重离子反应中的分形行为和椭圆流效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中高能重离子碰撞吸引了众多的理论和实验工作者,通过对中高能重离子碰撞的研究,可以得到关于高温高密环境中粒子产生、相互作用机制及极端现象的知识,中高能重离子碰撞也是目前获得这些知识的唯一途径。
     在实验上,本文第三章利用阶乘矩和Takagi矩研究了4.5A GeV/c ~(16)O、~(24)Mg诱发乳胶核反应末态慢粒子分布的分形行为。在分别计算了黑粒子和灰粒子的水平阶乘矩和垂直阶乘矩后,发现一般情况下两种阶乘矩虽然并不相等,但是两种方法所得结论相同。为了消除由于末态粒子分布不均匀性所造成的影响,采用修正因子和累积变量两种方法进行了修正,通过对实验数据的分析,发现修正因子的修正效果不如累积变量,只有在做了变量代换后,水平阶乘矩和垂直阶乘矩才基本相等。通过广义分形维数可以将间歇与分形联系起来。通过对由阶乘矩和Takagi矩得到的广义分形维数的研究发现,在发射角空间,末态慢粒子的发射均存在多重分形的特征。
     自仿射分形可以较好地反映末态粒子在三维空间的发射,本文第四章计算了4.5A GeV/c ~(16)O诱发乳胶核反应靶核碎片的二维阶乘矩,发现其发射过程存在自仿射分形,这已得到多数实验的证实,但在有些实验中我们仍无法得出准确的结论。因此,对于靶核碎片的发射过程仍需进一步的研究。通过对非热相变因子的研究发现,在q=3时,λ_q存在最小值,说明在高能核-核碰撞中的靶核碎片发射过程中存在非热相变过程。
     在理论上,本文第五章根据多源理想气体模型,尝试用一个统一的公式对中能及高能低端~(56)Fe+p反应散裂产物和~(136)Xe+Pb和~(124)Xe+Pb碎裂反应产物的同位素产生截面进行了研究。通过与实验数据的比较发现,计算结果可以很好描述上述实验结果,拟合参数也可以得到很好解释。对于类中子多重数有贡献的每一个发射源都类似于一个放射源。
     各向异性流是高能碰撞中发现的一个重要的实验现象,本文第六章利用多源理想气体模型描述了高能核-核碰撞中产生的已鉴别粒子的类瑞利型的横动量分布,从而研究了二阶各向异性流(即椭圆流)与横动量的关系。结果表明,多源理想气体模型可以很好地描述STAR和PHENIX合作组测得的s~(1/2)=200A和62.4A GeV的Au-Au碰撞和s~(1/2)=200A GeV的Cu-Cu碰撞的实验结果。
Heavy ion collisions at intermediate and high energies are interesting subjects in theoretical and experimental nuclear physics because these collisions can provide a unique opportunity to investigate the particle productions,interacting mechanisms,and rare phenomena at high density and high temperature.
     Experimentally,fractal structure of slow particles from nuclear reactions in emulsion induced by ~(16)O and ~(24)Mg at 4.5A GeV/c are studied in Chapter 3 by using factorial moments and Takagi moments.After the calculation of horizontal factorial moments and vertical factorial moments,it is found that the same conclusion can be attained although the results of the two kinds of methods are not equal.For nonflat multiplicity distributions,an extra M-dependent correction factor and a new variable are introduced to correct the factorial moments respectively.It is found that the new variable is better than the correction factor,under the new variable the horizontal factorial moments and vertical factorial moments are almost equal.The generalized dimensions can characterize the fractal behavior.The generalized dimensions of slow particles determined by factorial moments and Takagi moments are calculated.Multifractality of slow particles is observed in emission angle space.
     Self-affine fractal is a good candidate for descriptions of multiparticle production.Two-dimensional factorial moments of target fragments for ~(16)O-AgBr collisions at 4.5A GeV/c are calculated in Chapter 4.Self-affine fractal is observed in target fragments.This phenomenon has been confirmed in some experiments.But an unambiguous conclusion can not be attained in some experiments.An in-depth study on the emission of target fragments is necessary.The occurrence of distinct minima inλ_q at q=3 indicates the possibility of a non-thermal phase transition in the emission process of target fragments in high energy nucleus-nucleus collisions.
     Theoretically,using a unified description on multiplicity distributions of final-state particles,the spallation residues in ~(56)Fe+p reactions and fragmentation products in ~(136)Xe(~(124)Xe)+Pb reactions at intermediate energy and at the low end of high energies are studied in Chapter 5.The isotopic production cross sections of fragments produced in the reactions are calculated by using a multisource ideal gas model.It is found that the MSIG model can well describe the experimental results,and the parameters can be explained well too.Each source contributes to multiplicity-like distribution of neutrons like a radioactive object.
