上皮组织形态特征识别中的偏振方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于偏振光具有矢量性,与不具有偏振而只由强度决定的自然光比较,具有包括偏振方向在内的更多的信息,因此利用偏振光和物质相互作用而引起的各种效应,可对介质本身的某些特性进行研究。上皮组织是薄的粘膜组织,其后向散射光的偏振态是易测量的,因此偏振光散射后的偏振退化、偏振分量之间的转换能够反映组织细胞综合结构参数。本文系统地研究了用于上皮组织形态特征识别的偏振光的理论及技术应用,主要研究内容如下:
    首先,从上皮组织的结构以及非典型增生、原位癌的特征出发,建立了双层散射介质的偏振后向散射光谱的理论模型。用傅立叶方法分析了表层散射体的形态学参数对光谱曲线形状及其谐波幅值的影响。分析表明:粒子直径、标准偏差主要影响光谱的波纹结构的幅值及振荡频率,而散射光谱值的大小对相对折射率最为灵敏; 且光谱基波分量及低次谐波分量的贡献依赖于粒子直径、标准偏差及相对折射率的大小。进一步,构建了该上皮组织模型的偏振后向散射光谱反演模型。针对反演模型的多参数、多极值、非线性,采用每代保留最优个体的浮点遗传算法反演。结果表明:经过70 代反演迭代,每个参数的相对误差趋于稳定,最小的达到0.02%左右,最大的达到约为0.4%,并且参数反演结果是唯一和稳定的。
    以组织模拟液Intralipid 为研究对象,通过测量该模型的后向漫散射光的斯托克斯矢量,研究了不同方位的线偏振光及不同旋向的圆偏振光入射时,Intralipid 的后向漫散射强度、偏振度的特征。结果表明:对不同的入射偏振态,Intralipid 的后向漫散射强度、偏振度的空间分布具有方位选择性,且介质浓度增加,后向散射强度增加,偏振度减小。进一步,提出了利用漫后向散射光随线偏振光入射方位的变化来测量上皮组织模型表层的粒子尺寸分布及相对折射率。建立了偏振后向漫散射强度随入射偏振方位变化的理论模型,并采用物理模型进行了实验验证。通过对测量数据的反演,结果证明:该方法避免了散射光谱术忽略介质折射率随波长变化的缺点,且能够同时准确地抽取表层粒子的形态参数。
    最后,采用Stokes Vector–Mueller Matrix 形式,建立了当无限窄的连续光束垂直入射到上皮组织模型表面时,后向单次漫散射Mueller 矩阵的理论模型。基于Mie 散射模
As the polarized light holding the vector properties includes some more informations than the natural light only holding intensity information, some properties about the media are studied by use of the various polarization effects brought from the interaction of polarized light with the matter. The epithelium consists of a thin surface layer, its polarization state of backscattering light is easily measured, therefore, the depolarization properties of polarized light backscattered and the conversion between the polarization components can reveal total structure parameters about tissue and cell lines. In this thesis, the theories and techniques of polarized light for morphology feature recognitionof mucosal tissue are systematically and thoroughly studied. The main parts are included as following.
    Firstly, according to the structure properties of epithelial tissue, the theoretical model of singly backscattering spectra based on Mie scattering theory is established for a two-layer scattering media. The propertiess of scattering spectra are analysed by simulation calculation. The influences of mean diameter, size distribution and relative refractive index of the particles of the uppermost layer on the singly backscattering spectra are further studied by Fourier waveform analysis method. The results show that, The mean diameter and size distribution have influence on the amplitude and frequency of ripple structure for the spectra, spectra value are most sentive to the relative refractive index. The contributions of wave component of different orders are dependence on the mean diameter, size distribution and relative refractive index of the particles. Furthermore, the invertion model of polarized light backscattering spectra is established for the epitheliumlike tissue phantom. This invertion model is of multiple parameters, multiple extreme values and nonlinear. The determination of all unknown parameters needs to solve a nonlinear inverse problem. A nonlinear inversion method—Floating genetic algorithms (FGAs) that is applied to invert polarization light backscattering spectra is used. Our results show that, for diameter, standard deviation and refractive index, the minimal relative errors of three estimated statistical quantities are about 0.02%, the maximal relative errors are about 0.4% with 70 iteration epochs. The errors gradually decrease with iteration epoch increases. Moreover, the inversion results have the advantages of high precision, stability and robustness.
