AGS能区重离子碰撞中多粒子方位角集体关联
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重离子碰撞物理研究的主要目的之一是探索高温高密极端条件下核物质的性质,获取核物质的状态方程。高能重离子碰撞中核物质集体流是大量粒子的集体运动,对碰撞早期阶段形成的压缩核物质的性质敏感,因此能为获取核物质状态方程提供非常重要的信息。在GeV能区的重离子碰撞中,由于单个事件的粒子数有限,为了减小统计涨落的影响,目前的集体流研究方法中,一般是将大量事件叠加到一起进行分析。但是,在这样的叠加平均过程中,许多重要的信息被湮没了。本论文利用相对论量子分子动力学模型(RQMD)模拟AGS能区Au+Au碰撞,研究单个事件中侧向流和椭圆流之间多粒子方位角集体关联,探索椭圆流的形成机制,研究椭圆流的时间演化及反应过程中的空间-动量关联。
     介绍了获取集体流常用的估计反应平面法,利用该方法分析了RQMD模型模拟产生的AGS能区Au+Au碰撞中侧向流和椭圆流随碰撞参数、入射能量及末态粒子横动量的变化,并且讨论了集体流的形成机制。结果表明,利用侧向流确定的估计反应平面方法能一定程度地再现模型中真实流值。在不需要确定估计反应平面的基础上,利用单个事件中侧向流和椭圆流之间多粒子方位角集体关联来描述核物质运动的集体性,建立了多粒子方位角关联函数。
     引入多粒子非对称性参量表征单个事件中侧向流和椭圆流之间多粒子集体关联强度,该变量还可以反映出侧向流和椭圆流的相对取向。利用多粒子方位角关联函数分析了AGS能区Au+Au碰撞中核子与核子之间以及核子与π介子之间多粒子方位角集体关联随碰撞参数和入射能量的变化。研究表明,多粒子非对称性参量能很好地描述重离子碰撞中的核物质运动的集体性。利用多粒子方位角集体关联能够对碰撞事件进行分组研究,克服了GeV能区单个事件中粒子数有限的限制。对不同事件组的分析结果表明,AGS能区Au+Au碰撞中末态动量空间非对称性与初始坐标空间非对称性有关,系统的动力学演化过程中存在明显的空间-动量关联。
     在AGS能区,椭圆流的产生受平均场,两体碰撞和旁观者区域的屏蔽等各种因素的影响。利用RQMD模型分别计算了是否有旁观者区域时AGS能区Au+Au碰撞中核子和π介子的椭圆流随碰撞参数、入射能量以及末态粒子横动量的变化。研究结果表明,在AGS能区Au+Au碰撞中,旁观者区域的屏蔽作用会对核子和π介子的椭圆流产生影响,这种影响随入射能量的增加而逐渐减小,而随着碰撞参数的增加而增加。旁观者区域屏蔽作用对椭圆流的影响在大横动量区域的表现更加明显。
One of the main goals of heavy ion collisions is to study nuclear matter under ex-treme conditions of high temperatures and high densities, i.e. to learn more about thenuclear equation of state. Collective ?ow of the nuclear matter in high energy heavy ioncollisions is a multi-particle collective motion and it is very sensitive to the maximumcompression reached in the early phase of a heavy ion reaction and hence can providean important probe for the nuclear equation of state. At GeV energies, due to the finitenumber of particles in an event, one can put many events together for the ?ow analyses toreduce the effects of statistical ?uctuations. However, much important information maybe lost in the averaging process. In this dissertation, we simulate the reactions of Au+Aucollisions using RQMD model to investigate multi-particle azimuthal collective correla-tions between the directed and elliptic ?ow in an event, explore formation mechanism ofthe elliptic ?ow, and study the time evolution of elliptic ?ow and the space-momentumcorrelations during the process of the collisions.