     In high energy nucleus-nucleus collisions,the particle azimuthal anisotropy and its dependence on particle identity and on transverse momentum can provide information on the properties of interacting system. The dependences of elliptic flows on transverse momentum for identified particles produced in nucleus-nucleus collisions at high energy are studied in Chapter 6 by using the MSIG model that describes the distribution of transverse momenta as a Rayleigh-like distribution.The experimental results of Au+Au collisions at s~(1/2)=200A and 62.4A GeV and Cu+Cu collisions at s~(1/2)=200A GeV,measured by the STAR and PHENIX collaborations,are well described by using this model.
引文
[1]张丰收,葛凌霄著.原广核多重碎裂.北京.科学出版社,1998,10
    [2]http://hepl.phys.ntu.edu.tw/-listeve/press/sm.doc
    [3]Lee T D,RHIC and QCD:an overview.Nul.Phys.A,1995,590(1-2):11c-27c
    [4]Huang H Z.Introduction to Relativistic Heavy Ion Collision Physics.Report at USTC,2005,10
    [5][美]黄卓然著 张卫宁译.高能重离子碰撞导论.哈尔滨:哈尔滨工业大学出版社,2002,2
    [6]Bauer W.Fragmentation and the Nuclear Equation of State.Nucl.Phys.A,2007,787(1-4):595c-602c.
    [7]Jakobsson B,J(o|¨)nsson G,Lindkvist B,et al.The disintegration of nuclei in violent heavy ion interactions at 55A MeV-110A MeV.Z.Phys.A,1982,307(4):293-304
    [8]Friedlander E M,Heckman H H,and Karant Y J.Nuclear collisions of uranium nuclei up to-1 GeV/nucleon.Phys.Rev.C,1983,27(5):2436-2438
    [9]Cherry M L,Dabrowska A,et al.Fragmentation and multifragmentation of 10.6A GeV gold nuclei.Phys.Rev.C,1995,52(5):2652-2662
    [10]Adamovich M I,et al(EMU-01 Collaboration).Angular distributions of light projectile fragments in deep inelastic Pb + Em interactions at 160 A GeV.Eur.Phys.J.A,1999,6:421-425
    [11]Singh V,Tuli S K,Bhattacharjee B,et al.Multifragmentation Studies in ~(84)Kr Interactions with Nuclear Emulsion at around 1 A GeV.arXiv:Nucl-ex/0412049
    [12]Jilany M A.Nuclear fragmentation in interactions of 3.7A GeV ~(24)Mg projectiles with emulsion targets.Phys.Rev.C,2004,70(1):014901
    [13]Rusch G,Heinrich W,Wiegel B,et al.Charge correlations and transverse momenta observed in multifragmentation of 1 GeV/nucleon Au projectiles.Phys.Rev.C,1994,49(2):901-911
    [14]Dekhissi H,Giacomelli G.Giorgini M,et al.Fragmentation studies of 158 A GeV Pb ions using CR39 nuclear track detectors.Nucl.Phys.A,2000,662(1-2):207-216
    [15]Qureshi I E,Shahzad M I.Javed M T,et al.Study of projectile fragmentation in the reaction(158 A GeV) Pb + Pb using CR-39.Radiat.Meas.,2005,40(2-6):437-441
    [16]Sch(u|¨)ttauf A,Kunze W D,W(o|¨)rner A,et al.Universality of spectator fragmentation at relativistic bombarding energies.Nucl.Phys.A,1996,607(4):457-486
    [17]Ogilvie C A,Adloff J C,el al.Rise and fall of multifragment emission.Phys.Rev.Lett.,1991,67(10):1214-1217
    [18]Stivatava B K,et al(EOS Collaboration).Multifragmentation and the phase transition:A systematicstudy of the multifragmentation of 1A GeV Au,La,and Kr.Phys.Rev.C,2002,65(5):054617
    [19]Gross D H E.Statistical decay of very hot nuclei:The Production of large clusters.Rep.Prog.Phys.,1990,53(5):605-658
    [20]Jaqaman H R and Gross D H E.Signals of the liquid-gas phase transition in the fragmentation of hot nuclei:Finite-size scaling.Nucl.Phys.A,1991,524(2):321-343
    [21]Friedman WA.Rapid massive cluster formation.Phys.Rev.C,1990,42(2):667-673
    [22]Bauer W.Extraction of signals of a phase transition from nuclear multifragmentation.Phys.Rev.C,1988,38(3):1297-1303
    [23]蔡勖,周代梅.超高能诱发核反应的国际合作实验研究进展.高能物理与核物理,2002,26(9):971-990
    [24]Ogilvie C A.Review of nuclear reaction at AGS.NucL Phys.A,2002,698():3-12
    [25]Liu H,et al(E895 Collaboration).Sideward Flow in Au+Au Collisions between 2A to 8A GeV.Phys.Rev.Lett.,2000,840:5488-5492
    [26]Liu H,et al(E895 Collaboration).Collective Flow in Au+Au Collision between 2-8A GeV at AGS.Nucl.Phys Phys.A,1998,638(1-2):451c-454c
    [27]Abbott T,Akiba Y,Alburger D,et al.Kaon and pion production in central Si+Au collisions at 14.6A GeV/C.Phys.Rev.Lett.,1990,64(8):847-850
    [28]Grazyna J Odyniec.Strangeness Production in Relativistic Nuclear Collisions.Nucl.Phys.A,1998,638:135c-146c
    [29]Afanasiev S V,et al(NA49 Collaboration)..Energy Dependence of Pion and Kaon Production in Central Pb+Pb Collisions.Phys.Rev.C,2002,66(5):054902
