普通野生稻增产QTL分子标记辅助育种研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以具有两个主效增产QTL(yld1.1和yld2.1)的马来西亚普通野生稻(Oryza rufipogon)为供体,9311、明恢63和Ce64为受体和轮回亲本,采用连续回交并结合分子标记辅助选择方法将这两个野生稻增产QTL转移至杂交水稻父本中,育成携带野生稻增产QTL的新恢复系,并通过对其杂种优势水平及主要农艺性状的比较,对野生稻增产QTL(yld1.1和yld2.1)的增产效果和原理等进行了研究和探讨,获得如下结果:
     [1] 分析了与野生稻增产QTL紧密连锁的6个SSR标记亲本间的多态性,运用其中的4个多态性标记进行标记辅助选择,并对其PCR反应体系和程序进行了优化。运用的4个标记中有3个标记与目标位点的遗传距离均小于5cM,即RM166与yld2.1的遗传距离,RM9、RM5与yld1.1的遗传距离均小于5cM,因此分子标记辅助选择结果有效。
     [2] 对野生稻增产QTL的传递规律的研究表明,野生稻增产QTL在各回交世代中能稳定遗传,各回交后代群体中具野生稻RM166特异标记个体比例均低于其理论值(50%)。对相同回交世代中回交群体与回交自交群体中具野生稻特异标记个体的比例比较分析,发现回交自交群体中具野生稻特异标记个体的比例明显高于回交群体。
     [3] 建立了分别以9311及明恢63为受体且携带野生稻增产QTL的回交近交系,为野生稻增产QTL的精细定位和功能研究奠定了基础。通过对以明恢63和9311为受体构建的野生稻增产QTL的回交近交系与受体间产量性状的比较分析,表明携带野生稻增产QTL回交近交系的理论产量和实测产量均高于受体亲本,将野生稻增产QTL转移至杂交水稻恢复系或父本中,能提高其产量水平;且野生稻两个增产QTL的增产效果大于单个野生稻增产QTL-yld2.1或QTL-yld1.1。
     [4] 将野生稻增产QTL转入9311中,育成携带野生稻增产QTL的9311改良系24个,与培矮64S、P88S所配系列组合平均理论产量和实测产量均高于对照组合两优培九;90%以上组合的理论产量和实测产量均高于对照。说明,野生稻增产QTL在杂
In this study, a wild accession of Oryza rufipogon ( ' O. rufipogon' ) from Malasia which contained two major yield-enhancing QTLs (yId1.1 and yld2.1) on chromosomes 1 and 2 respectively, were chosen as the donor of yield-enhancing QTLs. The hybrid rice restoration lines (9311 and Minghui63 and Ce64) were used as the recipient and recurrent parents. Some new hybrid rice restoration lines which contained the two yield-enhancing QTLs (yldl. 1 and yld2.1) were developed by marker assisted selection (MAS). The yield-enhancing effect and the mechanism revolved of the two yield-enhancing QTLs (yldl. 1 and yld2.1) were studied by means of comparing hybrid vigor and main agronomic characters between new restoration lines and its original parents. The major results were as follows:1. Polymorphism of Six SSR markers (RM9、 RM24、 RM5、 RM306、 RM208、 RM166) which were mapped to the genomic region linked to the two yield-enhancing alleles (yldl.l and yld2.1) between donor and recipient parents was analyzed , four of which, i.e., RM9, RM5, RM166 and RM208, were used for MAS in this study. In fact, RM9 and RM5 were flanked to yld1. 1 on chromosome 1, with genetic distance of 2.5cM and 0cM, respectively. And RM166 and RM208 were linked to yld2.1 on chromosome 2 at the genetic distance of 3.1cM and 6.5cM, respectively. In this study, SSR analysis of RM166, RM208 ,RM9 and RM5 were performed. The results indicated that these molecular markers are feasible for MAS to screen rice individuals with
    the yield-enhancing QTLs.2. The results showed that the two yield-enhancing alleles (yldl.l and yld2.1) could be inherited steadily in the backcrossed populations. The percentage of the individuals that contain marker RM166 in backcrossed progenies of BC2Fh BC3Fi( BC4F1, BC5F1 and BCeFj was lower than 50%. The percentage of the individuals that contained marker RM166 or RM9 in progenies from selfing of backcrossed population was higher than that of the progeny of backcrossed population.3. Backcross inbred lines (BIL) of the two yield-enhancing QTLs (yldl.l and yld2.1) with recipient parents of 9311 and MH63 were developed respectively, which is essential for further studies of the two yield-enhancing QTLs (yldl. 1 and yld2.1). Compared with its original parent, BILs of the two yield-enhancing QTLs with recipient parents of 9311 and MH63 had higher yield. The results indicated that the two yield-enhancing QTL could be transferred into the restoration line of hybrid rice, and which could increase rice yield. The yield-increasing effect with both yield-enhancing QTL alleles yldl.l and yld2.1 was higher than that of the single yield-enhancing QTL allele yld2.1 or yldl. 1. -4. 