    The properties of backscattering intensity and degree of polarization from the Intralipid suspensions are investigated for the linearly polarized light with different input azimuth angle, the circularly polarized light with the different rotary direction by measuring the Stokes vectors of the diffuse backscattered light exiting the sample. The results show that, the intensity and DOP patterns depend on the orientation of linearly polarized incident light and the rotary direction of circularly polarized incident light. And as the concentrations increasing, the DOP decrease and the intensity increases. Furthermore, a new method is proposed for measuring the morphological parameters in an epithelium-like tissue phantom. A theoretical model for diffuse backscattering intensity dependent on the azimuth are presented, then two-layer physical models are used to validate. By inverting the metrical data, The experimental results demonstrate that, the size and refractive index of the scatters of the top layer can be determined by measuring and analyzing the azimuth dependence of parallel and perpendicular components of diffusely backscattered light from an epithelium-like phantom, and with comparing of the light-scattering spectroscopy, this method avoid the significant disadvantage of the refractive index dependent on wavelength. Lastly, Single-scattering diffuse backscattering Mueller matrices expression based on Stokes vectors of the backscattered light are derived when a narrow pencillike beam is perpendicular to the surface of the epithelial tissue phantom. Using only Mie theory of light scattering by sphere, the properties distribution pattern of single-scattering Mueller matrices and the correlation with particle number density, particle diameter are discussed. The results indicate that the azimuthal variations gradually disappear when the particle number density increases, and the particle size and particle number density are varied, all of the Mueller matrices elements intensity patterns dependence on radial is similar, similarly exponential function for any azimuth angle.
引文
1. Benaron A. The future of cancer imaging. Cancer and Metastasis Reviews, 2002, 21: 45~78
    2. 刘斌,吴江声.组织学与胚胎学.北京:北京医科大学出版社,1999
    3. http://edu.xjtudlc.cn/webkc/Xjtu/Jpkejian/zzxzl/zzxzl/bfsp.htm.
    4. 王文福主编.肿瘤学.北京:人民军医出版社,2000
    5. http://www.kangaiweb.com/sy-zlcs/0011.htm
    6. Coffey D. Special Lecture. Presented at the Cap CURE 7th Annual scientific retreat, Lake Tahoe, 2000, 9:21~24
    7. 李麟荪主编.医学影像学.南京:东南大学出版社,2002
    8. Pitris C, Jesser C, Boppart S A, et al. Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies. Journal of Gastroenterology, 2000, 35: 87~92
    9. Sung K B. Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo. Opt.Exp., 2003,11: 3171~3181
    10. http://oemagazine.com/newscast/092603_newscast01.html
    11. 廖延彪著.偏振光学.北京:科学出版社,2003
    12. R. M. A. 阿查姆,N. M. 巴夏拉著.椭圆偏振测量术和偏振光.梁民基,尹树百等译.北京:科学出版社,1998
    13. 鲁子贤等著.圆二色性和旋光色散在分子生物学中的应用.北京:科学出版社,1987
    14. Barron L D. Molecular Light Scattering and Optical Activity. Cambridge: Cambridge University Press,1982
    15. Essock E, Sinai M, Bowd C, et al. Fourier Analysis of Optical Coherence Tomography and Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements in the Diagnosis of Glaucoma. Arch Ophthalmol, 2003, 121:1238~1245
    16. 田志伟著.偏振光及其应用.上海:上海科学技术出版社,1957
    17. 龙槐生,张仲先等著.光的偏振及其应用.北京:机械工业出版社,1989
    18. 石丸著.随机介质中波的传播和散射.北京:科学出版社,1986
    19. 吴健,乐时晓著.随机介质中的光传播理论.成都:成都电讯工程学院出版社, 1988
    20. Bickel W S, Davidson J F, Huffman D R, et al. Application of polarization effects in light scattering: a new biophysical tool. Proc. Natl. Acad. Sci., 1976, 73: 486~490