    [30]Hanbury Brown R,Twiss R Q.A new type of interferometer for use in radio astronomy.Philosophy Magazine.1954,45(3):663-682
    [3I]Hanbury Brown R,Twiss R Q.A test of a new type of stellar interferometer on sirius.Nature,1956,178(11):1046-1048
    [32]Goldhaber G,Goldhaber S,Pais A.Influence of Bose-Einstein statistics on the anti-proton proton annihilation process.Physical Review,1960,120(2):300-312
    [33]Lisa M A,et al.Azimuthal dependence of pion interferometry at the AGS.Physics Letter B,2000,496(1-2):1-8
    [34]Lourenco C,Searching for the Quark Matter at CERN SPS.Nucl.Phys.A,2002,698(1-4):13c-22c
    [35]Gazdzicki M,et al.Neutral strange particle production in S-S collisions at 200GEV/nucleon.Nucl.Phys.A,1989.498:375-383
    [36]Wurm P.for NA45/CERES.New results from NA45/CERES.Proc.Quark Matter '95,Nucl.Phys'.A,1995,590(1-2):103c-116c
    [37]Agakichiev G.,et al(CERES Collaboration) Enhanced Production of Low-Mass Electron Pairs in 200 GeV/Nucleon S-Au Collisions at the CERN Super Proton Synchrotron.Phys.Rev.Lett.,1995.75(7):1272-1275
    [38]Tserrya I,Summary of low-mass dilepton and direct photon results.Proc.Quark Matter '95,Nucl.Phys.A,1995.590:127c-138c
    [39]Masera M.for HELIOS/3 Collaboration.Dimuon production below mass 3.1 GeV/c~2in p-W and S-W interactions at 200 GeV/c/A.Proc.Quark Matter '95,Nucl.Phys.A, 1995,590:93c-102c
    [40]Falco D,for NA35 Collaboration,Antibaryon production in ~(32)S+nucleus collisions at 200 GeV/nucleon.Proc.Quark Matter '97,Nucl.Phys.A,1998,638:487c-490c
    [41]Tserrya I.Highlights on dilepton and photon observables.Proc.Quark Matter '97,Nucl.Phys.A,1998,638:365c-371c
    [42]Lenkeit B.for CERES Collaboration.Recent results from Pb-Au collisions at 158GeV/c per nucleon obtained with the CERES spectrometer.Proc.Quark Matter '99,Nucl.Phys.A,1999,661:23c-32c
    [43]Abreu M C,et al(NA50 Collaboration).Evidence for deconfinement of quarks and gluons from the J/ψsuppression pattern measured in Pb-Pb collisions at the CERN-SPS.Phys.Lett.B,2000,477(1-2):28-36
    [44]Muller B and Nagle J L.Results from the Relativistic Heavy Ion Collider.Annu.Rev.Nucl.And Part.Phys.2006,56:93-135
    [45]http://www.bnl.gov/rhic/
    [46]Adcox K,et al(PHENIX Collaboration).Suppression of Hadrons with Large Transverse Momentum in Central Au+Au Collisions at s~(1/2)=139 GeV.Phys.Rev.Lett.,2002,88(2):022301
    [47]Adler C,et al(STAR Collaboration).Centrality Dependence of High-PT Hadron Suppression in Au+Au Collisions at s~(1/2)=130GeV.Phys.Rev:Lett.,2002,89(20):202301Adler C,et al(STAR Collaboration).Disappearance of Back-To-Back High-PT Hadron Correlations in Central Au+Au Collisions at s~(1/2)=200GeV.Phys.Rev.Lett.,2003,90(8):082302[48]Adler S S,et al(PHENIX Collaboration).Absence of Suppression in Particle Production at Large Transverse Momentum in ff-~s--200GeV d+Au Collisions.Phys.Rev.Lett.,2003,91(7):072303Adams J,et aI(STAR Collaboration).Evidence t~om d+Au Measurements for Final-State Suppression of High-p~ Hadrons in Au+Au Collisions at RHIC.Phys.Rev. Lett.,2003,91(7):072304
    [49]Cronin J W,Frisch H J,Shochet M J.Production of hadrons at large transverse momentum at 200,300,and 400 GeV.Phys.Rev.D,1975,11(11):2105-3123
    [50]Adams J,et al(STAR Collaboration).Open charm yields in d+Au collisions at s~(1/2)=200 GeV.Phys.Rev.Lett.,2005,95(6):062301
    [51]Adler S S,et al(PHENIX Collaboration).Elliptic Flow of Identified Hadrons in Au+Au Collisions at s~(1/2)=200 GeV.Phys.Rev.Lett.,2003,91(18):182301
    [52]Lee T D.New insights to old problems,arXiv:hep-ph/0605017v1
    [53]http://public.web.cern.ch/public/en/LHC/LHC-en.html
    [54]张肇西.欧洲大型强子对撞机LHC的物理.现代物理知识,2008,20(5):12-21
    张闯.大型强子对撞机.现代物理知识,2008,20(5):22-28
    童国梁.LHC上的ATLAS实验.现代物理知识,2008,20(5):22-28
    杨民.大型强子对撞机上的CMS实验.现代物理知识,2008,20(5):29-38
    周代翠,殷中宝.大型强子对撞机上的重离子碰撞实验.现代物理知识,2008,20(5):39-43
    [55]Beiser A.Nuclear Emulsion Technique.Reviews of Modern Physics,1952,24(2):273-311
