(?)=200GeV下Au+Au碰撞中两、三粒子方位角关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们知道,量子色动力学(Quantum Chromo-dynamics,QCD)是目前为止能够描述强相互作用的最好理论。该理论预言,在极高的能量密度下,会产生一种由自由的夸克、反夸克和胶子组成的夸克胶子等离子态(Quark-Gluon Plasma,QGP)。对这种新的物质形态的形成和性质的研究,已经成为物理学家非常感兴趣的领域之一。那么,如何在实验室里产生这种极高的能量密度呢?相对论重离子碰撞(也叫高能核-核碰撞)。例如,在美国布鲁克海文国家实验室(BNL)的相对论重离子对撞机(Relativistic Heavy Ion Collidcr,RHIC)能够将每个原子核加速到200GcV的能量,在这样的碰撞中产生的能量确实是巨大的。为了得到更高的能量,在欧洲核子研究中心(CERN)建造了大型强子对装机(Large Hadron Collider,LHC)来研究这种新物质态。RHIC的实验数据表明,已经在实验室条件下,产生了这种等离子态。但是,实验上,我们只能得到已经强子化的末态粒子。那么,物理学家是如何知道已经产生了QGP呢?原来,他们通过对末态粒子的信息进行分析,发现了一些与正常物质形态不一样的信号,并把这些信号称为QGP出现的探针。为了解释这些新的物理现象,理论物理学家提出来一系列的机制,喷注淬火(Jet-Quenching),就是探测QGP产生的有效机制之一。两粒子方位角关联是理解喷注淬火机制的有效方法。在质心系能量为(?)=200GcV的Au+Au碰撞中的两粒子方位角关联结果表明,高横动量(p⊥>2GcV/c)的触发粒子(trigger-particle)与其远端(away-side)的伴随粒子(associate-particle)之间的方位角关联产额被强烈压低,而低横动量的触发粒子与其伴随粒子的产额增强。本文提出了一个简单模型,类似于动量反冲模型(Momentum Kick Model,MKM)和马尔科夫部分子散射模型(Markovian Parton Scattering Model,MPSM),利用蒙特卡洛(Monte Carlo)模拟重离子碰撞,分别研究了(?)=200GeV下Au+Au中心、半中心和边缘碰撞中的两粒了方位角关联,模拟结果和PHENIX、STAR合作组的实验结果符合得很好。
     在中心金金对撞的两粒子方位角关联中发现一个有趣的现象,即在远端出现双峰现象。针对这一现象,物理学家给出了很多理论解释。这些机制主要有:大角胶子辐射导致的喷注变宽(Broaden-jet),介质的集体径向流导致的喷注转向(Deflected-jet)或者路径长度依赖于能量损失,切伦科夫胶子辐射导致的锥角辐射,或者流体力学介质中沉积的大量能量产生的马赫冲击波(Mach-cone)。因为这些机制可以探测到介质中的声速、介质的状态方程等等性质,区分这些深层机制是很有意义的。为了区分这些机制,本文利用蒙特卡洛模拟的方法,研究了(?)=200GeV下0-12%中心度的Au+Au碰撞中的远端三粒子方位角关联,主要做了关联的对角和非对角投影,模拟结果和STAR合作组实验结果符合得很好。结果表明,马赫冲击波是锥角辐射的可能机制。并预言了半中心和边缘碰撞中三粒子方位角关联在对角和非对角方向上投影结果。
As we known, Quantum Chromodynamics (QCD) is the most powerful theory to describle the strong interaction at the present, which predicts a new form of matter, which is called quark-gluon plasma (QGP), consisting of freedom quarks,antiquarks and gluons, at extremely high energy densities.Researching the forming and properties of the matter, has become the one of very interesting region. However, how to create the extremely high energy densities at the laboratory? The relativistie heavy ion collision(or called high energy nucleus-nucleus collisions) is the answer. For example, the Relativistie Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory is able to accelerate the energy of the single nuclear to the200GcV, The energy pro-duced is so great in this collisions. To obtain more great energy, the Large Hadron Collider (LHC) has been built at the CERN to make the deeply reseaching this new matter.The data from the RHIC shown that the new form of matter has been pro-duced at the condition of the experiment,however, we just to get the information of the final particles, which has hadronized, at the laboratory. therefore, physicist is how to know the QGP is produced?They found some different signals, which is called the probe of the produced QGP, from the normal matter by way of analyzing the information of the final particles. There are several different physics mechanism have been brought to explain this phenomenon, jet-quenching is one of the powerful mechanisms to probe the produce of the QGP. Two-particle azimuth