     The commonly used method of determining the collective ?ow of the estimated reac-tion plane is introduced. The directed and elliptic ?ow based on the method as a functionof the impact parameter, the incident energy and the transverse momentum of the finalstate particles are analyzed in Au+Au collisions at AGS energies simulated with RQMDmodel. The formation mechanism of the collective ?ow is also discussed. The calculatedresults by the estimated reaction plane can reproduce to some extent the real values in themodel. Without determining the estimated reaction plane, the multi-particle azimuthalcollective correlation between the directed and elliptic ?ow in an event can describe thecollectivity of nuclear matter in heavy ion collisions, and multi-particle azimuthal corre-lation function is established.
     A variable of multi-particle anisotropy to characterize the strength of multi-particlecollective correlation is introduced, and it can also re?ect the relative orientation betweenthe directed and elliptic flow. We use multi-particle azimuthal correlation function to an-alyze the multi-particle collective correlations between the nucleons and nucleons, andbetween the nucleons and pions as a function of the impact parameter, the incident en-ergy in Au+Au collisions at AGS energies. Our results show that the variable of multi- particle anisotropy can well describe the collectivity of the nuclear matter. We divide theevents into different groups according to the multi-particle collective correlations to over-come the finite numbers of particles in an event at GeV energies. The results in differentgroups show that the final anisotropy in the momentum space is correlated with the initialanisotropy in coordinate space in Au+Au collisions at AGS energies, and there are clearspace-momentum correlations during the whole dynamical evolution of the system.
     At AGS energies, elliptic flow is affected by the mean field, two body collisionsand the shadowing effects of the spectator regions, etc. We calculate the elliptic flow ofnucleons and pions as a function of the impact parameter, the incident energy and thetransverse momentum of the final state particles in Au+Au collisions with and withoutthe spectator regions at AGS energies. The results show that the shadowing effects ofthe spectator regions on the elliptic ?ow of nucleons and pions are obvious in Au+Aucollisions at AGS energies. The shadowing effects decrease with the increasing incidentenergy and increase with the increasing impact parameter. The shadowing effects of thespectator regions on the elliptic ?ow in the large transverse momentum region are moreobvious.
引文
1 B. A. Li, L. W. Chen, C. M. Ko, et al. Constraining Properties of Neutron Starswith Heavy-Ion Reactions in Terrestrial Laboratories. J. Phys. G. 2008, 35:014044
    2黄卓然(Cheuk-Yin Wong)原著,张卫宁译.高能重离子碰撞导论.第一版.哈尔滨:哈尔滨工业大学出版社, 2002:10~20
    3 A. Andronic, P. Braun-Munzinger and J. Stachel. Thermal Hadron Production inRelativistic Nuclear Collisions: The Hadron Mass Spectrum, the Horn, and theQCD Phase Transition. Phys. Lett. B. 2009, 30:142~145