    [56]Powell C F,et al,The study of Elementary particles by the photogRaphic Method,pergamon press,london,1959
    [57]Barkas W H.Nuclear Research Emulsion.Academicpress,New York and London,1963
    [58]原子核乳胶组.原子核乳胶及其应用.原子能科学技术,1970,10(2):136-140
    [59]唐孝威.粒子物理实验方法[M].北京,高等教育出版社,1982,8
    [60]徐克尊等.粒子探测技术.上海科学技术出版社,1981,11,P206-214
    [61]刘福虎,许国发,孙淑荣.200A GeV ~(16)O与核乳胶相互作用的靶核碎片多重 数与角分布.科大研究生院学报,1990,7(2):25-34
    [62]刘福虎.中能原子核碎裂中的方位角关联.高能物理与核物理,1995,19(3):217-222
    [63]张东海.相对论性重离子诱发乳胶核反应研究.中国原子能科学院博士论文,1999
    [64]Burnett T H,Dake S,Fuki M,et al.Extremely High Multiplicities in High-Energy Nucleus-Nucleus Collisions.Phys.Rev.Lett.,1983,50:2062-2065
    [65]Bialas A and Peschanski R.Moments of rapidity distributions as a measure of short-range fluctuations in high-energy collisions.Nucl.Phys.B,1986,273(3-4):703-718
    Bialas A and Peschanski R.Intermittency in multiparticle production at high energy.Nucl.Phys.B,1988,308(4):857-867
    [66]Buschbeck B,Lipa R and Peschanski R.Signal for intermittency in e~+e~-reactions obtained from negative binomial fits.Phys.Lett.B,1988,215(4):788-791
    [67]Abreu P,et al(DELPHI Collaboration).A study of intermittency in hadronic Z~0decays.Phys.Lett.B,1990,247(1):137-147
    [68]Braunschweig W,et al(TASSO Collaboration).Study of intermittency in electron-positron annihilation into hadrons.Phys.Lett.B,1989,231(4):548-556
    [69]Gustafson G and Sj(o|¨)gren C.Intermittency in e~+e~-annihilation at PEP-PETRA energies.Phys.Lett.B,1990,248(3-4):430-436
    [70]Satz H.Intermittency and critical behaviour.Nuci.Phys.B,1989,326(3):613-618
    [71]Ajinenko I V,et al(NA22 Collaboration).Intermittency patterns in π~+p and K~+p collisions at 250 GeV/c.Phys.Lett.B,1989,222(2):306-310
    Ajinenko I V,et al(NA22 Collaboration).Intermittency effects in π~+p and K~+p collisions at 250 GeV/c.Phys.Lett.B,1990,235(3-4):373-378
    [72]Albajar C,et al(UAI Collaboration).Intermittency studies in pp collisions at s~(1/2)=630 GeV.Nucl.Phys.B,1990,345(1):1-21
    [73]Alner G J.Alpgaord K,Anderer P,et al.UA5:A general study of proton-antiproton physics at s~(1/2)=546 GeV.Phys.Rep.,1987,154(5-6):247-383
    [74]Adamus M,et al(NA22 Collaboration).Maximum particle densities in rapidity space of π~+ p,K~+ p and pp collisions at 250 GeV/c.Phys.Lett.B,1987,185(1-2):200-204
    [75]Agababyan N M,et al(NA22 Colaboration).Self-affine fractality in π~+p and K~+p collisions at 250 GeV/c.Phys.Lett.B,1996,382(3):305-311
    Agababyan N M,et al(NA22 Colaboration).Self-affine scaling from non-integer phase-space partition in π~+p and K~+p collisions at 250 GeV/c.Phys.Lett.B,1998,431(3-4):451-458
    [76]Holynski R,Jurak A,Olszewsk A,et al.Evidence for Intermittent Patterns of Fluctuations in Particle Production in High-Energy Interactions in Nuclear Emulsion.Phys.Rev.Lett.,1989,62(7):733-736
    [77]Holynski R,et al(KLM Collaboration).One-and two-dimensional analysis of the factorial moments in 200 GeV/nucleon p,~(16)O,and ~(32)S interactions with Ag and Br nuclei.Phys.Rev.C,1989,40(6):R2449-R2453
    [78]Adamovich M I,et al(EMU01 Collaboration).Multiplicities and rapidity densities in 200 A GeV ~(16)O interactions with emulsion nuclei.Phys.Lett.B,1988,201(3):397-402
    [79]Sengupta K,Jain P L,Singh G,et al.Intermittency in multiparticle production at ultra-relativistic heavy ion collisions.Phys.Lett.B,1990,236(3-4):219-223
    [80]Adamovich M I,Aggarwal M M,Alexandrov Y A,et al.Scaled-factorial-moment analysis of 200A GeV sulfur+gold interactions.Phys.Rev.Lett..1990,65(4):412-415
    [81]Akesson T,et al(HELLOS Emulsion Collaboration).A search for multiplicity fluctuations in high energy nucleus-nucleus collisions.Phys.Lett.B,1990,252(2):303-310
    [82]Ghosh D.Ghosh P,Deb A,et al.Study on fractility in nucleus-nucleus interaction at a few GeV/c.Phys.Lett.B,1991,272(1-2):5-10
    [83]Ghosh D.Ghosh P.Roychowdhury J.et al.~(16)O+Ag/Br interactions at 2.1 GeV/nucleon and some aspects of intermittency. Phys.Rev. C, 1993, 47(3): 1120-1128
    