24 improved 9311 lines which contained the two yield-enhancing QTLs (yldl. 1 and yld2.1) were developed by transferring the two yield-enhancing QTLs (yldl.l and yld2.1) into 9311 (a top-performing paternal line in super hybrid rice seed production in China). The average yield potential and the average harvest yield of the hybrids of 24 improved 9311 lines crossing with Peiai64S and P88S ( two TGMS) were higher than that of Liangyoupeiyiu (CK), respectively. Among 48 hybrids derived from 24 improved 9311 lines,
    46 ones had higher theoretical yield , 40 had higher harvest yield on comparison with the CK, the percentage of yield-increased hybrid combinations was 95.8% and 83.3% respectively. The results indicated that the two yield-enhancing QTLs iyldl. 1 and yld2.1) were expressed well in genetic background of 9311 lines and its hybrids.5. The genetic background analysis of the backcrossed progeny BC4F4 and BC6F2 with recipient parent of 9311 were conducted by SSR. The difference of the genetic background between the progeny BC4F4 and its original parent 9311 reached to the level of 12.2%. The main agronomic characters of the progeny of BC6F2 was similar to its original parent 9311.6. The results showed that 24 improved 9311 lines and its hybrids had more effective panicles , higher seed-setting rate and 1000-grain weight than that of 9311 and the control hybrid respectively. More effective panicles were the main reason for yield-increasing of improved 9311 lines and its hybrids.7. Compared with the hybrids of Ce64, hybrids of Q611 which contained two yield-enhancing QTLs (yldl.l and yld2.1) increased both the average sink capacity per unit area and the average total spikelets number per unit area by 6.30% and 14.46% respectively. Among 21 hybrids of Q611, 18 hybrids had larger sink capacity and more total spikelets number than that of the hybrids of Ce64. The results showed that Q611 had a good general combining ability, and the hybrid vigor of the hybrids from Q611 was higher than that of the hybrids of Ce64. The results indicated that the two yield-enhancing QTLs iyldl. 1 and yld2A) were expressed fully in the new restorer line Q611 and its hybrids.8. Some elite hybrid combinations which contained the two yield-enhancing QTLs (yldl.l and yld2.1) were developed through the methodology of MAS
    combined with the method of general breeding. The percentage of yield-increased of elite hybrid combination PH023 and PHI09 reached to the level of 16.0%.9. A package of breeding technologies based on MAS for yield-enhancing QTLs (yldl.l and yld2.1) has been developed.
引文
1 Amante A D. Sheath blight(ShB) resistance in wild rices. Intl Rice Res Nesvsl, 1990(15): 5
    2 林世成,闵绍楷编.中国水稻品种及其系谱.上海科学技术出版社,1991:254~262
    3 Ronald P. A receptor kinase-like protein encoded by the rice diseaseresistance gene, Xa-21. Science, 1995, 270: 1804~1806
    4 何光存.细胞工程与分子生物学相结合—野生稻优异种质资源利用的有效途径.生物工程进展,1998,18(2):41~45
    5 高桥成人,角田重三郎.水稻生物学.武汉:武汉大学出版社,1988
    6 汤圣样,江云球,张本敦,等.中国稻区的生物多样性.生物多样性,1999,7(1):73~78
    7 全国野生稻资源考察协作组.我国野生稻资源普查与考察.中国农业科学,1984(6):1~8
    8 秦前锦,李桂菊,宋发菊,等.野生稻资源的特异性状与超高产育种.湖北农业科学,2000(6):16~18
    9 熊振民.中国野生稻研究的进展.水稻文摘,1988(1):1~5
    10 Stich LA, Dalmaeio RD, Romero GO. Crossibility of wild oryza species and their potentialuse for improvement of cultivaled rice. RGN, 1989(6): 58~60
    11 广东省农业科学院水稻所野生稻组.普通野生稻种质资源抗性鉴定.广东农业科学,1989(2):3~6
    12 钟代彬,罗利军,应存山.野生稻在栽培稻育种中的应用.种子,1995(1):25~29
    13 庞汉华,应存山.中国野生稻的种类、地理分布与研究利用.见应存山主编:中国稻种资源.北京:中国农业科技出版社,1993:17~18
    14 庞汉华,陈成斌.中国野生稻资源.南宁,广西科学技术出版社,2002