    21. Tinoco I J, Mickols W, Maestre M F, et al. Absorption, scattering, and imaging of biomolecular structures with polarized light. Ann.Rev.Biophys. Biochem., 1987, 16: 319–349
    22. 舍英,伊力奇,呼和巴特尔.现代光学显微镜.北京:科学出版社,1997
    23. Jacques S L, Ostermeyer M R, Wang L H, et al. Polarized light transmission through skin using video reflectometry: toward optical tomography of superficial tissue layers. Proc.SPIE, 1996, 2671:199~210
    24. Jacques S L, Lee K. Polarized video imaging of skin. In Proc. SPIE, 1998,3245:356–362
    25. Jacques S L, Roman J R, Lee K. Imaging superfcial tissues with polarized light. Lasers in Surgery and Medicine, 2000, 26:119~129
    26. Jacques S L, Jessica C, Roman R, Lee K, et al. Imaging skin pathology with polarized light. J. Biomed. Opt., 2002,7:329–340
    27. Gurjar R S, Backman V, Perelman L P, et al. Imaging human epithelial properties with polarized light-scattering spectroscopy. Nature Medicine, 2001, 7:1245~1248
    28. Markol F H N. 激光与生物组织的相互作用—原理及应用.张镇西译.西安:西安交通大学出版社,1999
    29. Tuchin V V. Tissue optics. Saratov:SPIE Press, 2000
    30. Tuchin V V. Light scattering study of tissues. Physics –Uspekhi, 1997, 40:495~515
    31. Tynes H H, George W. Kattawar, Eleonora P. Zege, et al. Monte carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations, Appl. Opt. , 2001,40: 400~412
    32. Graaff R, Koelink M H, DeM ul F, et al. Condensed Monte2Carlo simulat ions for the description of light transport. Appl. Opt., 1993, 32:426~434
    33. Wang L H, Jacques S L, Zheng L Q. MCML -Monte Carlo modeling of photon transport in multi-layered tissues. Computer Methods and Programs in Biomedicine 1995, 47:131~146
    34. 骆清铭.激光与生物组织相互作用理论及医学研究.博士学位论文.华中科技大学图书馆,1993
    35. Ambirajan, Look D C. A backward Monte Carlo study of the multiple scattering of a polarized laser beam. J. Quantum Spectrosc. Radiat. Transfer,1997,58:171~192
    36. Yao G, Wang L H. Propagation of polarized light in turbid media: simulated animation sequences. Opt. Exp., 2000,7:198~203
    37. Wang X, Wang L H. Propagation of polarized light in birefringent turbid media: time-resolved simulations. Opt. Exp., 2001, 9:254~259
    38. Wang X, Wang L H. Propagation of polarized light in birefringent turbid media: a Monte Carlo study. J. Biomed. Opt., 2002,7:279~290
    39. Wang X, Wang L H., Sun C W, et al. Polarized light propagation through the scattering media: time-resolved Monte Carlo and experiments. J. Biomed. Opt., 2003,8:608~617
    40. Bartel S, Hielscher A H. Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media. Appl. Opt., 2000, 39:1580~1588
    41. Kaplan B, Ledanois G, Villon B. Mueller Matrix of Dense Polystyrene Latex Sphere Suspensions: Measurements and Monte Carlo Simulation. Appl.Opt.,2001, 40:2769~ 2777
    42. Hielscher H, Bartels S. Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media. Appl. Opt., 2000, 39:1580~1588
    43. Wang X, Yao G., Wang L H. Monte Carlo model and single-scattering approximation of polarized light propagation in turbid media containing glucose. Appl. Opt., 2002, 41: 792~801
    44. Peters K J. Coherent-backscatter effect: A vector formulation accounting for polarization and absorption effects and small or large scatterers. Phys. Rev. B, 1992, 46:801~812
    45. Schmitt J M, Gandjbakhele A H, Bonner R F. Use of polarization light to discriminate short-path photons in a multiply scattering medium. Appl.Opt., 1992, 31:6535~6546
    46. Vitkin I A, Laszlo R D, Whyman C L. Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light. Opt.Exp. 2002,10:222~229