    [84] Jain P L and Shing G. Factorial, multifractal moments and short-range correlation of shower particles at relativistic energies. Nucl. Phys. A, 1996, 596(3-4): 700-712
    
    [85] Smolarleiewicz M M, Kirejczyk M, Sikora B, et al. Search for an Intermittency Signal in Au+Au Collisions. Acta Phys. Pol. B, 2000, 31(2): 385-388
    
    [86] Janik R A and Beata Z. Improved Intermittency Analysis of Single Event Data. Acta Phys. Pol. B. 1999, 30(2): 259-270
    
    [87] Bialas A and Ziaja B. Intermittency in a single event. Phys. Lett. B, 1996. 378(1-4):319-322
    
    [88] Das G, Dheer S, Shivpuri R K, et al. Intermittent and multifractal behaviors of multiplicity distributions in 800 GeV p-nucleus interactions. Phys. Rev. C, 1996, 54(4):2081-2084
    
    [89] Ghosh D, Deb A, et al. Evidence of self-affine target fragmentation process in relativistic nuclear collision at a few GeV/n. J. Phys. G: Nucl. Phys., 2003, 29(6):983-992;Ghosh D, Ghosh P, Ghosh A, et al. Nonstatistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions. J. Phys. G: Nucl. Phys., 1994, 20(7):1077-1082; Ghosh D. Deb A, et al. Multiplicity-dependent chaotic pionization in ultra-relativistic nuclear interactions. J. Phys. G: Nucl. Phys., 2003, 29(9): 2087-2098
    
    [90] Ghosh D, Ghosh P and Ghosh A. Intermittency and fragmentation of target residue in high-energy nuclear interactions. Phys. Rev. C, 1994, 49(4): R1747-R1750
    
    [91] Ahmad S and Ayaz Ahmad M. Some observations related to intermittency and multifractality in ~(28)Si and ~(12)C-nucleus collisions at 4.5A GeV. Nucl. Phys. A, 2006,780(3-4): 206-221
    
    [92] Hasan R. Saiful Islam and Mohib-ul Haq M. Levy stable law of intermittency and multifractal spectrum in ~(28)Si-AgBr collisions at 14.6 AGeV. Chaos, Solitons and Fractals. 2005,25(5): 1029-1035
    
    [93] Ahmad S and Ayaz Ahmad M. A comparative study of multifractal moments in relativistic heavy-ion collisions.J. Phys. G: Nucl. Part. Phys., 2006, 32(9): 1279-1293
    
    [94] Ghosh D. Deb A, Lahiri M B, et ah Multifractal behavior of nuclear fragments in high-energy leptonic interactions. Phys. Rev. C, 2004, 70(5): 054903
    
    [95] Ghosh D. Deb A and Chattopadhyay R et al. Evidence of multifractal nature of target-evaporate slow particles produced in ultrarelativistic heavy ion interactions. Phys.Rev. C, 1998, 58(6): 3553-3559
    
    [96] Ghosh D, Det A, et al. Self-affine multiplicity fluctuation of target residues in relativistic nuclear collisions at a few GeV to a few hundred GeV. Eur. Phys. J. A, 2002,14: 77-80
    
    [97] Bhattacharjee B. Signature of intermittent behavior in the emission spectra of target associated particles from ~(84)Kr-Agbr interactions at 0.95 GeV/ A. Nucl. Phys. A, 2005,748(3-4): 641-648
    
    [98] Ghosh D. Dev A, Sarkar S, et al. Pronounced fluctuations of target fragments in forward hemisphere only in ultra relativistic nuclear collision. Chin. Phys. Lett., 2006,23(6): 1441-1444
    
    [99] Ghosh D. Deb A, et al. Self-affine scaling and non-thermal phase transition in target fragments of muon-nucleus interactions at high energy. Modern Physics Letters A, 2007,22(23): 1759-1768
    
    [100] Ghosh D. Deb A, Sarkar S, et al. Strong Self-Similar Fluctuations of Target Fragments in Ring-like Events in Ultra-Relativistic Nuclear Collision. Chin. Phys. Lett.,2006, 23(11): 2944-2947
    
    [101] Ghosh D. et ah Evidence of intermittent type fluctuation of target residue in relativistic nuclear collisions at a few GeV/n. International Journal of Modern Physics E,2003, 12(3): 407-419
    
    [102] HWA R C.A proposed analysis of multiplicity fluctuations in high-energy heavy-ion collisions.Phys.Lett.B,1988,201(1):165-168
    [103]Wosiek J.Intermittency in the Ising Systems.Acta Phys.Pol.B,1988,19(10):863-866
    [104]Carruthers P,Eggers H C,Gao Q,et al.Correlations and Intermittency in High Energy Multihadron Distributions.Int.J.Mod.Phys.A,1991,6(17):3031-3060
    [105]Powell C F,Fowler P H and Perkins D H.The Study of Elementary Particles by Photographic Method(Oxford,Pergamon,1959),pp450-464
    [106]Ghosh D,Dev A,Sarkar S,et al.Multifragmentations of Targets at SPS Energy-Evidence of Both Monofraetality and Multifractality.Fractals,2008,16(2):169-174
    [107]Takagi F.Multifraetal structure of multiplicity distributions in particle collisions at high energies.Phys.Rev.Lett,1994,72.(1):32-35
    [108]Fialkowski K,Wosick B and Wosick J.Letters to the Editor Intermittency and QCD Jets.Acta.Phys.Pol.B,1989,20(7):639-645
    [109]Bialas A,Gazdzicki M.A new variable to study intermittency.Phys.Lett.B,1990,252(3):483-486
    [110]Ghosh D,Deb A,et al.Fractal behavior of nuclear fragments in high energy interactions.Fractals,2003,11(4):331-343
    [111]Lipa P and Buschbeck B.From strong to weak intermittency.Phys.Lett.B,1989,223(3-4):465-469
    [112]Hentschel H G E and Procaccia I.The infinite number of generalized dimensions of fraetals and strange attractors.Physica D,1983,8(3):435-444
    [113]刘连寿,吴元芳著.高能碰撞多粒子产生.上海科学技术出版社.1998年12月第一版
    [114]Ochs W.The importance of phase space dimension in the intermittency analysis of multi hadron production.Phys.Lett.B,1990,247(1):101-106
    [115]刘连寿.高能非线性研究的新进展.高能物理与核物理,1999,23(2):165-175
    [116] Liu L S. Zhang Y and Wu Y F. On the random cascading model study of anomalous scaling in multiparticle production with continuously diminishing scale. Z. Phys. C, 1996,69(2): 323-326
    