    4 G. Wang and H. Z. Huang. Empirical Constraints on Parton Energy Loss inNucleus-Nucleus Collisions at RHIC. Phys. Rev. C. 2009, 672:30~34
    5 L. W. Chen and C. M. Ko. System Size Dependence of Elliptic Flows in RelativisticHeavy-Ion Collisions. Phys. Lett. B. 2006, 634:205~209
    6 M. M. Aggarwal, et al., WA98 Collaboration. Centrality and Transverse Momen-tum Dependence of Collective Flow in 158 A GeV Pb+Pb Collisions Measured viaInclusive Photons. Nucl. Phys. A. 2005, 762:129~146
    7 R. Snellings. Heavy-Ion Collisions: Experimental Highlights. Nucl. Phys. A. 2009,820:1c~8c
    8霍雷.相对论重离子碰撞中的集合侧向流研究.哈尔滨工业大学Ph.D. thesis.1997:15~16
    9 P. Braun-Munzinger. Chemical Equilibration and the Hadron-QGP Phase Transi-tion. Nucl. Phys. A. 2001, 681:119~123
    10 C. Fuchs. Recent Progress Constraining the Nuclear Equation of State from Astro-physics and Heavy Ion Reactions. J. Phys. G. 2008, 35:014049
    11 G. F. Burgio. The Equation of State of Dense Matter: From Nuclear Collisions toNeutron Stars. J. Phys. G. 2008, 35:014048
    12 A. Andronic, et al., FOPI Collaboration. Differential Directed Flow in Au+AuCollisions. Phys. Rev. C. 2001, 64:041604
    13 A. Andronic, et al., FOPI Collaboration. Directed Flow in Au+Au, Xe+CsI,and Ni+Ni Collisions and the Nuclear Equation of State. Phys. Rev. C. 2003,67:034907
    14 A. Andronic, et al., FOPI Collaboration. Excitation Function of Elliptic Flow inAu+Au Collisions and the Nuclear Matter Equation of State. Phys. Lett. B. 2005,612:173~180
    15 A. Andronic, et al., FOPI Collaboration. Transition from in Plane to Out of PlaneAzimuthal Enhancement in Au+Au Collisions. Nucl. Phys. A. 2001, 679:765~792
    16 A. Andronic, et al., FOPI Collaboration. Elliptic Flow and Equation of State inHeavy Ion Collisions at SIS Energies. Nucl. Phys. A. 1999, 661:333c~336c
    17 J. Barrette, et al., E877 Collaboration. Evidence for Expansion of a Hot Fireballfrom Two Pion Correlations for SiPb Collisions at AGS Energy. Phys. Lett. B.1994, 333:33~38
    18 J. Barrette, et al., E877 Collaboration.ΛProduction and Flow in Au+Au Collisionsat 11.5 A GeV/c. Phys. Rev. C. 2001, 63:014902
    19 C. Pinkenburg, et al., E895 Collaboration. Elliptic Flow: Transition from Out-of-Plane to In-Plane Emission in Au+Au Collisions. Phys. Rev. Lett. 1999,83:1295~1298
    20 W. Caskey. Transverse Flow in 2-8 A GeV Au+Au at the BNL AGS. Ph.D. thesis,University of California. 1999
    21 P. Chung, et al., E895 Collaboration. Anti?ow of Ks0 Mesons in 6 A GeV Au+AuCollisions. Phys. Rev. Lett. 2000, 85:940~943
    22 H. Liu, et al., E895 Collaboration. Collective Flow in Au+Au Collisions between2-8 A GeV at AGS. Nucl. Phys. A. 1998, 638:451c~454c
    23 H. Liu. Collective Motion in Fully Reconstructed Gold on Gold Collisions between2 and 8 GeV Per Nucleon. Ph.D. thesis, Kent State University. 1998
    24 C. Alt, et al., NA49 Collaboration. Directed and Elliptic Flow of Charged Pionsand Protons in Pb+Pb Collisions at 40 A and 158 A GeV. Phys. Rev. C. 2003,68:034903
    25 A. Wetzler, N. Borghini, P. M. Dinh, et al. Directed and Elliptic Flow in Pb+PbCollisions at 40 and 158 A GeV. Nucl. Phys. A. 2003, 715:583c~586c