    15 黄运平,覃瑞.野生稻资源的研究与利用.湖北农业科学,2002,(4):16~19
    16 刘雪贞,潘大建,吴惟瑞,等.广西普通野生稻雄性不育性的利用研究.广东农业科学,2001,(3):7~9
    17 王国昌,卢永根.我国三个野生稻种谷粒和花药形态的扫描电镜观察.中国水稻科学,1991,5(1):7~12
    18 卢永根,万常烟,张桂权.我国三种野生稻种粗线期核型的研究.中国水稻科学,1990,4(3):97~105
    19 Kihara H. Need for strandadization of genetic symbols and nomenclature in rice. In Proc Symp of Rice Genetics and Cytogenetics. Los Banos, Philippines: Elsevict Amsterdam, 1964: 3~11
    20 Shastry S V S, Sharma S D, Rao R R. Pachytene analysis in Oryza. Ⅱ. Meiosis in an intersectional hybrid O. sative ×O.officinalis. Nucleus, 1961(4): 67~80
    21 Katayama T. Cytogenetical studies on the genus Oryza. I. Chromosome pairing of Nippon Idengaku Zasshi, 1965, 40: 307~313
    22 Hu C H. Cytogenetics studies of Oryza officinalis complex-Ⅳ. F1 hybrids of O. minuta and O. grandiglumis .with 4X-O. officinalis. Indian J Genet Plant Breed, 1970, 30: 410~417
    23 Katayama T, Onizuka W. Intersectional F_1 plants from Oryza sativa ×O. ridleyi and O. sativa×O. meyeriana. Jpn J Genet , 1979, 54(1): 43~46
    24 Katayama T, Onizuka W, Shin Y B. Intersectional F_1 hybrids obtained from erosses, Oryza minuta Presl. ×O. ridleyi Hook.and O. offieinalis Wall. ×O. rildleyi Hood. Jpn J Genet. 1981, 56: 67~71
    25 Sitch L A, Dalmacio R, Brar B S et al. Genomic relationship of Oryza longiglumis and O. ridleyi. Rice Genet News, 1991, 8: 93~94
    26 Katayama T. Intersectional hybridization between Oryza australiensis Domin and O. ridleyi Hood. Jpn J Genet, 1992, 67: 415~417
    27 Katayama T. Cytogenetical studies on the genus Oryza. ⅪⅤ: Intergenetic hybridizations between tetraploid Oryza species and diploid Leerin species. Jpn J Genet, 1995, 7: 47~55
    28 孙传清,毛龙,王振山,等.栽培稻和普通野生稻基因组的随机扩增多态性.中国水稻科学,1995,9(1):1~6
    29 肖晗,应存山,黄大年.中国栽培稻及其近缘野生种叶绿体DNA的限制性片段长度多态性分析.中国水稻科学,1996,10(1):121~124
    30 王振山,陈洪,朱立煌,等.中国普通野生稻遗传分化的RAPD研究.植物学报,1996,38(9):749~752
    31 周毅,邹喻苹,洪德元,等.中国野生稻及栽培稻核糖体DNA 第一转录间区序列分析及其系统学意义.植物学报,1996,38(10):785~791
    32 张尚宏.五种野生稻叶绿体DNA多态性研究.遗传,1996,18(1):15~18
    33 Jena K k, Khush G S, Kochert G.. Comparative RFLP mapping of a wild rice, Oryza officinalis, and cultivated rice, O. sativa. Genome, 1994, 37(3): 382~389
    34 Nakazono M, Kanno A, Tsutsumi N et al. Homologous recombination mediated by two palindromic repeated sequences in the mitoehondrial genome of Oryza. Theor Appl Genet, 1995, 91: 1~8
    35 Jena K K, Kochert G.. Restriction fragment length polymorphlsm analysis of CCDD genomc species of the genus Oryza sativa L. Plant Mol Bio, 1991, 16: 831~839
    36 Ichikawa H, Hirai A, Katayama T. Genetic analysis of Oryza species by molecular markers for chloroplast gcnomcs. Theor Appl Genet, 1986, 72: 353~358
    37 丁颖.中国水稻栽培学.北京:农业出版社,1961:13~16
    38 戚经文.丁颖教授在中国野生稻研究上的卓越贡献,见:吴妙桑(主编).野生稻资源研究论文选编:北京:中国科学技术出版社,1990:91~96
    39 黄超武编.水稻品种种性研究.广州:广东科技出版社,1995:197~221
    40 广东农林学院农学系.我国野生稻的种类及其地理分布.遗传学报,1975,2(1):31~36
    41 Jena K K, Khush G S. Introgression of genes from Oryza officinalis wall ex watt to cultivated rice, O. Satival. Theoretical Applied Genetics, 1990, 80: 737~745
    42 Brar D S, Elloran R, Khush G S. Interspecific hybrids produced through embryo rescue between cultivated, and eight wild species of rice. Rice Genetics Newsletter, 1991, (8): 91~93
    43 Kobayashi N, Ikeda R, Khush G S, Darshan SB. Resistance to rice tungro spherical vires in monosomic alien addition lines (MAALS) of oryza officinalis. Rice Genetics Newsletter, 1992, (9): 37~38
    44 余文金,罗科,郭学兴.以水稻雄性不育系为母本不经幼胚培养获得Oryza sativa ×Oryza officinalis杂种的研究.遗传学报,1993,20(4):348~353
    45 李予先,刘国平,陈忠友.中国东乡野生稻遗传因子转移的研究.遗传学报,1994,21(2):133~146
