藤黄酸衍生物NG-18的抗肿瘤药效学评价及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NG-18(N-(2-ethoxyethyl)gambogamide)是由中科院上海药物研究所段文虎课题研究组对藤黄中的有效成分藤黄酸(gambogic acid,GA)结构修饰而得到的新化合物。本研究首先评价该化合物体外抗肿瘤活性,进而对其诱导HL-60细胞凋亡作用机制进行初步探讨。
     体外抑制细胞增殖实验中,悬浮细胞我们采用四氮唑盐还原法(3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide,MTT),贴壁细胞采用磺酰罗丹明B蛋白染色法(Sulforhodamine B,SRB)来观察NG-18对19株肿瘤细胞(包括2株白血病,2株肺癌,3株胃癌,3株结肠癌,3株乳腺癌,2株卵巢癌,1株宫颈癌和3株肝癌)体外增殖抑制作用。结果显示NG-18对这些肿瘤细胞均有显著地增殖抑制作用,具有广泛的细胞毒作用。NG-18和母核GA的平均IC_(50)值分别为0.86μM和1.24μM,因此NG-18的体外抗肿瘤能力要高于其母核GA。
     接着,我们在人白血病细胞HL-60上运用PI染色-流式细胞分析、Annexin V-FITC结合实验、DNA片段化电泳分析等方法来观察NG-18对HL-60细胞凋亡和细胞周期的影响。结果表明NG-18有很强的诱导细胞发生凋亡的作用,并且呈时间和剂量依赖性。通过流式细胞分析,我们可以发现0.5μM NG-18作用6h和1μM NG-18作用3h,就能发生明显的细胞凋亡。DNA片段化电泳分析结果显示,0.5μM NG-18作用6h后,出现了明显的DNA梯状条纹,表明细胞发生了凋亡。但是NG-18在诱导HL-60细胞凋亡的过程中并没有影响其细胞周期的分布。
     我们对NG-18诱导HL-60细胞凋亡的机制进行了初步的探讨。首先我们用碱性单细胞凝胶电泳来检测细胞凋亡早期,细胞核DNA是否发生了断裂。结果表明NG-18并非是通过诱导细胞核DNA发生断裂而引发细胞凋亡。在凋亡程序的启动及执行过程中,有一大类蛋白酶家族Caspases起着十分重要的作用。Caspases(Cystein-containing,aspartat-specific proteases)的本质是一类半胱氨酸蛋白酶,在正常的状态下,它们以无活性的酶原(proenaymes)形式存在。
     用Western Blot的方法我们发现,在NG-18诱导HL-60细胞凋亡的过程中,胞外和胞内两条凋亡信号通路上的启动Caspases,Caspase-8和Caspase-9几乎能同时被激活。这一结果表明胞外和胞内两条凋亡途径都参与了NG-18诱导的HL-60细胞凋亡。接着,我们预先用Caspases泛抑制剂(Z-VAD-FMK)处理细胞,再加入NG-18,结果显示Z-VAD-FMK能够完全抑制NG-18诱导的细胞凋亡。我们用其它的Caspases抑制剂如Caspase-2抑制剂(Z-VDVAD-FMK)、Caspase-9抑制剂(Z-LEHD-FMK)和Caspase-8抑制剂(Z-IETD-FMK)相同的方法处理细胞,结果表明只有Caspase-8抑制剂(Z-IETD-FMK)才能大部分抑制NG-18诱导的细胞凋亡,抑制效果约为66.7%。以上结果提示,NG-18诱导细胞凋亡是依赖于Caspases途径,并且在此凋亡过程中,Caspase-8处于中心地位,起着关键性的作用。综合以上结果,我们得出以下结论:虽然胞外和胞内两条凋亡途径都参与了NG-18诱导的HL-60细胞凋亡,但是胞外途径是主要的凋亡途径。在NG-18诱导HL-60细胞凋亡的过程中,Bcl-2家族蛋白中的Bcl-2、Bax和Bid蛋白也参与其中。
     综上所述,本研究阐明NG-18具有较强的体外抗肿瘤活性,并发现该化合物能够强烈的诱导肿瘤细胞凋亡的发生,而对肿瘤细胞的细胞周期无明显影响。NG-18诱导HL-60细胞凋亡是依赖于Caspases途径,并且Caspase-8在该凋亡过程中起着关键的作用,一些Bcl-2家族蛋白也参与了该凋亡过程。
NG-18 (N-(2-ethoxyethyl)gambogamide), a noval compound, is structurally modified from the gambogic acid (GA) which is the major active ingredient of gamboges by the Duan Wenhu group, Phytochemistry Department of Shanghai Institute of Materia Medica. The present study focused on evaluating the antitumor effect of NG-18 in vitro, and then the mechanism of apoptosis induced by NG-18 in HL-60 cells was investigated preliminary.