    47. Bickel W S, Stafford M E. Polarized light scattering from biological systems: a technique for cell differentiation. J. Biol. Phys., 1981, 9:53~66
    48. Zeitz S, Belmont A, Nicolini C. Differential scattering of circularly polarized light as a unique probe of polynucleosome superstructure. Cell Biophys., 1983, 5:163~187
    49. Salzman G C, Singham S B, Johnston R G., et al. Light scattering and cytometry in Flow Cytometry and Sorting. 2nd ed. New York:Wiley-Liss press, 1990,81~107
    50. Mehrubeoglu M, Kehtarnavaz N, Rastegar S, et al. Effect of molecular concentrations in tissu-simulating phantoms on images obtained using diffuse reflectance polarimetry. Opt.Exp., 1998, 7:286~297
    51. 张逸新.随机介质中光的传播与成像.北京:国防工业出版社,2002
    52. Yoo K M, Alfano R R. Time resolved depolarization of multiple backscattered light from random media. Phys. Lett. A, 1989, 142:531~536
    53. Jarry G, Steimer E, Damaschini V, et al. Coherence and polarization of light propagating throgh scattering media and biological tissues. Appl. Opt., 1998, 37:7357~7366
    54. McCormick N J. Particle-size-distribution retrieval from backscattered polarized radiation measurements: a proposed method. J. Opt. Soc. Am. A, 1990,7:1811~1816
    55. Dogariu M, Asakura T. Photon pathlength distribution from polarized backscattering in random media, Opt. Eng., 1996, 35:2234~2239
    56. Sankaran V, Sch?onenberger J T W J K, Maitland D J. Polarization discrimination of coherently propagating light in turbid media, Appl. Opt., 1999,38:4252~4261
    57. MacKintosh F C, Zhi J X, Pine D J, et al. Polarization memory of mutiply scattered light, Phys. Rev. B, 1989, 40:9342~9345
    58. Lewis G D, Jordan D L, Roberts P J. Backscattering target detection in a turbid medium by polarization discrimination. Appl. Opt., 1999,38:3937~3944
    59. Bicout D, Brosseau C, Martinez A S, et al. Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter. Phys. Rev. E, 1994, 49: 1767~1770
    60. Sankaran V, Everett M J, Maitland D J, et al. Comparison of polarized-light propagation in biological tissue and phantoms. Opt. Lett., 1999, 24:1044~1046
    61. Morgan S P, Ridgway M E. Polarization properties of light backscattered from a two layer scattering medium. Opt.Exp., 2000, 7:395~402
    62. Dogariu M, Asakura T. Polarization-dependent backscattering patterns from weakly scattering media. J.Pot., 1993, 24:271~278
    63. Rakovic M J, Kattawar G W. Theoretical analysis of polarization patterns from incoherent backscattering of light. Appl. Opt.,1998, 37:3333~3338
    64. Rakovic M J, Kattawar G W, et al. Light backscattering polarization patters from turbid media :theory and experiment. Appl. Opt., 1999, 38:3399~348
    65. Wang L H, Stephens D V, Thomsens S L, et al. Polarized diffuse reflectance of laser light on a turbid medium. In the International Conference on Future Directions of Lasers in Surgery and Medicine, Engineering Foundation, Snowbird, Utah, 1995, 25:9~14
    66. Jacques S L, Ostermeyer M R, Wang L H, et al. Polarized light transmission through skin using video reflectometry: Toward optical tomography of superficial tissue layers. In Proc. SPIE, 1996, 2671:199~210
    67. Hielscher H, Mourant J R, Bigio I J. Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions, Appl. Opt., 1997, 36:125~135
    68. Hielscher H, Eick A A, Mourant J R, et al. Diffuse backscattering Mueller matrices of highly scattering media. Opt. Exp., 1997, 1:441~454 949~957
    85. Mourant J R, Canpolat M, Brocker C, et al. Light scattering from cells: The contribution of nucleus and the effects of proliferate status. J. Biomed. Opt., 2000, 5: 131~137