    [117] Peschanski R. On the existence of a non-thermal phase transition in multi-particle production. Nucl. Phys. B, 1989, 327(1): 144-156
    
    [118] Bialas A and Zalewski K. Phase structure of self-similar multiparticle systems and experimental determination of intermittency parameters. Phys. Lett. B, 1990, 238(2-4):413-416
    
    [119] Tsao C H, Silberberg R, Barghouty A F, et al. Scaling algorithm to calculate heavyion spallation cross-sections. Rhys. Rev. C, 1993, 47(3): 1257-1262
    
    [120] Webber W R, Kish J C, and Schrier D A. Individual charge changing fragmentation cross-sections of relativistic nuclei in hydrogen, helium, and carbon targets. Phys. Rev. C,1990,41(2):533-546
    
    [121] Zeitlin C, Heilbronn L, Miller J, el al. Heavy fragment production cross-sections from 1.05-GeV/nucleon ~(56)Fe in C, Al, Cu, Pb, and CH_2 targets. Phys. Rev. C, 1997,56(1):388-397
    
    [122] Westfall G D, Wilson L W, Lindstrom P J, et al. Fragmentation of relativistic ~(56)Fe.Phys. Rev. C, 1979, 19(4): 1309-1323
    
    [123] Webber W R, Kish J C. Rockstroh J M, et al. Production Cross Sections of Fragments from Beams of 400-650 MeV per Nucleon ~9Be, ~(11)B, ~(12)C, ~(14)N,~(15)N, ~(16)O, ~(20)Ne.~(22)Ne, ~(56)Fe, and ~(58)Ni Nuclei Interacting in a Liquid Hydrogen Target. I. Charge Changing and Total Cross Sections. Astrophys. J., 1998, 508(2):940-948
    
    [124] Webber W R. Kish J C, Rockstroh J M, et al. Production Cross Sections of Fragments from Beams of 400-650 MeV per Nucleon ~9Be, ~(11)B,~(12)C, ~(14)N, ~(15)N, ~(16)O, ~(20)Ne.~(22)Ne,~(56)Fe, and ~(58)Ni Nuclei Interacting in a Liquid Hydrogen Target. II. Isotopic Cross Sections of Fragments. Astrohyys. J., 1998, 508(2):949-958
    
    [125] Meulders J P, Koning A, and Leray S. High and Intermediate Energy Nuclear Data for Accelerator-Driven Systems. edited by, HINDAS Final Report, EU Contract FIKW-CT-0031. 2005
    [126] Herbach C M, Hilscher D. Jahnke U, et al. Charged-particle evaporation and pre-equilibrium emission in 1.2 GeV proton-induced spallation reactions. Nucl. Phys. A,1994, 765(3-4): 426-463
    
    [127] Letourneau A, Galin J, Goldenbaum F, et al. Neutron production in bombardments of thin and thick W, Hg, Pb targets by 0.4, 0.8, 1.2, 1.8 and 2.5 GeV protons. Nucl.Instrum. Methods B, 2000, 170(3-4):299-322
    
    [128] Leray S, Borne F, Crespin S, et al. Spallation neutron production by 0.8, 1.2, and 1.6 GeV protons on various targets. Phys. Rev. C, 2002, 65(4): 044621
    
    [129] Barz H W, Bondorf J P, Schulz H, et al. Onset of multifragmentation dominance at 1 GeV proton-induced nuclear reaction for target nuclei with A ≤160. Nucl. Phys. A, 1986,460(4): 714-722
    
    [130] Hirsch A S, Bujak A, Finn J E. et al. Experimental results from high energy proton-nucleus interactions, critical phenomena, and the thermal liquid drop model of fragment production. Phys. Rev. C, 1984, 29(2): 508-525
    
    [131] Andronenko L N, Kotov A A. Vaishnene L A, et al. Mass yield distributions for 1 GeV proton-induced nuclear reactions on Ni and Ag. Phys. Lett. B, 1986, 174(1): 18-22
    
    [132] Viola V E, Kwiatkowski K, Beaulieu L, et al. Light-ion-induced multifragmentation: The ISiS project. Phys. Rep., 2006, 434(1-2): 1-46
    
    [133] Napolitani P, Schmidt K-H, and Tassan-Got L. Intermediate-mass fragments from fission and multifragmentation in the spallation of ~(136)Xe. arxiv: 0806.3372vl [nucl-ex]
    
    [134] Gaitanos T, Lenske H, Mosel U. Fragment formation in proton induced reactions within a BUU transport model. Phys. Lett. B, 2008, 663(3): 197-201
    
    [135] Colonna M, Rizzo J, Chomaz P, and Di Toro M. Probing the nuclear EOS with fragment production. Nucl. Phys. A, 2008, 805(1-4): 454c-461c
    
    [136] Bian B A, Zhang F S, and Zhou H Y. Fragmentation cross sections of ~(20)Ne collisions with different targets at 600 MeV/nucleon. Nucl. Phys. A, 2008, 807(1-2): 71-78
    
    [137] Buyukcizmeci N, Botvina A S. Mishustin I N, et al. Role of bulk energy in nuclear multifragmentation. Phys. Rev. C. 2008, 77(3): 034608
    