    46 颜辉煌,胡慧英,傅强,等.栽培稻与药用野生稻杂种后代的形态学和细胞遗传学研究.中国水稻科学,1996,10(3):138~142
    47 钟代彬,罗利军,郭龙彪,等.栽野杂交转移药用野生稻抗褐飞虱基因.西南农业学报,1997,10(2):5~9
    48 李勤修.宿根杂交稻选育的过去、现在和未来.西南农业学报,1998,(11):55~57
    49 罗祟善.我国三系资源的类型与利用.作物杂志,1988(3):8~10
    50 Wijibrand, Zabel P, -Koornneef M. Restriction fragment lenth polymorphism analysis of somatic hybribs between lycopersicon escwlentam and irradiated Lycopersicon peruviamum evidence for limited donor genome elimination and extensive chromosome rearrangement. Mol Genel Genet, 1990, 222: 270~277
    51 吕飞杰.中国农业科学技术展望.中国农业科学,1997,(30):1~6
    52 Niizeki H, Oono K. Induction of haploid rice plant from anther culture. Proceeding of the Japan Academy of Science, 1968(44): 554~557
    53 沈锦华,李梅芳,陈银全,等.花药培养在品种改良上的应用.中国农业科学,1982(2):15~19
    54 大野清春.通过花药培养形成水稻单倍体及其在育种中的应用.农技研究,1975(26):139~222
    55 Wakasa K, Watanabe Y. Haploid plant of Oryza perennis(spontanea type) induced by anther culture. Japanese Journal of Breeding, 1979(29): 146~150
    56 Wu L, Kiang Y T. Using isozyme marker to detect pollen derived plant from anther culture of wild rice. Chinese Bulletin of Botany, 1979(20): 97~102
    57 Woos C, Mok T, Huang C Y. Anther culture of Oryza Sativa L and O. perennis Moench hybrids. Chinese Bulletin of Botany, 1978(19): 171~178
    58 庞汉华.提高普通野生稻花药培养绿苗诱导率的研究.作物品种资源,1989,27(1):6~8
    59 庞汉华,舒理慧,吴妙桑,等.普通野生稻(Oryza rufipogon Griff)花药培养研究.Ⅰ.提高花药愈伤组织诱导率和绿苗分化率的研究.作物学报,1991,17(6):436~442
    60 庞汉华,汤圣祥.不同生态型普通野生稻花药培养力的研究.中国水稻科学,1995,9(3):167~171
    61 陈成斌,李道远.普通野生稻花药培养基研究.西南农业学报,1993,6(4):16~20
    62 Toriyama K, Hinata K. Anther culture application to breeding of a restorer for a male-sterile cytoplasm of wild rice (MS-CW). Japanese Journal of Breeding, 1987, 37(4): 469~473
    63 陈成斌,陈家裘,黄勇.栽野稻杂种后代花药培养效率研究.广西农业科学,1998(3):105~109
    64 Wang M S, Zapata F K, De Castro. Plant regeneration through somatic embryogenesis from mature seed and young inflorescence of wild rice(Oryza perennis Moench). Plant Cell Reports. 1987(6): 294~296
    65 殷晓辉,舒理慧,廖兰杰.不同染色体组型的野生稻幼穗离体培养的研究.武汉大学学报(生物工程专刊),1996b:37~41
    66 吴妙桑.广西野生稻资源考察报告.见:吴妙桑(主编)野生稻资源研究论文选编.北京:中国科学技术出版社,1990a:17~21
    67 倪丕冲,李梅芳,沈锦骅,等.疣粒野生稻和栽培稻杂交后代性状的研究初报.作物学报,1988,14(1):86~88
    68 吴妙桑,舒理慧,李道远.野生稻种质利用技术的研究.Ⅰ.稻属种间杂种AAXC染色体组的获得.作物品种资源,1988,23(1):6~9
    69 覃瑞,魏文辉,金危危,等.与Gin-6和Pi-5(t)连锁的栽培稻BAC克隆在药用野生稻中的FISH定位.科学通报,2000,45(22):2237~2240
    70 谢建坤,孔祥礼,包劲松,等.水稻野生种质优异基因分子标记定位和利用的研究进展.遗传,2004,26(1):115~121
    71 Ishii T, Mc Couch SR. Microsatellites and microsynteny in the chloro plast genomes of Oryza and eight other Gramineae species. Theor Appl Genet, 2000, 100(8): 1257~1266
    72 Xiao JH. Identification of heterosis—enhancing alleles from a rice wild relative, Oryza rufipogon. Plant and Animal Gonome V Abstracts, 1997: 147
    73 李德军,孙传清,付永彩,等.利用AB-QTL法定位江西东乡野生稻中的高产基因.科学通报,2002,47(11):854~858
    74 Moncada P, Martinez CP, Borrero J, et al. Quantitative trait loci for yield and yield components in an Oryza Sativa×Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor. Appl Genet, 2001, 102: 41~52
    75 颜辉煌,程祝宽,刘国庆,等.栽培稻—药用野生稻杂种F1及回交后代的基因组原位杂交鉴定.遗传学报,1999,26(2):157~162
    76 Sax K. The association of siza differences with seed-coat pattern and pigmentation in phaseolus vulgaris. Genetics, 1923, (8): 552~560
    77 Thoday J M. Location of Polygenes. Nature, 1961, (191): 368~370
    78 Keightley P D, Blfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet Res, 1993, (62): 195~203
    79 Soller M, Brody T, Genizi A. On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet, 1976, (47): 35~39
    80 Kodolphe F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics. 1993, (134): 1277~1288