    86. Mourant J R, Johnson T M, Freyer J P. Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements, Appl.Opt., 2001, 40: 5114~5123
    87. Mourant J R, Johnson T M, Carpenter S, et al. Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures. J. Biomed. Opt., 2002, 7:378~387
    88. Perelman L T, Backman V, Wallace M, et al. Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution, Phys. Rev.Lett., 1998, 80:627~630
    89. Perelman L T, Backman V, Wallace M, et al. Quantitative analysis of mucosal tissues in patients using light scattering spectroscopy. In Proc. SPIE , 1999,3597, 474~479
    90. Wallace M B, Perelman L T , Backman V, et al. Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light scattering spectroscopy. Gastroentorolgy, 2000, 119:677~682
    91. Johnson T M, Mourant J R. Polarized wavelength-dependant deasurements of turbid media, Opt.Exp., 1999, 4:200~216
    92. Sokolov K, Drezek R, Gossage K, et al. Reflectance spectroscopy with polarized light: Is it sensitive to cellular and nuclear morphology? Opt. Exp., 2000, 5:302~317
    93. Backman V, Gurjar R, Badizadegan K, et al. Polarized light scattering spectroscopy for quantitative measurement of epithelial structures in situ. IEEE J. Sel. Topics Quantum Electron,1999, 5:1019~1027
    94. Backman V, Wallace M B, Prelman L T, et al. Diagnosing cancers using spectroscopy. Nature, 2000, 406:35~36
    95. Backman V, Gopal V, Kalashnikov M, et al. Measuring cellular structure at submicrometer scale with light scattering spectroscopy. IEEE J. Select. Topics Quantum Electron., 2001,7:887~893
    96. Tobin M J, Chesters M A, Chalmers J M, et al. Infrared microscopy of epithelial cancer cells in whole tissues and in tissue culture using synchrotron radiation.Faraday Discuss., 2004, 126:27~39
    97. Fang H, Ollero M, Vitkin E, et al. Noninvasive sizing of subcellular organelles with light scattering spectroscopy. IEEE J. Sel. Topics Quantum Electron., 2003, 9:267~276
    98. Kim Y L, Liu Y, Wali R K, et al. Simultaneous Measurement of Angular and Spectral Properties of Light Scattering for Characterization of Tissue Microarchitecture and Its 949~957
    85. Mourant J R, Canpolat M, Brocker C, et al. Light scattering from cells: The contribution of nucleus and the effects of proliferate status. J. Biomed. Opt., 2000, 5: 131~137
    86. Mourant J R, Johnson T M, Freyer J P. Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements, Appl.Opt., 2001, 40: 5114~5123
    87. Mourant J R, Johnson T M, Carpenter S, et al. Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures. J. Biomed. Opt., 2002, 7:378~387
    88. Perelman L T, Backman V, Wallace M, et al. Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution, Phys. Rev.Lett., 1998, 80:627~630
    89. Perelman L T, Backman V, Wallace M, et al. Quantitative analysis of mucosal tissues in patients using light scattering spectroscopy. In Proc. SPIE , 1999,3597, 474~479
    90. Wallace M B, Perelman L T , Backman V, et al. Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light scattering spectroscopy. Gastroentorolgy, 2000, 119:677~682
    91. Johnson T M, Mourant J R. Polarized wavelength-dependant deasurements of turbid media, Opt.Exp., 1999, 4:200~216
    92. Sokolov K, Drezek R, Gossage K, et al. Reflectance spectroscopy with polarized light: Is it sensitive to cellular and nuclear morphology? Opt. Exp., 2000, 5:302~317
    93. Backman V, Gurjar R, Badizadegan K, et al. Polarized light scattering spectroscopy for quantitative measurement of epithelial structures in situ. IEEE J. Sel. Topics Quantum Electron,1999, 5:1019~1027