angle correla-tions is a good way to understanding jet-quenching. The result of the two-particle azimuth angle correlations show that the correlated yield between the trigger-particle whit high transverse momentum (p>2GeV/c) and the associate-particle of it is strongly suppressed, while the yield of is enhanced at the lower transverse momen-tum. We provide a simple model, similar to the Momentum kick model (MKM) and to the Markovian parton scattering model (MPSM), to investigate the two-particle azimuth correlations at the (?)=200GeV Au+Au at the central,semi-central and peripheral collisions according to Monte Carlo simulating the heavy ion collision, our results can fit the experimental data well from PHEXIX and STAR collaboration, respcctivily.
     A very interesting phenomenon was found at the two-particle azimuthal corre-lations at the (?)=200GeV Au+Au central collisions, i.e. two-humped was found at the away-side of the trigger-particle. A lot of mechanism were present to explain this phenomenon. such as:Broadened-jets. Deflected-jet or energy loss dependent on the path length, Conical emission and Mach-cone. If understanding the underlying mechanism, we maybe know that the medium properties, for example, the speed of sound and equation of state of the medium, so it's important to distinguish the un-derlying mechanism. We investigate the three-particle azimuth correlations of the away-side of the trigger-particle at the (?)=200GcV at the0-12%central Au+Au collisions applying to our model. Up to now, we just analysis the diagonal and off-diagonal projections of the away-side three-particle azimuthal correlation result and the results can fit well the STAR collaboration. So, we be merely able to say Mach-cone is responsible for conical emission. Our model predict the projections results of away-side of the three-particle azimuthal correlation at the diagonal and off-diagonal from (?)=200GcV Au+Au at the semi-central and peripheral collisions.
引文
[1]Peter Jacobs, arXiv:hep-ex/0211031.
    [2]M. Gell-Mann, Phys. Rev.125,1067-84 (1962).
    [3]J. Biclcikova (STAR Collaboration), J. Phys. G34:S929-930 (2007).
    [4]J. Adams et al,(STAR Collaboration), Nucl. Phys. A 757,102 (2005).
    [5]K. Adcox et al.,(PHENIX Collaboration), Nucl. Phys. A 757,184 (2005).
    [6]B. B. Back et al.,(PHOBOS Collaboration), Nucl. Phys. A 757,28 (2005).
    [7]I. Arscnc et al,(BRAHMS Collaboration), Nucl. Phys. A 757,1 (2005).
    [8]F. Karsch, Nucl. Phys. A 698,199 (2002).
    [9]R. Vogt,arXiv:hep-ph/0412301.
    [10]Urs Achin Wicdcmann,arXiv:hcp-ph/0703146.
    [11]Bcrndt Miillcr, arXiv:nucl-th/0609059.
    [12]柯伟,相对论重离子碰撞中的强子产生率,P5.
    [13]Donald H. Perkins,Introduction to High Energy Physics, Forth Edition,P1-P2.
    [14]王杜娟,超高能P+P碰撞中椭圆流的研究,P3.
    [15]E. V. Shuryak, Phys. Rev. Lett.68,3270 (1992);K. Geiger, Nucl. Phys. A 566, 257c (1994).
    [16]T. S. Biro, E. van Doorn et al, Phys. Rev. C 48,1275 (1993).
    [17]邓胜华,李家荣,真空凝聚解体与QGP的形成[J],科学通报03,1994.