    81 吴为人,李维明.基于性状—标记回归的QTL区间测验方法.遗传,2001,23(2):143~146
    82 Lander E S, Botstein L. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, (121): 185~199
    83 Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994(136): 1457~1468
    84 Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Nat L Acad Sci USA, 1993(90): 10972~10976
    85 Zhu J, Weir B S. Mixed model approaches for genetic quantitative traits, In: Chen L S, Ruan S G, and Zhu J(eds). Advanced Topics in Biomathematies: Proceedings of international conference on mathematical Biology. Singapore: World Scientific publishing Co, 1998, 321~330
    86 高用明,朱军.植物QTL定位方法研究进展.遗传,2000,22(3):175~179
    87 Kearsey M J. The principles of QTL analysis (a minimal mathematics approach). J Exp Bot, 1998, (49): 1619~1623
    88 Xiao Jinhua, Li Jiming, Yuan Longping, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995, (140): 745~754
    89 C, Shen L, Tan Z, et al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor Appl Genet, 1996, (93): 1211~1217
    90 Lin S Y, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice (Oryza sativa L) using backcross inbred lines. Theor Appl Genet, 1998, (96): 997~1003
    91 Yano M, Harushima Y, Nagamura Y, et al. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet, 1997(95): 1025~1032
    92 Xiao J, Li J, Yuan L, et al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996,(92): 230~244
    93 Lin H X, Qian H R, Zhuang J Y, et al. RFLP mapping of QTLs for yield and related characters in rice(Oryza sativa L). Theor Appl Genet, 1996, (92): 920~927
    94 Li Zhikang, Pinson Shannon R M, Park William D, et al. Epistasis for three Grain Yield Components in rice (Oryza sativa L._). Genetics, 1997, (145): 453~465
    95 Zhuang J-Y, Lin H-X, Lu J, et al. Analysis of QTL x environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997(95): 799~808
    96 林鸿宣,庄杰云,钱惠荣,等.水稻株高及其构成因素数量性状基因座位的分于标记定位.作物学报,1996,22(3):257~263
    97 谭震波,沈利爽,袁柞廉,等.水稻再生能力和头等稻产量性状的QTL定位及其遗传效应分析.作物学报,1997,23(3):289~295
    98 刘桂富,卢永根,王国昌,等.水稻产量、株高及其相关性状的QTLs定位.华南农业大学学报,1998,19(3):5~9
    99 李春丽,郑康乐.应用RAPD标记检测与水稻株高和抽穗期有关的QTLs.遗传学报,1998,25(1):34~39
    100 毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析.农业生物技术学报,1999,7(4):386~394
    101 Wang L, Mackill D J, Bonman J M, et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 1994, 136: 1421~1434
    102 林鸿宣,闵绍楷,熊振民,等.应用RFLP图谱定位分析籼稻粒型数量性状基因座位.中国农业科学,1995,28(4):1~7
    103 Redona E D, Maekill D J. Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet, 1998, 96: 957~963
    104 Champoux M C, Wang G, Sarkarung S, et al. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet, 1995, 90: 969~981
    105 Yadav R, Courtvis B, Huang N, et al. Mapping gene controlling root morphology and root distribution in a doubled haploid population of rice. Theor Appl Gener, 1997, 94: 619~632.
    106 Saito K, Miura K, Nagano K, et al. Chromosomal location of quantitative trait loci for cool tolerance at the booting stage in rice variety 'Norin-PL8'. Breed Sci, 1995, 45: 337~340
    107 Xiao J, Li J, Yuan L, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995, 140: 745~754
    108 李平,周开达,陈英,等.利用分子标记定位水稻野败型核质互作雄性不育恢复基因.遗传学报,1996,23(5):357~362
    109 Nandi S, Subudhi P K, Senadhira D, et al. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotype. Mol Gen Genet, 1997, 255: 1~8
    110 谭震波,沈利爽,袁祚廉,等.水稻再生能力和头季稻产量性状的QTL定位及其遗传效应分析.作物学报,1997,23(3):289~295.
    111 Lin S Y, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice (Oryza sativa L.) using backcross inbred lines. Theor Appl Genet, 1998, 96: 997~1003.