    [138] Benlliure J. Fernandez-Ordonez M. Audouin L. et al. Production of medium-mass neutron-rich nuclei in reactions induced by ~(136)Xe projectiles at 1 A GeV on a beryllium target. arXiv:0807.285vl [nucl-ex]
    
    [139] Villagrasa-Canton C, Boudard A. Ducret J-E. et al. Spallation residues in the reaction ~(56)Fe+p at 0.3A,0.5A,0.75A,1.0A, and 1.5A GeV. Phys. Rev. C, 2007, 75(4):044603
    
    [140] Henzlova D, Schmidt K-H, Ricciardi M V. el al. Experimental investigation of the residues produced in the ~(136)Xe+Pb and ~(124)Xe+Pb fragmentation reactions at 1 A GeV.arXiv:0801.3110vl [nucl-ex]
    
    [141] Liu F H. Unified description of multiplicity distributions of final-state particles produced in collisions at high energies. Nucl. Phys. A, 2008, 810(1-4):159-172
    
    [142] Sarkisy an E K G and Sakharov A S. On similarities of bulk observables in nuclear and particle collisions. CERN-PH-TH/2004-213. arXiv:hep-ph/0410324
    
    [143] Sarkisyan E K G and Sakharov A S. Multihadron production features in different reactions. AIP Conf. Proc., 2008, 828( 1 ):35-41
    
    [144] Kokoulina E. The Description of pp-Interactions with Very High Multiplicity at 70 GeV/c. Ada Phys. Pol. B, 2004, 35(1): 295-302
    
    [145] Kokoulina E, Nikitin V A. Study of multiparticle production by Gluon Dominance Model, talk given at the XVII International Baldin Seminar "Relativistic Nuclear Physics and Quantum Chromodynamics", JINR, Dubna, Russia, Sept. 27-Oct. 2, 2004, arXiv:hep-ph/0502224
    
    [146] Ermolov P F, Kokoulina E S, Kuraev E A. et al. Study of multiparticle production by gluon dominance model (Part II). talk given at the XVII International Baldin Seminar "Relativistic Nuclear Physics and Quantum Chromodynamics", JINR, Dubna, Russia, Sept. 27-Oct. 2, 2004, arXiv: hep-ph/0503254
    
    [147] Adcox K, et al(PHENIX Collaboration)., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A, 2005, 757: 184-283
    
    [148] Gyulassy M, McLerran L. New forms of QCD matter discovered at RHIC. Nucl.Phys. A 2005. 750(1): 30-63
    [149] Shuryak E V. What RHIC experiments and theory tell us about properties of quark-gluon plasma?. Nucl. Phys. A.. 2005. 750( 1): 64-83
    
    [150] Lacey R A. The role of elliptic flow correlations in the discovery of the sQGP at RHIC. Nucl. Phys. A., 2006, 774: 199-214
    
    [151] Adler S S, et al( PHENIX Collaboration). Saturation of Azimuthal Anisotropy in Au+Au Collisions at (?)=62-200 GeV. Phys. Rev. Lett., 2005, 94(23): 232302
    
    [152] Ackermann K H, et al(STAR Collaboration). Elliptic Flow in Au+Au Collisions at (?)= 130 GeV. Phys. Rev. Lett., 2001. 86(3): 402-407
    
    [153] Demoulins M, L'Hote D, Alard J P, et al. Measurement of a Baryon azimuthal emission pattern in Ne+(NaF, Nb, Pb) collisions at 800 MeV per nucleon. Phys. Lett. B,1990, 241(4): 476-480
    
    [154] Voloshin S, Zhang Y. Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions. Z. Phys. C, 1996, 70: 665-672
    
    [155] Afanasiev S, et al( PHENIX Collaboration). Elliptic Flow for Φ Mesons and (Anti)deuterons in Au+Au Collisions at (?)=200 GeV. Phys. Rev. Lett., 2007, 99(5):052301
    
    [156] Gustafson G. String models. Nucl. Phys. A. 1994, 566: 233c-244c
    
    [157] Werner K. Strings, pomerons, and the venus model of hadronic interactions at ultrarelativistic energies. Phys. Rep.. 1993. 232(2-5): 87-299
    
    [158] Werner K. Forming quark matter droplets in nuclear collisions. Nucl. Phys. A, 1994,566:477c-481c
    
    [159] Sorge H, St(?)cker H, Greiner W. Relativistic quantum molecular dynamics approach to nuclear collisions at ultrarelativistic energies. Nucl. Phys. A, 1989, 498: 567c-576c
    
    [160] Sorge H, Keitz A von, Mattiello R. et al. Baryon stopping, flow and equilibration in ultrarelativistic heavy ion collisions. Nucl. Phys. A, 1991, 525:95c-103c
    
    [161] Jahns A, Spieles C, Mattiello R, et al. Antibaryon shadowing in massive Au + Au collisions at 11 AGeV. Nucl. Phys. A. 1994, 566:483c-486c
    
    [162] Tywoniuk K. Arsene I C. Bravina L. et al. Gluon shadowing in the Glauber-Gribov model at HERA. arXiv: 0705.1596 [hep-ph]
    
    [163] Bravina L V, Csernai L P, Levai P. et al. Fluid dynamics and Quark Gluon string model — What we can expect for Au+Au collisions at 11.6A GeV/c. Nucl. Phys. A, 1994,566:461c-464c
    
    [164] Clare R B, Strottmann D. Relativistic Hydrodynamics and heavy ion reactions. Phys.Rep., 1986, 141(4): 177-280
    
    [165] Ornik U, Weiner R M, Wilk G. Hydrodynamical beam jets in high energy hadronic collisions. Nucl. Phys. A, 1994, 566: 469c-472c
    