    94. Backman V, Wallace M B, Prelman L T, et al. Diagnosing cancers using spectroscopy. Nature, 2000, 406:35~36
    95. Backman V, Gopal V, Kalashnikov M, et al. Measuring cellular structure at submicrometer scale with light scattering spectroscopy. IEEE J. Select. Topics Quantum Electron., 2001,7:887~893
    96. Tobin M J, Chesters M A, Chalmers J M, et al. Infrared microscopy of epithelial cancer cells in whole tissues and in tissue culture using synchrotron radiation.Faraday Discuss., 2004, 126:27~39
    97. Fang H, Ollero M, Vitkin E, et al. Noninvasive sizing of subcellular organelles with light scattering spectroscopy. IEEE J. Sel. Topics Quantum Electron., 2003, 9:267~276
    98. Kim Y L, Liu Y, Wali R K, et al. Simultaneous Measurement of Angular and Spectral Properties of Light Scattering for Characterization of Tissue Microarchitecture and Its Alteration in Early Precancer. IEEE J. Select. Topics Quantum Electron., 2003, 9:243~256
    99. Skala M C, Palmer G M, Zhu C F, et al. Investigation offiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers. Lasers Surg. Med., 2004, 34:25~38
    100. Amelink A, Bard M P L, Burgers S A, et al. Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media. Appl. Opt., 2003, 42:4095~4101
    101. Badizadegan K, Backman V, Boone C W, et al. Spectroscopic diagnosis and imaging of invisible pre-cancer. Faraday Discuss., 2004, 126:265~279
    102. Ramanujam N, Mitchell M F, Mahadevan A, et al. In vivo diagnosis of cervical intraepithelial neoplasia using 337 nm excited laser-induced fluorescence, Proc. Natl. Acad. Sci., 1994, 91:10193~10197
    103. Betz S, Mehlmann M, Rick K, et al. Autofluorescence imaging and spectroscopy of normal and malignant mucosa in patients with head and neck cancer. Lasers Surg. Med., 1999, 25:323~224
    104. Heintzelman L, Utzinger U, Fuchs H, et al. Optimal excitation wavelength for in vivo detection of oral neoplasia using fluorescence spectroscopy. Photochem. Photobiol. 2000,72:103~113
    105. Panjehpour M, Overholt B F, Dinh T V, et al. Endoscopic fluorescence detection of high-grade dysplasia in Barrett’s esophagus. Gastroenterology,1996, 111:93~101
    106. Wang H Z, Zheng X G, Zhao F L, et al. Time-resolved excitation density dependent fluorescence of R –phycoery-th rin single crystal. Chem. Phy.s Lett., 1994, 222:204~ 208
    107. Wang H Z, Zheng X G, Zhao F L, et al. Superradiance of high density Frenkel excitons at room temperature. Phs. Rev. Lett., 1995,74 :4079~ 4082
    108. Gayen S K, Alrubaisee M, Savage H E, et al. Parotid gland tissues investigated by picosecond time-gated and optical spectroscopic imaging techniques. IEEE J.Sel.Topics Quantum Electron., 2001,7:906~911
    109. Gan X, Schilders S P, Gu M. Image enhancement through turbid media under a microscope by use of polarization gating methods. J.Opt.Soc.Am.A, 1999, 16:2177~2184
    110. Sun C W, Wang C Y, Wang C C. Polarization gating in ultrafast-optics imaging of skeletal muscle tissues. Opt.Lett., 2001, 26:432~435
    111. Wang W B, Ali J H, Alfano R R. Spectral Polarization Imaging of Human Rectum-Membrane-Prostate Tissues. IEEE J. Select. Topics Quantum Electron., 2003,9:288~293
    112. Mehr?beo?lu M, Kehtarnavaz N, Marquez G, et al. Skin lesion classification using oblique-incidence diffuse reflectance spectroscopic imaging. Appl. Opt., 2002, 42: 182~192
    113. Ku G, Wang L H. Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt.Lett., 2005, 30:507~509
    114. 鲁强.混浊介质的多光子激发荧光显微成像研究.博士学位论文,华中科技大学图书馆,2001
    115. 玻恩M , 沃耳夫E.光学原理.北京:科学出版社,1978