    112 Hyne V, Kearsey M J, Pike D J, ed al. QTL analysis: unreliability and bias in estimation procedures. Molecular Breeding, 1995, (1): 273-2~2
    113 庄杰云,郑康乐.水稻产量性状遗传机理及分子标记辅助高产育种.生物技术通报,1998,(1):1~9
    114 惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较.作物学报,1997,23(2):129~136
    115 McCoueh SR, Kochert G, Yu ZH, et al. Molecular mapping of rice chromosome. Theor Appl Genet, 1988, 76: 815~829
    116 Causse M, Fulton T, Ahn N, et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics. 1994, 138: 1251~1274
    117 Kurata N, Y. Nagamura, K. Yamamoto, et al. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet, 1994, 8: 365-3~2
    118 Huang N, Angeles E R, Domingo J, et al. Pyramiding of bacterial blight resistance genes in rice: Marker-assisted selection using RFLP and PCR. Theor Appl Genet, 1997, (95): 313~320
    119 Harushima Y, Yano M, Shomura A, et al. A high-density rice genetic linkage map with 2275 markers using a single F_2 population. Genetics. 1998, 148: 479~494
    120 徐云碧,朱立煌著.分子数量遗传学.北京:中国农业出版社,1994
    121 Tanksley SD, Young ND, Paterson AH, et al. RFLP mapping in plant breeding: new tools for an old science. Bio/Technology. 1989, 7(3): 257~264.
    122 Burr B., Bure F. A., Thompson K. H., et al. Gene mapping with recombinant inbreds inmaize. Genetics, 1988, 118: 519~526
    123 Burr B. Mapping and sequencing the rice genome. Plant Cell. 2002, 14: 521~523
    124 Becker J, Vos P, Kuiper M. Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet. 1995, 249: 65~73
    125 Shoemaker RC, Specht JE. Integration of the soybean molecular and classical genetic linkage groups. Crop Science. 1995, 35: 436~446
    126 Ribaut JM, Hoisington D. Markerassisted selection: new tools and strategies. Trends Plant Sci., 1998, 3(6): 236~239
    127 Xiao JH. Identification of heterosis—enhancing alleles from a rice wild relative, Oryza rufipogon. Plant and Animal Gonome Ⅴ Abstracts, 1997: 147
    128 钟代彬,罗利军,应存山.野生稻在栽培稻育种中的应用.种子,1995(1):25~29
    129 李德军,孙传清,付永彩,等.利用AB—QTL法定位江西东乡野生稻中的高产基因.科学通报,2002,47(11):854~858
    130 Wijibrand, Zabel P, Koomneef M. Restriction fragment lenth polymorphism analysis of somatic hybribs between lycopersicon escwlentam and irradiated Lycopersicon peruviamum evidence for limited donor genome elimination and extensive chromosome rearrangement. Mol Genel Genet, 1990, 222: 270~277
    131 薛庆中,张能义,熊兆飞,等.应用分子标记辅助选择培育抗白叶枯病水稻恢复系.浙江农业大学学报,1998,24(6):581~582.
    132 Chen Sheng, Zhang Qifa. Improvement of bacterial blight resistance of hybrid rice by molecular marker assisted selection.华中农业大学学报,2000,19(3):183~189.
    133 黄廷友,李仕贵,王玉平,等.分子标记辅助选择改良蜀恢527对白叶枯病的抗性.生物工程学报,2003,19(2):153~157.
    134 彭应财,李文宏,樊叶扬,等.利用分子标记辅助选择技术育成抗白叶枯病杂交稻协优218.杂交水稻,2003,18(5):5~7.
    135 童海军,薛庆中.抗病杂交水稻新组合Ⅱ优8220.杂交水稻,2003,18(5):73~74.
    136 罗彦长,王守海,李成荃,等.应用分子标记辅助选择培育抗白叶枯病光敏核不育系3418S.作物学报,2003,29(3):402~407.