    [166] Dias de Deus J, Milhano J G. A simple evolution equation for rapidity distributions in nucleus-nucleus collisions. Nucl. Phys. A, 2007, 795(1-4): 98-108
    
    [167] Albacete J L. Particle multiplicities in Lead-Lead collisions at the LHC from non-linear evolution with running coupling. arXiv:0707.2545 [hep-ph]
    
    [168] Wang X N. Role of multiple minijets in high-energy hadronic reactions. Phys. Rev.A 1991,43(1): 104-112
    
    [169] Wang X N, Gyulassy M. HIJING: A Monte Carlo model for multiple jet production mpp,pA, and AA collisions. Phys. Rev. D, 1991,44(11): 3501-3516
    
    [ 170] Wang X N and Gyulassy M. Gluon shadowing and jet quenching in A + A collisions at (?)= 200 GeV.phys. Rev. Lett., 1992, 68(10): 1480-1483
    
    [171] Li B A, Ko C M. Formation of superdense hadronic matter in high energy heavy-ion collisions. Phys. Rev. C, 1995, 52(4): 2037-2063
    
    [172] Zhang B. ZPC 1.0.1: a parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun., 1998, 109(2-3): 193-206
    
    [173] Lin Z W, Ko C M, Li B A. Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C, 2005, 72(6): 064901
    
    [174] Kharzeev D, Levin E, McLerran L. Parton saturation and N_(part) scaling of semi-hard processes in QCD. Phys. Lett. B, 2003, 561(1-2): 93-101
    
    [175] Eskola K J, Kajantie K, Ruuskanen P V, et al. Scaling of transverse energies and multiplicities with atomic number and energy in ultrarelativistic nuclear collisions. Nucl Phys. B. 2000. 570(1-2): 379-389
    [176] Drescher H J. Kajantie K, Ruuskanen P V. et al. Parton-based Gribov-Regge theory. Phys. Rep., 2001, 350(2-4): 93
    
    [177] Werner K, Liu F M, Pierog T. Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C, 2006, 74(4): 044902
    
    Werner K. Distributions of Charged Hadrons Associated with High Transverse Momentum Particles in pp and Au+Au Collisions at (?) =200 GeV. Phys. Rev. Lett.,2007,95: 152301
    
    [178] Sarkisyan E K G, Sakharov A S. On similarities of bulk observables in nuclear and particle collisions. arXiv:hep-ph/0410324, CERN-PH-TH/2004-213;
    
    Sarkisyan E K G, Sakharov A S. Multihadron production features in different reactions. arXiv:hep-ph/0510191; AIP Conf. Proceedings. 2006, 828:35
    [179] Kokoulina E S. The Description of pp-Interactions with Very High Multiplicity at 70 GeV/c. Acta Phys. Pol. B, 2004, 35(1): 295-302 Kokoulina E S, Nikitin V A. Study of multiparticle production by Gluon Dominance Model. arXiv:hep-ph/0502224, talk given at the XVII International Baldin Seminar "Relativistic Nuclear Physics and Quantum Chromodynamics", JINR, Dubna, Russia,Sept. 27-Oct. 2,2004 Ermolov P F, Koukoulina E S, Kuraev E A, et al. Study of multiparticle production by gluon dominance model (Part II). arXiv:hep-ph/0503254 talk given at the XVII International Baldin Seminar "Relativistic Nuclear Physics and Quantum Chromodynamics", JINR, Dubna, Russia, Sept. 27-Oct. 2, 2004
    
    [180] Kharzeev D, Kovchegov Y V, Tuchin K. Cronin effect and high pT suppression in pA collisions. Phys. Rev. D, 2003, 68(9): 094013
    
    Kharzeev D, Kovchegov Y V, Tuchin K. Nuclear modification factor in d+Au collisions: onset of suppression in the color glass condensate. Phys. Lett. B, 2004,599(1-2): 23-31
    
    [181] Liu F H. Longitudinal and transverse flows of protons in 2-A-GeV - 8-A-GeV Au -Au collisions. Europhys. Lett., 2003. 63(2): 193-199
    [182] Liu F H, Abd Allah N N, Zhang D H, and Duan M Y. Angular distributions of target black fragments in nucleus nucleus collisions at high energy. Int. J. Mod. Phys. E, 2003,12(5): 713-723
    
    [183] Liu F H, Abd Allah N N, and Singh B K. Dependence of black fragment azimuthal and projected angular distributions on polar angle in silicon-emulsion collisions at 4.5AGeV/c. Phys. Rev. C, 2004, 69(5): 057601
    
    [ 184] Abelev B I, et al(STAR Collaboration). Partonic Flow and Φ Meson Production in Au+Au Collisions at (?)=200 GeV. Phys. Rev. Lett., 2007, 99(11): 112301
    
    [ 185] Abelev B I, et al(STAR Collaboration). Mass, quark-number, and (?) dependence of the second and fourth flow harmonics in ultrarelativistic nucleus-nucleus collisions.Phys. Rev. C, 2007, 75(5): 054906
    
    [186] Adams J, et al( STAR Collaboration). Differential Freeze-Out and Pion Interferometry at RHIC from Covanant Transport Theory. Phys. Rev. Lett.. 2004. 92(5):052302
    
    [187] Adare A, et al.( PHENIX Collaboration). Scaling Properties of Azimuthal Anisotropy in Au+Au and Cu+Cu Collisions at (?) =200 GeV. Phys. Rev. Lett., 2007,98(16): 162301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700