    26 A. M. Poskanzer, et al., NA49 Collaboration. Directed and Elliptic Flow in 158GeV/Nucleon Pb+Pb Collisions. Nucl. Phys. A. 1998, 638:463c~466c
    27 A. M. Poskanzer, et al., NA49 Collaboration. Centrality Dependence of Directedand Elliptic Flow at the SPS. Nucl. Phys. A. 1999, 661:341c~344c
    28 K. H. Ackermann, et al., STAR Collaboration. Elliptic Flow in Au+Au Collisionsat√sNN = 130 GeV. Phys. Rev. Lett. 2001, 86:402~407
    29 J. Adams, et al., STAR Collaboration. Experimental and Theoretical Challenges inthe Search for the Quark-Gluon Plasma: The STAR Collaboration’s Critical Assess-ment of the Evidence from RHIC Collisions. Nucl. Phys. A. 2005, 757:102~183
    30 G. Wang, et al., STAR Collaboration. Anisotropic Flow in AuAu and CuCu at 62GeV and 200 GeV. Nucl. Phys. A. 2006, 774:515~518
    31 C. Adler, et al., STAR Collaboration. Elliptic Flow from Two- and Four-ParticleCorrelations in Au+Au Collisions at√sNN = 130 GeV. Phys. Rev. C. 2002,66:034904
    32 B. Alver, et al., PHOBOS Collaboration. System Size, Energy, Pseudorapidity, andCentrality Dependence of Elliptic Flow. Phys. Rev. Lett. 2007, 98:242302
    33 B. Wosiek. Latest Results from the PHOBOS Experiment. J. Phys. G. 2008,35:104005
    34 P. Steinberg, et al., ATLAS Collaboration. Global Observables in Heavy-Ion Colli-sions at the LHC with the ATLAS Detector. J. Phys. G. 2008, 35:104151
    35 J. M. Jowett. The LHC as a Nucleus-Nucleus Collider. J. Phys. G. 2008, 35:104028
    36 R. S. Bhalerao and R. V. Gavai. Heavy Ions at LHC: A Quest for Quark-GluonPlasma. Arxiv. 2008, 0812.1619:1~26
    37 K. Adcox, et al., PHENIX Collaboration. Formation of Dense Partonic Matter inRelativistic Nucleus-Nucleus Collisions at RHIC Experimental Evaluation by thePHENIX Collaboration. Nucl. Phys. A. 2005, 757:184~283
    38 B. B. Back, et al., PHOBOS Collaboration. The PHOBOS Perspective on Discov-eries at RHIC. Nucl. Phys. A. 2005, 757:28~101
    39 J. Ellis, G. Giudice, M. Mangano, et al. Review of the Safety of LHC Collisions. J.Phys. G. 2008, 35:115004
    40 H. Niemi, K. J. Eskola and P. V. Ruuskanen. Elliptic Flow in Nuclear Collisionsat Ultrarelativistic Energies Available at the CERN Large Hadron Collider. Phys.Rev. C. 2009, 79:024903
    41 Z. G. Xiao, L. W. Chen, F. Fu, et al. Nuclear Matter at a HIRFL-CSR EnergyRegime. J. Phys. G. 2009, 36:064040
    42 Z. G. Xiao, X. Dong, F. Liu, et al. The Equation of State Study in UU Collisions atCSR, Lanzhou. J. Phys. G. 2007, 34(4):S915~S919
    43 W. F. Henning. FAIR - Recent Developments and Status. Nucl. Phys. A. 2008,805:502c~510c
    44 S. Chattopadhyay. Physics at High Baryon Density at FAIR. J. Phys. G. 2008,35:104027
    45 G. Rosner. Future Facility: FAIR at GSI. Nucl. Phys. B. 2007, 167:77~81
    46 G. Odyniec. STAR Physics Program and Technical Challenges with the RHICEnergy Scan with Au+Au Collisions. J. Phys. G. 2008, 35:104164
    47 G. S. F. Stephans. Exploring the QCD Phase Diagram with Low Energy Beams atRHIC: critRHIC. J. Phys. G. 2008, 35:044050
    48李国强.中能重离子反应微观理论与应用.物理学进展. 1993, 13(3):299~377