    [18]Xu Mingmei, Yu Moiling, and Liu Lianshou, Phys. Rev. Lett.100,092301 (2008).
    [19]蔡勖,夸克物质研究现状[J],物理学进展,02,1988.
    [20]黄卓然,高能重离子碰撞导[M],张卫宁译,哈尔滨工业大学出版社,2002.
    [21]Chcuk-Yin Wong,arXiv:0707.2385v1 [hep-ph].
    [22]Charles B. Chiu and Rudolph C. Hwa, Phys. Rev. C 74,064909 (2006).
    [23]B. I. Abelev et al, Phys. Rev. Lett.102,052302 (2009).
    [24]W. Kittcl and E. A. Dc Wolf, Soft Multihadron Dynamics, (World Scientif-ic,Singapore,2005).
    [25]J. Adams et al., (STAR Collaboration), Phys. Rev. Lett.95,152301 (2005).
    [26]Mvan Lccuwcn,J. Phys. G:Nucl. Part. Phys.34, S559-S566 (2007).
    [27]R. C. Hwa, Nucl. Phys. A 783,57c(2007);Int. J. Mod. Phys. E 16,3176 (2007).
    [28]J. Putschkc, J. Phys. G 34:S678 (2007).
    [291 R. C. Hwa and C. B. Yang, Phys. Rev. C 67,034902 (2003);R. C. Hwa and Z. G. Tan, Phys. Rev. C 72,057902 (2005); R. C. Hwa and C. B. Yang, nucl-th/0602024.
    [30]C. B. Chiu and R. C. Hwa, Phys. Rev. C 72,034903 (2005).
    [31]P. Romatschkc, Phys. Rev. C 75,014901 (2007).
    [32]S. A. Voloshin, Nucl. Phys. A749,287 (2005).
    [33]N. Armcsto, C. A. Salgado, and U. A. Wiedemann, Phys. Rev. Lett.93,242301 (2004).
    [34]E. Shuryak, arXiv:nucl-th/0706.3531v1.
    [35]V. S. Pantucv,arXiv:hcp-ph/0710.1882v1.
    [36]Chcuk-Yin Wong,arXiv.hcp-ph/0707.2385v2.
    [37]C. Y. Wong, Introduction to High-Energy Hcavy-IonCollisions. World Scientific Publisher,1994.
    [38]R. Baier., Y. L. Dokshitzer. A. H. Mueller. S. Peigne. and D. Schiff, Nucl. Phys. B 483,291 (1997).
    [39]P. F. Koch and U. Heinz,in Quark-Gluon Plasma 3,edited by R. C. Hwa and X. N. Wang (World Scientific.Singaporc,2004).
    [40]R. C. Hwa and C. B. Yang, Phys.Rev. C 70,024905 (2004).
    [41]R. Baier, Y. L. Dokshitzer. A. H. Muller, S. Peigne, and D. Schiff. Nucl. Phys. B 484,265 (1997)
    [42]R.Baier. Y. L. Dokshitzer. A. H. Muller. and D. Schiff. Xuel. Phys. B 531,403 (1998).
    [43]R. Baier. Y. L. Dokshitzer. A. H. Muller. and D. Schiff. Phys. Rev. C 60,064902 (1999).
    [44]H. Zheng, L. L. Zhu, and C. B. Yang,arXiv:nucl-th/0907.1700v1.
    [45]C. Y. Wong, arXiv:hcp-ph/0901.0726v2.
    [46]J. D. Bjorkcn, preprint Fcrrnilab-Pub-82/59-THY(1982) and erratum, unpub-lished.
    [47]M. Gyulassy and X. N. Wang, Nucl. Phys. B 420,583 (1994).
    [48]X. N. Wang, M. Gyulassy, and M. Plumer, Phys. Rev. D 51,3436 (1995).
    [49]X. N. Wang and M. Gyulassy, Phys. Rev. Lett.68,1480 (1992).
    [50]M. Gyulassy, M. Plumer, M. H. Thoma, and X. N. Wang, Nucl. Phys. A 538, 37c (1992).