     MTT assay for suspend cells and SRB assay for attached cells were employed to evaluate the cytotoxic effects of NG-18 against 19 human tumor cell lines (including two human leukemia cell lines, two lung adenocarcinoma cell lines, three gastric adenocarcinoma cell lines, three colorectal carcinoma cell lines, three breast carcinoma cell lines, two ovarian carcinoma cell lines, one cervical adenocarcinoma cell line and three hepatocellular carcinoma cell lines) in vitro. The cell proliferation assay clarified its potent cytotoxic effects on various tumor cell lines. The mean IC_(50) values of NG-18 and its leading compound GA were 0.86μM and 1.24μM respectively. According to these results, we found that NG-18 had stronger inhibitory effect than its leading compound GA against those cell lines in vitro.
     Next, PI staining-FACS analysis, Annexin VFITC binding assay and DNA fragmentation were employed.to observe apoptosis inducing capability of NG-18 on HL-60 cells. The results indicated that NG-18 possessed strong capability to induce apoptosis in HL-60 cells. The apoptosis induced by NG-18 was in time and does dependent manners. By the assay of PI staining-FACS analysis, we found that treatment with-0.5μM NG-18 for 6 h or 1μM NG-18 for 3 h, the apoptosis was induced significantly. DNA fragmentation assay showed that treatment with 0.5μM NG-18 for 6 h, DNA fragment could be detected obviously. But the cell cycle, distribution failed to respond to NG-18.
     We investigated the mechanism of apoptosis induced by NG-18 preliminary. Firstly, alkaline signal cell gel electrophoresis techniqtie was employed to test whether nuclear DNA was damaged in the early apoptotic cells. The result indicated that the apoptosis induced by NG-18 was not result from the damage of nuclear DNA. At the beginning and in the process of apoptosis, a big protease family, Caspases, play a critical role in it. Caspases (Cystein-containing, aspartat-specific proteases) are cysterine proteases in essence and exist as inactive proenzymes in healthy cells. Using Western Blot assay, we found that the initiator Caspases, Caspase-8 and Caspase-9, in extrinsic and intrinsic apoptosis pathways respectively, could be activated almost at the same time in the apoptosis induced by NG-18. This result indicated that both extrinsic and intrinsic apoptosis pathways took part in the apoptosis induced by NG-18 in HL-60 cells. Next, Cells were pretreated with pan-Caspase inhibitor Z-VAD-FMK, and then exposed with NG-18. The result indicated that Z-VAD-FMK could inhibit apoptosis induced by NG-18 completely. Other Caspase inhibitors such as Z-VDVAD-FMK for Caspase-2, Z-LEHD-FMK for Caspase-9 and Z-IETD-FMK for Caspase-8 were used to treat with cells in the same way. The results showed that except Caspase-8 inhibitor Z-IETD-FMK, Z-VDVAD-FMK and Z-LEHD-FMK could not inhibit the apoptosis induced by NG-18. Z-IETD-FMK could inhibit NG-18 induced apoptosis almost by 66.7%. These results indicated that the apoptosis induced by NG-18 was in a Caspase-dependent manner in which Caspase-8 acted as a key executor. Integrating the results, we drew a conclusion: both extrinsic and intrinsic apoptosis pathways took part in the apoptosis induced by NG-18 in HL-60 cells, but the extrinsic pathway was the main apoptotic pathway. In the process of apoptosis induced by NG-18 in HL-60 cells, Bcl-2, Bax and Bid which belonged to Bcl-2 protein family also contributed to the apoptosis.