    49 H. Sorge. Flavor Production in Pb(160 A GeV) on Pb Collisions: Effect of ColorRopes and Hadronic Rescattering. Phys. Rev. C. 1995, 52:3291~3314
    50 H. Sorge, H. Sto¨cker and W. Greiner. Poincare Invariant Hamiltonian DynamicsModelling Multi-Hadronic Interactions in a Phase Space Approach. Ann. Phys.1989, 192:266~306
    51 H. Sorge. Highly Sensitive Centrality Dependence of Elliptic Flow: A Novel Sig-nature of the Phase Transition in QCD. Phys. Rev. Lett. 1999, 82:2048~2051
    52 H. Sorge. Collective Flow and QCD Phase Transition. Nucl. Phys. A. 1999,661:577c~582c
    53 H. Sorge. Soft Transverse Expansion in Pb(158 A GeV) on Pb Collisions: Pree-quilibrium Motion Or First Order Phase Transition? Phys. Lett. B. 1997,402:251~256
    54 C. Pinkenburg, et al., E895 Collaboration. Production and Collective Behaviorof Strange Particles in Au+Au Collisions at 2-8 A GeV. Nucl. Phys. A. 2002,698:495c~498c
    55 M. A. Lisa, et al., E895 Collaboration. Beam Energy Evolution of HBT Systematicsat the AGS. Nucl. Phys. A. 1999, 991:444c~447c
    56 H. Liu, et al., E895 Collaboration. Event Anisotropy in High Energy Nucleus-Nucleus Collisions. Phys. Rev. C. 1999, 59:348~353
    57 P. Danielewicz. Flow and Equation of State in Heavy-Ion Collisions. Nucl. Phys.A. 1999, 661:82c~92c
    58 J. Aichelin and J. Schaffner-Bielich. The Quest for the Nuclear Equation of State.arXiv. 2008, 0812.1341:1~25
    59 H. Sto¨cker. High Energy Heavy Ion Collisions-Probing the EOS of Highly ExcitedHadronic Matter. Phys. Rep. 1986, 137:277~392
    60 V. Greco, A. Guarnera, M. Colonna, et al. Dynamical Effects of Momentum Depen-dence of the Nuclear Mean Field in Medium Energy Heavy Ion Collisions. Phys.Rev. C. 1999, 59:810~816
    61 G. M. Welke, M. Prakash, T. T. S. Kuo, et al. Azimuthal Distributions in Heavy IonCollisions and the Nuclear Equation of State. Phys. Rev. C. 1988, 38:2101~2107
    62 H. Petersen, Q. F. Li, X. L. Zhu, et al. Directed and Elliptic Flow in Heavy-IonCollisions from Ebeam = 90 MeV/nucleon to Ec.m. = 200 GeV/nucleon. Phys.Rev. C. 2006, 74:064908
    63 B. A. Li, A. T. Sustich, B. Zhang, et al. Studies of Superdense Hadronic Matter ina Relativistic Transport Model. Inter. J. Mod. Phys. E. 2001, 10:267~352
    64 S. A. Bass, M. Belkacem, M. Bleicher, et al. Microscopic Models for Ultrarela-tivistic Heavy Ion Collisions. Prog. Part. Nucl. Phys. 1998, 41:255~369
    65 H. Sorge. Elliptical Flow: A Signature for Early Pressure in UltrarelativisticNucleus-Nucleus Collisions. Phys. Rev. Lett. 1997, 78:2309~2312
    66 B. A. Li, C. M. Ko, A. T. Sustich, et al. Excitation Function of Nucleon and PionElliptic Flow in Relativistic Heavy-Ion Collisions. Phys. Rev. C. 1999, 60:011901
    67 W. Scheid, H. Muller and W. Greiner. Nuclear Shock Waves in Heavy-Ion Colli-sions. Phys. Rev. Lett. 1974, 32:741~745
    68 B. I. Abelev, et al., STAR Collaboration. System-Size Independence of DirectedFlow Measured at the BNL Relativistic Heavy-Ion Collider. Phys. Rev. Lett. 2008,101:252301
    69 W. Reisdorf and H. G. Ritter. Collective Flow in Heavy-Ion Collisions. Annu. Rev.Nucl. Part. Sci. 1997, 47:663~709