    137 申时全,曾亚文,李自超,等.分子标记及其在云南稻种核心种质中的应用.种子,2001(6):8~11
    138 Zhu J H. Abstract of plant Genome Ⅲ. San Diego. USA. 1995: 282
    139 Ahn S, Tanksley, S D. Comparative linkage maps of the rice and maize genomes. Pro. Natl. Acad. Sci. USA. 1993, (90): 7980~7984
    140 郑康乐.禾谷类作物的比较基因组研究工作.中国农业科学,1996,29(5):1~7
    141 沈利爽,朱立煌.植物的比较基因组研究和大遗传系统.生物工程进展,1995,(2):23~27
    142 曾千春,叶华智,朱祯,等.稻瘟病分子生物学研究进展.生物技术通报,2000,(3):1~7
    143 董继新,董海涛,李德葆.水稻抗瘟性研究进展.农业生物技术学报,2000,8(1):99~102
    144 Pan Q, Wang L, Tansaka T, et al. Allelism of rice blast resistance genes in two Chinese rice cultivars, and identification oftwo new resistance genes. Plant Pathology. 1995, (47): 165~170
    145 郑康乐,钱惠荣,庄杰云,等.应用DNA标记定位水稻的抗稻瘟病基因.植物病理,1995,25(4):307~313
    146 Rybka K, Miyamoto M, Ando, et al. High resolution mapping of the indica-derived rice blast resistance genes 11: Pi-ta2 and Pi-ta and a consideration of their origin. Molecular Plant-Microbe Interactions, 1997, (10): 517~524
    147 Miyamoto M, Ando L, Rybka K, et al. High resolution mapping of the indica-derived rice blast resistance genes Ⅰ: Pi-b. Molecular Plant-Microbe Interactions, 1996, (9): 6~13
    148 Pacro A. STS makers for the blast resistance gene Pi-1. Rice Genome, 1995, (4): 9
    149 王石平,刘克德,王江,等.用同源序列的染色体定位寻找水稻抗病基因DNA片断.植物学报,1998,40(1):42~50
    150 朱立煌,徐吉臣,陈英,等.用分子标记定位一个未知的抗稻瘟病基因.中国科学(B),1994,21(10):1048~1052
    151 Wang Z X, Yano M, Yamanouch U, et al. The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. The Plant Journal, 1999, (19): 55~64
    152 施利利,王松文,郭玉华.水稻抗白叶枯病分子育种的研究进展.天津农学院学报,2001,8(3):14~18
    153 Song W Y, Wang G L, Chen L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa-21. Science, 1995, (270): 1804~1806
    154 Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xa-1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Nail. Acad. Sci. USA, 1998, (95): 1663~1668
    155 易小平,朱祯,周开达.水稻抗性基因定位及相关分子标记研究进展.生物工程进展,1998,18(5):40~44
    156 王布哪,黄臻,舒理慧,等.两个来源于野生稻的抗褐飞虱基因的分子标记定位.科学通报,2001,46(1):46~49
    157 张耕耘,郭岩.九个水稻耐盐突变体的RFLP分析.植物学报,1994,36(5):345~350
    158 Zheng Q F, Shen B Z, Dai X K, et al. Using bulked extreme and recessive class to map genes for photoperiod sensitive genetic male sterility in rice. Proc. Natl. Acad. Sci. USA, 1994,(91): 8675~8679
    159 李子银,林兴华,谢岳峰,等.利用分子标记定位农垦58S的光敏核不育基因.植物学报,1999,41(7):731~735
    160 庄楚雄.特异亲和基因的定位.[博士学位论文].广州:华南农业大学农学系,1997
    161 Zhang G, Bharaj T S, Lu Y, et al. Mapping of the Rf3 nuclear fertility-restoring gent for WA cytoplasmic male sterility in rice using RAPD and RFLP markers. Theor Appl Genet, 1997, (94): 27~33
    162 Yao F Y, Xu C G, Yu S B, et al. Mapping and genetic analysis of two fertility restorer loci in the wild-abortive cytoplasmic male sterility system of rice loryza sativa. Euphytica, 1997, (98): 183~187
    163 Akagi H, Yokozeki Y, Inagaki A, et al. A Codominant DNA marker closely linked to the rice nuclear restorer gcnc, Rf-1, identified with inter-SSR fingerprinting. Genome, 1996, (39)P: 1205~1209
    164 景润春,何予卿,黄青阳,等.水稻野败型细胞质雄性不育恢复基因的ISSR的SSLP标记.中国农业科学,2000,33(2):10~15
    165 张群宇,刘耀光,张桂权,等.野败型水稻细胞质雄性不育恢复基因Rf-4的分子标记定位.遗传学报,2002,29(11):1001~1004
    166 Smith O S, Smith J S C, Bowen S L, et al. Similarities among a group of elite maize inbreds as measured by pedigree F1 grain yield heterosis and RFLPs. Theor Appl Genet. 1990, 80: 833~840
    167 Zhang Q. F, Gao s. h, Yang R, et al. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Theor Appl Genet, 1994, 89: 185~192
    168 王松文.36个水稻骨干系的分子聚类及其遗传育种学意义.Ⅰ分子标记多态性与杂交亲和性关系的研究.华北农学报,1997,12(4):1~6
    169 Charles C, Mann. Crop scientists seek a new revolution. Science, 1999, 283: 310-314
    170 佐滕尚雄.水稻超高产育种研究.国外农学水稻,1984,(2):1~16
    171 金田忠吉.应用籼粳杂交培育超高产水稻品种.JARQ,1986,19(4):235~240
    172 徐正进,陈温福,张龙步.日本水稻育种的现状与展望.水稻文摘,1990,9(5):1~6
    173 Khush G S. Prospects of and approaches to increasing the genetic yield potential of rice. Evenson. Rice Research in Asia, Progress and Priorities. CAB International and IRRI, 1996. 59~71
    174 杨仁崔.国际水稻研究所的超级稻育种.世界农业,1996,(2):25~27
    175 陈温福,徐正进,张龙步,等.水稻超高产育种研究进展与前景.沈阳农业大学学报,1998,29(2):101~105
    176 程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标及有关问题.中国稻米,1998,(1):1~3
    177 周开达,马玉清,刘太清,等.杂交水稻亚种间重穗型组合选育—杂交水稻超高产育种的理论与实践.四川农业大学学报,1995,13(4):403~407
    178 袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1~6
    179 杨春献,向邦豪,张其茂,等.两系超级杂交稻百亩片平均单产12.26t/hm~2的栽培技术.杂交水稻,2003,18(2):42~44
    180 邓华凤,周承恕.超级杂交稻新组合创海南单产最高纪录.杂交水稻,2003,18(3):13
    181 吴朝晖.超级杂交稻新组合P88S/0293在海南三亚单产超12t/hm~2的栽培技术.杂交水稻,2003,18(6):36~37
    182 廖伏明.中国超级稻单季稻第2期目标提前一年实现.杂交水稻,2004,19(6):50
    183 杨守仁,张步龙,王进民,等.水稻理想株型育种的理论和方法初论.中国农业科学,1984,(3):6~13.