     In conclusion, this study identifies that NG-18 exerts significant antitumor activity in vitro and it can induce apoptosis in tumor cells. Nevertheless, it doesn't cause evident change on cell cycle distribution. The apoptosis induced by NG-18 in HL-60 cells is in a Caspase-dependent manner in which Caspase-8 plays a very important role. Some Bcl-2 family proteins also take part in the apoptosis.
引文
[1] 刘静冰,秦叔逵,李进.藤黄酸抗胰腺癌作用的实验研究[J].临床肿瘤学杂志,2005,10(3):274-277.
    [2] 陈葆仁.藤黄抗癌成分的研究Ⅰ藤黄酸的分离和结构鉴定[J].江西医学院学报,1980,1(2):1-7.
    [3] 吕归宝,杨秀贤,黄乔书.藤黄中新藤黄酸的分离和结构[J].药学学报,1984,19(8):89-90.
    [4] 郭青龙,赵丽,吴照球,等.藤黄酸对实验性动物造血功能及免疫功能的影响[J].中国天然药物,2003,1(4):229-232.
    [5] 杨企铮,贾淑杰,李德华.中药藤黄的近代研究[J].中国肿瘤临床,1994,21(6):464-466.
    [6] 王鸣,冯煦,赵友谊.中药藤黄的研究和应用[J].中国野生植物资源,2003,22(1):1-3.
    [7] 顾红燕,郭青龙,尤启冬,等.藤黄酸促进bax和p53表达诱导人肝癌细胞SMMC-7721凋亡[J].中国天然药物,2005,3(3):168-172.
    [8] Wu ZQ, Guo QL, You QD, et al. Gambogic acid induces apoptosis and regulates expressions of Bax and Bcl-2 protein in human gastric carcinoma MGC-803 Cells [J]. Biol Pharm Bull, 2004; 27(7): 998-1003.
    [9] Liu W, Guo QL, You QD, et al. Anticancer effect and apoptosis induction of gambogic acid in human gastric cancer line BGC-823 [J]. World J Gastroenterol, 2005, 11(24): 3655-3659.
    [10] Wu ZQ, Guo QL, You QD, et al. Gambogic acid inhibits proliferation of human lung carcinoma SPC-A1 cells in vivo and in vitro and represses telomerase activity and telomerase reverse transcriptase mRNA expression in the cells [J]. Biol Pharm Bull, 2004, 27(11): 1769-1774.
    [11] Kasibhatla S, Jessen KA, Maliartchouk S, et al. A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid [J]. PNAS, 2005, 102(34): 12095-12100.
    [12] Nelson DA, White E. Exploiting different ways to die [J]. Genes & Dev, 2004, 18(11): 1223-1226.
    [13] 陈玲,张振林,刘雪云.细胞凋亡的研究进展[J].福建中医学院学报,2003:13(3):53-55.
    [14] Vaux DL, Korsmeyer SJ. Cell death in development [J]. Cell, 1999, 96(2): 245-254.
    [15] 方成,陈钧辉.细胞凋亡与癌症治疗[J].中国生化药物杂志,2000,2l(6):313-315.
    [16] Danial NN, Korsmeyer SJ. Cell death: critical control points [J]. Cell, 2004, 116(23): 205-219:
    [17] 潘耀谦,高丰.细胞凋亡与细胞坏死比较的研究进展[J].动物医学进展,2000,21(4):51-8.
    [18] Lugovskoy AA, Zhou P, Chou JJ, et al. Solution structure of the CIDE-N domain of CIDE-B and a model for CIDE-N/CIDE-N interactions in the DNA' fragmentation pathway of apoptosis [J]. Cell, 1999, 99(7): 747-755.
    [19] Fang M, Zhang H, Xue S, et al. Intracellular calcium distribution in apoptosis of HL-60 cells induced by harringtonine intranuclear accumulation and regionalization [J]. Cancer Lett, 1998, 127(1): 113-121.
    [20] Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death [J]. Am J Pathol, 1995, 146(1): 3-15.
    [21] Mesaeli N, Nakamura K, Zvaritch E, et al. Calreticulin is essential for cardiac development [J]. J Cell Biol, 1999, 144(5): 857-868.