    70 N. Herrmann and J. P. Wessels. Collective Flow in Heavy-Ion Collisions. Annu.Rev. Nucl. Part. Sci. 1999, 49:581~632
    71 B. Zhang, M. Gyulassy and C. M. Ko. Elliptic Flow from a Parton Cascade. Phys.Lett. B. 1999, 455:45~48
    72 R. Snellings, H. Sorge, S. A. Voloshin, et al. Novel Rapidity Dependence ofDirected Flow in High-Energy Heavy-Ion Collisions. Phys. Rev. Lett. 2000,84:2803~2805
    73 B. I. Abelev, et al., STAR Collaboration. Centrality Dependence of Charged Hadronand Strange Hadron Elliptic Flow from√sNN = 200 GeV Au+Au Collisions.Phys. Rev. C. 2008, 77:054901
    74 J. Y. Ollitrault. Flow Systematics from SIS to SPS Energies. Nucl. Phys. A. 1998,638:195c~206c
    75 S. A. Voloshin and Y. Zhang. Flow Study in Relativistic Nuclear Collisionsby Fourier Expansion of Azimuthal Particle Distributions. Z. Phys. C. 1996,70:665~671
    76 P. Danielewicz. Determination of the Equation of State of Dense Matter. Science.2002, 298:1592~1596
    77 H. H. Gusbrod, A. M. Poskanzer and H. G. Ritter. Plastic Ball Experiments. Rep.Prog. Phys. 1989, 52:1267~1328
    78 P. Danielewicz. Disappearance of Elliptic Flow: A New Probe for the NuclearEquation of State. Phys. Rev. Lett. 1998, 81:2438~2441
    79 P. K. Sahu and W. Cassing. Differential Flow of Protons in Au+Au Collisions atAGS Energies. Nucl. Phys. A. 2002, 712:357~369
    80 A. Ohnishi, M. Isse, N. Otuka, et al. Collective Flows in High-Energy Heavy-IonCollisions at AGS and SPS Energies. Pramana. 2006, 66(4):797~807
    81 M. Isse, A. Ohnishi, N. Otuka, et al. Mean-Field Effects on Collective Flow inHigh-Energy Heavy-Ion Collisions at 2-158 A GeV Energies. Phys. Rev C. 2005,72:064908
    82 G. Wang, D. Keane, A. H. Tang, et al. Method for Determining Event-by-EventElliptic Flow Fluctuations Based on the First-Order Event Plane in Heavy-Ion Col-lisions. Phys. Rev. C. 2007, 76:024907
    83 R. Andrade, F. Grassi, Y. Hama, et al. Examining the Necessity to Include Event-by-Event Fluctuations in Experimental Evaluations of Elliptical Flow. Phys. Rev.Lett. 2006, 97:202302
    84 S. Mro′wczyn′ski and E. V. Shuryak. Elliptic Flow Fluctuations. Acta Phys. Polo.B. 2003, 34:4241~4256
    85 M. Miller and R. Snellings. Eccentricity Fluctuations and its Possible Effect onElliptic Flow Measurements. arXiv. 2003, Nucl-ex/0312008
    86 P. Sorensen, et al., STAR Collaboration. Elliptic Flow Fluctuations and Correlationsin Au+Au Collisions at√sNN = 200 GeV. J. Phys. G. 2008, 35:104102
    87 B. Alver, et al., PHOBOS Collaboration. Non-Flow Correlations and Elliptic FlowFluctuations in Au+Au Collisions at√sNN = 200 GeV. J. Phys. G. 2008,35:104101
    88 B. Alver, et al., PHOBOS Collaboration. Importance of Correlations and Fluctua-tions on the Initial Source Eccentricity in High-Energy Nucleus-Nucleus Collisions.Phys. Rev. C. 2008, 77:014906
    89 S. A. Voloshin, A. M. Poskanzer, A. H. Tang, et al. Elliptic Flow in the GaussianModel of Eccentricity Fluctuations. Phys. Lett. B. 2008, 659:537~541
    90 T. K. Nayak. Overview of Event-by-Event Analysis of High Energy Nuclear Colli-sions. Int. J. Mod. Phys. E. 2008, 16:3303~3322
