical Industry Press,2005:317~320. (in Chinese)
    [121]黄坊,谢明,景志亮,等.ERK/MAPK信号通路活性表达与鼻咽癌细胞增殖凋亡的关系[J].中华肿瘤防治杂志,2010,17(15):1191~1195.
    [122]Nakamura TM, Mo rin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human[J]. Science,1997,277(5328): 955~959.
    [123]Sambrook J, Russell D W. Translated by Huang P T. et al. Molecular Cloning:A Laboratory Manual (3rd edition) [M]. Beijing:Science Press, 2002:518~532. (in Chinese)
    [124]Blackburn EH. Telomere states and cell fates[J]. Nature,2000,408(6808): 53~56.
    [125]Chen CJ, Tsai NM, Liu YC, et al. Telomerase activity in human hepatocellular carcinoma:parallel correlation with human telomerase reverse transcriptase (hTERT) mRNA isoform expression but not with cell cycle modulators or c-Myc expression [J]. Eur J Surg Oncol,2002,28(3): 225~234.
    [126]张立,王国民.血小板内皮细胞粘附分子(CD31)在肾细胞癌中表达的研究[J].中国临床医学,2007,14(6):890-892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700