    [22] 张晓晖,姚天明,黄高昇,等.细胞凋亡的最新研究进展[J].第四军医大学学报,2002,23(12):42-44.
    [23] Steller H. Mechanisms and genes of cellular suicide [J]. Science, 1995, 267(5203): 1445-1449.
    [24] Green DR, Reed JC. Mitochondria and apoptosis [J]. Science, 1998, 281 (5381): 1309-1312.
    [25] Dempsey PW, Doyle SE, He JQ, et al. The signaling adaptors and pathways activated by TNF superfamily [J]. Cytokine & Growth Factor Reviews, 2003, 14(3): 193-209.
    [26] Wang X. The expanding role of mitochondria in apoptosis [J]. Genes Dev, 2001, 15(22): 2922-2933.
    [27] Porter AG. Protein translocation in apoptosis [J]. Trends Cell Biol, 1999, 9(10): 394-401.
    [28] Shimizu S, Matsuoka Y, Shinohara Y, et al. Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells [J]. J Cell Biol, 2001,152(2): 237-250.
    [29] Marzo I, Brenner C, Zamzami N, et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis [J]. Science, 1998, 281(5385): 2027-2031.
    [30] Zou H, Li Y, Liu X, et al. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9 [J]. J Biol Chem, 1999, 274(17): 11549-11556.
    [31] Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor [J]. Nature, 1999, 397(6718): 441-446.
    [32] Patterson SD, Spahr CS, Daugas E. Mass spectrometric identification of proteins tea[eased from mitochondria undergoing permeability transition [J].Cell Death Differ, 2000, 7(2): 137-144.
    [33] Thornberry, NA, Lazebnik Y. Caspases: enemies within [J]. Science, 1998, 281 (5381): 1312-1316.
    [34]. Lavrik IN, Golks A, Krammer PH. Caspases: pharmacological manipulation of cell death [J]. J Clin Invest, 2005, 115(10): 2665-2672.
    [35] Boatright KM, Renatus M, Scott FL, et al. A unified model for apical caspase activation [J]. Mol Cell, 2003, 11(2): 529-541.
    [36] Wang ZB, Liu YQ, Cui YF. Pathways to caspase activation [J]. Cell Biol Int, 2005, 29(7): 489-496.
    [37] Chang DW, Xing Z, Capacio VL, et al. Interdimer processing mechanism of procaspase-8 activation [J]. EMBO J, 2003, 22(16): 4132-4142.
    [38] Beere HM. Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways [J]. J Clin Invest, 2005, 115(10): 2633-2639.
    [39] Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival [J]. Science, 1998, 281 (5381): 1322-1326.
    [40] Werner AB, de Vries E, Tait SW, et al. Bcl-2 family member Bfl-1/A1 sequesters truncated bid to inhibit is collaboration with pro-apoptotic Bak or Bax [J]. J Biol Chem, 2002, 277(25): 22781-22788.
    [41] Tsujimoto Y. Cell death regulation by the Bcl-2 protein family in the mitochondria [J]. J Cell Physiol, 2003, 195(2): 158-167.
    [42] Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis [J]. Genes Dev, 1999, 13 (15): 1899-1911.
    [43] Raisova M, Hossini AM, Eberle J, et al. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis [J]. J Invest Dermatol, 2001, 117(2): 333-340.
    [44] Shangary S, Johnson DE. Peptides derived from BH3 domains of Bcl-2 family members: a comparative analysis of inhibition of Bcl-2, Bcl-x (L) and Bax oligomerization, induction of cytochrome c release, and activation of cell death [J]. Biochemist,'y, 2002, 41 (30): 9485-9495.
    [45] Moreau C, Cartron PF, Hunt A, et al. Minimal BH3 peptides promote cell death by antagonizing anti-apoptotic proteins [J]. J Biol Chem, 2003, 278(21): 19426-19435.
    [46] Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily [J]. Nature Reviews Cancer, 2(6): 420-430.
    [47] 王海燕,王米栓.细胞凋亡通路研究进展[J].国外医学·生理、病理科学与临床分册,2003,23(5):490-492.
    [48] Kischkel FC, Hellbardt S, Behrmann 1, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor [J]. EMBO J, 1995, 14(22): 5579-5588.