    [51]X. N. Wang, Phys. Rep.280,287 (1997).
    [52]M. Gyulassy and M. Plumer, Phys. Lett. B 243,432 (1990).
    [53]M. H. Thoma and M. Gyulassy, Nucl. Phys. B 351,491 (1991).
    [54]X. N. Wang, Z. Huang, and I. Sarccvic, Phys. Rev. Lett.77,231 (1996).
    [55]Hanson G et al., Phys. Rev. Lett.35,1609 (1975).
    [56]R. Brandclik et al.,(TASSO Collaboration), Phys. Lett. B 86,243 (1979).
    [57]K. Adcox et al.,(PHENIX Collaboration), Phys. Rev. Lett.88,022301 (2001).
    [58]C. Adler et al., Phys. Rev. Lett.90,082302 (2003).
    [59]Jiangyong Jia (for the PHENIX Collaboration),arXiv:nucl-cx/0510019v4.
    [60]J. Adams et al.,(STAR Collaboration),Phys. Rev. Lett.91,072304 (2003).
    [61]J. Adams et al.,(STAR Collaboration),arXiv:nucl-ex/0305015.
    [62]A. H. Tang, arXiv:nucl-ex/0403018v1.
    [63]J. Adams et ai.,(STAR Collaboration),Phys. Rev. Lett.95,152301 (2005).
    [64]Dan Magcstro,(STAR Collaboration),Nucl. Phys. A 774,573-576 (2006).
    [65]M. J. Horncr, J. Phys. G 34:S995-998,2007.
    [66]I. Vitcv, Phys. Lett. B 630,78 (2005).
    [67]A. D. Polosa and C. A. Salgado, Phys. Rev. C 75,041901 (2007).
    [68]N. Armcsto, C. A. Salgado, and U. A. Wiedemann, arXiv:hcp-ph/0405301v1.
    [69]I. M. Dremin, Nucl. Phys. A 767,233 (2006).
    [70]V. Koch, A. Majumder. and X. N. Wang. Phys. Rev. Lett.96,172302 (2006).
    [71]T. Rcnk and J. Ruppcrt, Phys. Rev. C 76,014908 (2007).
    [72]J. Hofmann, H. Stockcr, U. Heinz, W. Schcid, and W. Grcincr, Phys. Rev. Lett. 36,88 (1976).
    [73]H. Stockcr, Nucl. Phys. A 750,121 (2005).
    [74]J. Casaldcrrcy-Solana, E. Shuryak, and D. Tcancy, J. Phys. Conf. Scr 27,22 (2006).
    [75]J. Casaldcrrey-Solana, E. Shuryak, arXiv:hcp-ph/0511263v1.
    [76]J. Ruppcrt and B. Mullcr, Phys. Lett. B 618,123 (2005).
    [77]A. K. Chaudhuri and U. Heinz, Phys. Rev. Lett.97,062301 (2006).
    [78]T. Rcnk and J. Ruppcrt, Phys. Rev. C 73,011901 (2006).
    [79]T. Rcnk and J. Ruppcrt, arXiv:hep-ph/0702102vl.
    [80]C A. Salgado and U. A. Wicdcmann, Phys. Rev. D 68,014008 (2003).
    [81]张松,相对论重离子碰撞中喷注性质和两粒子方位角关联的研究,P14.
    [82]V. Koch, A. Majumdcr, and Xin-Nian Wang, arXiv:nucl-th/0507063v2.
    [83]J. Casaldcrrcy-Solana, E. V. Shuryak, and D. Tcancy, arXiv:hcp-ph/0411315v2.
    [84]J. Casaldcrrcy-Solana, E. V. Shuryak, and D. Tcancy, J. Phys. Conf. Scr.27,22 (2005).
    [85]J. Casaldcrrcy-Solana, E. V. Shuryak, and D. Tcaney, Nucl. Phys. A 774,577 (2006).
    [86]Jason Glyndwr Ulcry,arXiv:nucl-cx/0801.4904v2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700