    184 余显权,金武宽,吴平理.水稻高产育种理论与实践.贵州农学院学报,1997,(4):1~6.
    185 黄耀祥.水稻丛化育种.广东农业科学,1983,(1):1~5
    186 邓启云,袁隆平,邓化冰,等.野生稻高产基因分子标记辅助育种研究进展.湖南农业科学“湖南省首届农业生物技术发展论坛论文集”,2004.12,:80~82
    187 Temnykh S, Declerck G, Lukashova A, et al. Coutational and experimental analysis of microsatellites in rice(Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001, 11: 1441~1452
    188 Mccouch S R, Teytelman L, Xu Y B, et al. Development and mapping of 2240 new SSR markers for rice(Oryza sativa L). DNA Research, 2002, 9: 199~207
    189 Spelman R., Bovenhuis H. Genetic response from marker assisted selection in an outbred population for differing marker bracket sizes and with two identified quantitative traitloci. Genetics, 1998, 148: 1389~1396
    190 Liang FS, Deng QY, Wang YG, et al. Molecular marker-assisted selection for yield-enhancing genes in the progeny of "9311×O. rufipogon" using SSR. Euphytica, 2004, 139: 159~165
    191 邓启云,袁隆平,梁风山,等.野生稻高产基因及其分子标记辅助育种研究.杂交水稻,2004,19(1):6~10
    192 Edwards MD, Stuber CW, Wendel JF. Molecular-marker-facilitated investigations of quantitative-trait loci in maize: Ⅰ. numbers, genomic distribution and types of gene action. Genetics, 1987, 116: 113~125
    193 Eshed Y, Zamir D. A genomie library of lyeopersieon pennellii in L. esculentum: A tool for fine mapping of genes. Euphytica, 1994b, 79: 175~179
    194 Chen S., Xu C. G., Lin X. H., Zhang Q. Improving bacterial blight resistance of "6075", an elite restorer line of hybrid rice, by molecular marker-assisted selection. Planting Breeding, 2001, 120: 133~13
    195 毛昌祥.中国大面积推广的杂交稻组合亲本血缘分析.傅相全.杂交水稻国际学术讨论会论文集.北京:学术期刊出版社,1988.431~433.
    196 夏胜平,李伊良,贾先勇,等.籼型优质米不育系金23A的选育.杂交水稻,1992,(5):29~31.
    197 邓应德,唐传道,黎家荣,等.籼型三系不育系丰源A的选育.杂交水稻,1999,14(2):6~7.
    198 邓小林,袁定阳,徐荣发.高异交率优质米不育系T98A选育简介.杂交水稻,2001,16(4):14.
    199 吴让祥.矮败型早籼协青早不育系选育及其利用研究.傅相全.杂交水稻国际学术讨论会论文集,北京:学术期刊出版社,1988.75~78.
    200 林纲,赵德明,李云武,等.优质浓香型不育系宜香1A通过技术鉴定.杂交水稻,2001,16(1):3.
    201 李仕贵,黎汉云,周开达,等.水稻优良不育系冈46A的选育及应用研究.四川农业大学学报,1995,13(4):432~436
    202 梁世湖,李传国,伍应运.红莲型优质不育系粤泰A的选育及其主要特征特性.福建稻麦科技,1998,16(1):1~4.
    203 王文明,文宏灿.“三高一低”新质源不育系K17A的选育初报.杂交水稻,1995,(4):44.
    204 罗孝和,邱趾忠,李任华.导致不育临界温度低的两用不育系培矮64S.杂交水稻,2000,15(培矮64S研究及其应用论文选编):4~5.
    205 杨远柱,唐平徕,杨文才,等.水稻广亲和温敏不育系株1S的选育及应用.杂交水稻,2000,15(2):6~8.
    206 邓华凤,李必湖,刘爱民,等.安农810S的选育及初步研究.作物研究,1996,10(1):8~11.
    207 廖亦龙,王丰,邹新华,等.籼型光温敏核不育系GD-1S的选育与利用.杂交水稻,2003,18(3):8~10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700