    [49] Pimentel-Muinos FX, Seed B. Regulated commitment of TNF receptor signaling: a molecular switch for death or activation [J]. Immunity, 1999, 11(6): 783-793.
    [50] Kelliher MA, Grimm S, Ishida Y, et al. The death domain kinase RIP mediates the TNF-induced NF-kappa B signal [J]. Immunity, 1998, 8(3): 297-303.
    [51] Stanger BZ, Leder P, Lee TH, et al. RIP: a novel protein confaifiing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death [J]. Cell, 1995, 81(4): 513-523.
    [52] Hsu H, Huang J, Shu HB, Baichwal V, et al. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex [J]. Immunity, 1996, 4(4): 387-396.
    [53] Tartaglia LA, Pennia D, Goeddel DV. Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor [J]. J Biol Chem, 1993, 268(25): 18542-18548.
    [54] Rothe M, Wang SC, Henzel WJ, et al. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor [J]. Cell, 1994, 78(4): 681-692.
    [55] Christoph R, Blanche S,-Venkatakrishna S, et al. Tumor necrosis factor α-induced activation of c-jun N-terminal kinase is mediated by TRAF2 [J]. EMBO J, 1997, 16(5): 1080-1092.
    [56] 韩锐.肿瘤化学预防及药物治疗[M].北京:北京医科大学、中国协和医科大学联合出版社,1991,16.
    [57] Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening [J]. J Natl Cancer Inst, 1990, 82(13): 1107-1112.
    [58] 雷秋模,刘金妹.藤黄抗癌作用研究的回顾与展望[J].肿瘤防治杂志,2003,10(2):216-218.
    [59] Batova A, Lam T, Wascholowski V, et al. Synthesis and evaluation of caged Garcinia xanthones [J]. Org Biomol Chem, 2007, 5(3): 494-500.
    [60] Li L, Krajewski S, Reed JC, et al. The apoptosis and proliferation of SAC-activated B cells by IL-10 are associated with changes in Bcl-2, Bcl-xL, and Mcl-1 expression [J]. Cell Immunol, 1997, 178(1): 33-41.
    [61] Steinfelder HJ, Quentin 1, Ritz V. A fast and sensitive technique to study the kinetics and the concentration dependencies of DNA fragmentation during drug-induced apoptosis [J]. J Pharmacol Toxicol Methods, 2000, 43(1): 79-84.
    [62] Singh NP, McCoy MT, Tice RR, et al. A simple technique for quantization of low levels of DNA damage in individual cells [J]. Exp Cell Res, 1988, 175(1): 184-191.
    [63] Miura K, Aminova L, Murayama Y. Fusarenon-X induced apoptosis in HL-60 cells depends on caspase activation and cytochrome c release [J]. Toxicology, 2002, 172(2): 103-112.
    [64] 陈罡.细胞凋亡检测技术的进展[J].国外医学分子生物学分册,2003,25(2):125-128.
    [65] Van Engelend M, Nieland LJ, Ramaekers FC, et al. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure [J]. Cytometry, 1998, 31(1): 1-9.
    [66] 赵文丽.细胞凋亡及其检测技术的进展[J].山西职工医学院学报,2004,14(2):68-69.
    [67] 林爱军,耿春女,朱永官,等.单细胞凝胶电泳技术及在土壤生态毒理学中的应用[J].生态学杂志,2005,24(8):975-979.
    [68] Meng LH, Zhang JS, Ding J. Salvicine, a novel DNA topoisomerase Ⅱ inhibitor, exerting its effects by trapping the enzyme-DNA cleavage complex. Biochem [J]. Pharmacol, 2001, 62(6): 733-741.
    [69] Meng LH, He XH, Zhang JS, et al. DNA topoisomerase Ⅱ as the primary cellular target for salvicine in Saccharomyces Cerevisiae [J]. Acta Pharmacol Sin, 2001, 22(8): 741-746.
    [70] 胥彬.肿瘤药理学新论[M].北京:人民卫生出版社,2004.6.
    [71] Arbuck SG., Takimoto CH. An overview of topoisomerase Ⅰ-targeting agents [J]. Semin Hematol, 1998, 35(3): 3-12.