    91 L. Huo, J. B. Zhang, W. N. Zhang, et al. Anisotropic Transverse Flow and Mul-tiparticle Azimuthal Correlation in Heavy Ion Collisions.高能物理与核物理.2003, 27(3):249~252
    92 A. M. Poskanzer and S. A. Voloshin. Methods for Analyzing Anisotropic Flow inRelativistic Nuclear Collisions. Phys. Rev. C. 1998, 58:1671~1678
    93 A. H. Tang. Elliptic Flow in Au+Au Collisions at√sNN=130 GeV. Ph.D. thesis,Kent State University. 2002
    94 S. A. Voloshin. Anisotropic Flow: Achievements, Difficulties and Expectations. J.Phys. G. 2008, 35:104014
    95 P. Danielewicz and G. Odyniec. Transverse Momentum Analysis of CollectiveMotion in Relativistic Nuclear Collisions. Phys. Lett. B. 1985, 157:146~150
    96 H. A. Gustafsson, H. H. Gutbrod, B. Kolb, et al. Collective Flow Observed inRelativistic Nuclear Collisions. Phys. Rev. Lett. 1984, 52:1590~1593
    97 S. Wang, Y. Z. Jiang, Y. M. Liu, et al. Measurement of Collective Flow inHeavy-Ion Collisions Using Particle-Pair Correlations. Phys. Rev. C. 1991,44:1091~1095
    98 N. Borghini, P. M. Dinh and J. Y. Ollitrault. New Method for Measuring AzimuthalDistributions in Nucleus-Nucleus Collisions. Phys. Rev. C. 2001, 63:054906
    99 N. Borghini, P. M. Dinh and J. Y. Ollitrault. Flow Analysis from Cumulants: APractical Guide. arXiv. 2001, Nucl-ex/0110016:1~7
    100 R. S. Bhalerao, N. Borghini and J. Y. Ollitrault. Analysis of Anisotropic Flow withLee-Yang Zeroes. Nucl. Phys. A. 2003, 727:373~426
    101 R. S. Bhalerao, N. Borghini and J. Y. Ollitrault. Genuine Collective Flow fromLee-Yang Zeroes. Phys. Lett. B. 2004, 580:157~162
    102 R. S. Bhalerao, N. Borghini and J. Y. Ollitrault. Anisotropic Flow from Lee-YangZeros: A Practical Guide. J. Phys. G. 2004, 30:S1213~S1216
    103 N. Borghini, P. M. Dinh and J. Y. Ollitrault. Is the Analysis of Flow at the CERNSuper Proton Synchrotron Reliable? Phys. Rev. C. 2000, 62:034902
    104 X. L. Zhu, M. Bleicher and H. Sto¨cker. Elliptic Flow Analysis at RHIC with theLee-Yang Zeroes Method in a Relativistic Transport Approach. J. Phys. G. 2006,32:2181~2186
    105 N. Bastid, et al., FOPI Collaboration. First Analysis of Anisotropic Flow withLee-Yang Zeros. Phys. Rev. C. 2005, 72:011901(R)
    106 J. Y. Ollitrault. Determination of the Reaction Plane in Ultrarelativistic NuclearCollisions. Phys. Rev. D. 1993, 48:1132~1139
    107 N. Borghini, P. M. Dinh, J. Y. Ollitrault, et al. Effects of Momentum Conservationon the Analysis of Anisotropic Flow. Phys. Rev. C. 2002, (66):014901
    108 J. Y. Ollitrault. Collective Flow from Azimuthal Correlations. Nucl. Phys. A. 1995,590:561c~564c
    109 C. M. Vale. Elliptic Flow in Au+Au Collisions at 200 GeV Per Nucleon Pair. Ph.D.thesis, Massachusetts Institute of Technology. 2004
    110 Y. X. Zhang and Z. X. Li. Elliptic Flow and System Size Dependence of TransitionEnergies at Intermediate Energies. Phys. Rev. C. 2006, 74:014602
    111 S. A. Voloshin. Anisotropic Flow. Nucl. Phys. A. 2003, 715:379c~388c
    112 P. F. Kolb, J. Sollfrank and U. Heinz. Anisotropic Flow from AGS to LHC Energies.Phys. Lett. B. 1999, 459:667~673