    [72] Cline SD, Macdonald TL. Azatoxin is a mechanistic hybrid of the topoisomerase Ⅱ-targeted anticancer drugs etoposide and ellipticine [J]. Biochemistry, 1997, 36(42): 13095-13101.
    [73] 张乃哲,江平.DNA拓扑异构酶——肿瘤化疗的重要靶点[J].实用心脑肺血管病杂志,2002,10(2):121-124.
    [74] Henning RS, Guy SS. Caspase: preparation and characterization [J]. Methods in Enzymology, 1999, 17(4): 313-319.
    [75] 刘晓翌,刘建军.Caspase与细胞凋亡[J].武汉大学学报(医学版),2004,25(6):742-745.
    [76] Mathiasen IS, Jaattela M. Triggering caspase-independent cell death to combat cancer [J]. Trends Mol Med, 2002, 8(5): 212-220.
    [77] Leist M, Jaattela M. Four deaths anda funeral: from caspases to alternative mechanisms [J]. Molecular Cell Biology: Nature Reviews, 2001, 2 (8): 589-598.
    [78] Kawahara A; Ohsawa Y, Matsumura H, et al. Caspase-independent cell killing by Fas-associated protein with death domain [J]. J Cell Biol, 1998, 143(5): 1353-1360.
    [79] Kawahara A, Ohsawa Y, Matstimura H, et al. Caspase-independent cell killing by Fas-associated protein with death domain [J]. J Biol Chem, 1998,143(5): 1353-1360.
    [80] Yhornberry NA, Peterson EP, Zhao JJ, et al. Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy) methyl ketones [J]. Biochemistry, 1994, 33(13): 3934-3940.
    [81] 江中勇,杨凌,陈清勇.Fas/FasL与肺癌关系的研究进展[J].国外医学呼吸系统分册,2005,25(2):115-117.
    [82] 杨帆.紫草素衍生物SH-7的抗肿瘤药效学评价及其机理研究[D].上海:中国科学院上海药物研究所,2005.
    [83] Akao Y, Maruyama W, Shimizu S, et al. Mitochondrial permeability trhnsition mediates apoptosis induced by N-mtheyl (R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, Npropargyl-1(R)-aminoindan [J]. J Neurochem, 2002, 82(4): 913-923.
    [84] Walker NP, Talanian RV, Brady KD, et al. Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer [J]. Cell, 1994, 78(2): 343-352.
    [85] Thornberry NA, Lazebnik Y. Caspases: enemies within [J]. Science, 1998, 281 (53,81): 1312-1316.
    [86] Sedlak, TW, Oltvai, ZN, Yang, E, et al. Multiple Bcl-2 family members demonstrate selective dimerizations with Bax [J]. Proc Natl Acad Sci USA, 1995, 92(17): 7834-7838.
    [87] Jerry M, Adams, Suzanne C. Life-or-death decisions by the Bcl-2 protein family [J]. Trends Biochem Sci, 2001, 26(1): 61-66
    [88] Belzacq AS, Vieira HL, Kroemer G, et al. The adenine nucleotide translocator in apoptosis [J]. Biochimie, 2002, 84(2-3): 167-176.
    [89] Crompton M. Mitochondrial intermembrane junctional complexes and their role in cell death [J]. J Physiol, 2000, 529(1): 11-21.
    [90] Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, bax that accelerates programmed cell death [J]. Cell, 1993, 74(4): 609-616.
    [91] Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis [J]. Cell, 1998, 94(4): 491-501.
    [92] 翟大勇,闫玲,杨福愉.促细胞凋亡因子Bid蛋白的研究进展[J].生物物理学报,2001,17(3):435-440.
    [93] Porter AG. Protein translocation in apoptosis [J]. Trends Cell Biol, 1999, 9(10): 394-401.
    
    [94] Gross A, Yin XM, Wang K, et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death [J]. J Biol Chem, 1999, 274(2): 1156-1163.
    [95] Nguewa PA, Fuertes MA, Valladares B, et al. Poly (ADP-ribose) polymerases: homology, structural domains and functions. Novel therapeutical applications [J]. Prog Biophys Mol Biol, 2005, 88(1): 143-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700