    113 H. Heiselberg. Event-by-Event Physics in Relativistic Heavy-Ion Collisions. Phys.Rep. 2001, 351:161~194
    114 H. Appelsha¨user, et al., NA49 Collaboration. Event-by-Event Fluctuations of Av-erage Transverse Momentum in Central Pb+Pb Collisions at 158 GeV Per Nucleon.Phys. Lett. B. 1999, 30:31~46
    115 E. V. Shuryak. Event-by-Event Analysis of Heavy Ion Collisions and Thermody-namical Fluctuations. Phys. Lett. B. 1998, 423:9~14
    116 S. A. Voloshin, V. Koch and H. G. Ritter. Event-by-Event Fluctuations in CollectiveQuantities. Phys. Rev. C. 1999, 60:024901
    117 C. Alt, et al., NA49 Collaboration. Electric Charge Fluctuations in Central Pb+PbCollisions at 20 A, 30 A, 40 A, 80 A, and 158 A GeV. Phys. Rev. C. 2004,70:064903
    118 H. Appelsha¨user, et al., CERES Collaboration. Event-by-Event Fluctuations atSPS. Nucl. Phys. A. 2005, 752:394c~397c
    119 C. Zampolli. Event-by-Event Fluctuation Studies in the ALICE Experiment. Eur.Phys. J. C. 2007, 49:309~314
    120 J. Y. Ollitrault. Anisotropy as a Signature of Transverse Collective Flow. Phys. Rev.D. 1992, 46:229~245
    121 P. F. Kolb, P. Huovinen, U. Heinz, et al. Elliptic Flow at SPS and RHIC: FromKinetic Transport to Hydrodynamics. Phys. Lett. B. 2001, 500:232~240
    122 R. C. Hwa and X. N. Wang. Quark-Gluon Plasma. 3 edn. Singapore: WorldScientific, 2004:1
    123 D. Teaney. Effect of Shear Viscosity on Spectra, Elliptic Flow, and Hanbury Brown-Twiss Radii. Phys. Rev. C. 2003, 68:034913
    124 P. Jacobs and G. Cooper. Spatial Distribution of Initial Interactions in High EnergyCollisions of Heavy Nuclei. arXiv. 2000, Nucl-ex/0008015:1~13
    125 T. Hirano, U. Heinz, D. Kharzeev, et al. Hadronic Dissipative Effects on EllipticFlow in Ultrarelativistic Heavy-Ion Collisions. Phys. Lett. B. 2006, 636:299~304
    126 C. Loizides, et al., PHOBOS Collaboration. Elliptic Flow Fluctuations in√sNN =200 GeV Au+Au Collisions at RHIC. J. Phys. G. 2007, 34:S907~S910
    127 R. Andrade, F. Grassi, Y. Hama, et al. Importance of Granular Structure in theInitial Conditions for the Elliptic Flow. Phys. Rev. Lett. 2008, 101:112301
    128 S. A. Voloshin, A. M. Poskanzer and R. Snellings. Collective Phenomena in Non-Central Nuclear Collisions. arXiv. 2008, 0809.2949:1~54
    129 J. L. Liu, J. B. Zhang, G. X. Tang, et al. Surface Emission and Elliptic Flow. Phys.Rev. C. 2008, 78:034911
    130 S. A. Voloshin and A. M. Poskanzer. The Physics of the Centrality Dependence ofElliptic Flow. Phys. Lett. B. 2000, 474:27~32
    131 A. D. Sood and R. K. Puri. Nuclear Dynamics at the Balance Energy. Phys. Rev.C. 2004, 70:034611
    132 P. Danielewicz. Flow and the Equation of State of Nuclear Matter. Nucl. Phys. A.2001, 685:368c~383c
    133 J. D. Bowman, W. J. Swiatecki, and C. F. Tsang. Abrasion and Ablation of HeavyIons. Lawrence Berkeley Laboratory Report. 1973:No. LBL–2908
    134 B. Andersson, S. Garpman, G. Gustafson, et al. Relativistic Heavy Ion Reactions.Phys. Scr. 1986, 34:451~474
    135 P. Danielewicz. Determination of the Mean-Field Momentum-Dependence UsingElliptic Flow. Nucl. Phys. A. 2000, 673:375~410

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700