    116. Demos S G, Alfano R R.Temporal gating in highly scattering media by the degree of optical polarization. Opt. Lett., 1996, 21:161~163
    117. Demos S G, Savage H, Heerdt A S, et al. Time-resolved degree of polarization for human breast tissue. Opt.Commun. 1996, 124:439~442
    118. Demos S G, Alfano R R. Optical polarization imaging. Appl. Opt.,1997,36: 150~155
    119. Ni X H, Xing Q R, Cai W, et al. Time-resolved polarization to extract coded information from early ballistic and snake signals through turbid media.Opt.Lett., 2003, 28:343~345
    120. Emile, Bretenaker F, Floch A L. Rotating polarization imaging in turbid media. Opt. Lett., 1996, 21:1706~1708
    121. Demos S G, Papadopoulos A J, Savage H, et al. Polarization filter for biomedical tissue optical imaging. Photochem. Photobiol., 1997, 66: 821~825
    122. Demos S G, Wang W B, Alfano R. R., Imaging objects hidden in scattering media with fluorescence polarization preservation of contrast agents. Appl. Opt., 1998, 37: 792~797
    123. Demos S G, Radousky H B, Alfano R R. Deep subsurface imaging in tissues using spectral and polarization filtering. Opt. Exp., 2000, 7:23~28
    124. Morgan S P, Stockford I M. Surface-reflection elimination in polarization imaging of superficial tissue. Opt. Lett. , 2003, 28:114~116
    125. Groner W, Winkelman J W, Harris A G, et al. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nature Medicine, 1999, 5 :1209 ~1213
    126. Hee M R, Huang D, Swanson E A, Fujimoto J G. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Am. B, 1992, 9:903~908
    127. Boer J F D, Milner T E, Gemert M J C V, Nelson J S. Two-dimensional birefringence imaging in biological tissue using polarization sensitive optical coherence tomography. Opt. Lett., 1997, 22:934~936
    128. Boer J F D, Chen Z P, Nelson J S, et al. Imaging thermally damaged tissue by Polarization Sensitive Optical Coherence Tomography. Opt. Exp., 1998, 3:212~218
    129. Boer J F D, Milner T E, Nelson J S. Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography.Opt. Lett., 1999, 24:300~302
    130. Boer J F D, Milner T E. Review of polarization sensitive optical tomography and stokes vector determination. J. Biomed. Opt., 2002, 7:359~371
    131. Fercher F, Drexler W, Hitzenberger C K, Lasser T. Optical coherence tomography-principles and applications. Rep. Prog. Phys., 2003, 66:239~303
    132. Ren H W, Ding Z H, et al. Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure,blood flow velocity,standard deviation, birefringence,and Stokes vectors in human skin. Opt.lett., 2002, 19:1702~1705
    133. Ren H W, Brecke K M, Ding Z H, et al. Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional opt ical coherence tomography. Opt. Lett., 2002, 27:409~411
    134. Wei S C, Chin-Chung Y, Yean-Woei K. Optical imaging based on time-resolved Stokes vectors in filamentous tissues. Appl. Opt. 2003, 42: 750~754
    135. Drezek R, Guillaud M, Collier T. Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture. J. Biomed. Opt., 2003, 8:7~16
    136. Renato M, Bertoni A, Andeoia S. Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Appl. Opt., 1989,28:2318~2324
    137. Van de Hulst H C. Light Scattering by Small Particles. New York: Dover, 1995
    138. Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. New York :Wiley,1983
    139. Bartlett M, Jiang H B. Measurement of particle size distribution in multilayered skin phantoms using polarized light spectroscopy. Phys. Rev. E, 2002, 65:1~6
    140. Jiang H B, Marquez G, Wang L H. Particle sizing in concentrate suspensions by use of steady-state continuous-wave photon-migration techniques. Opt. Lett., 1998, 23: 394~396
    141. 吉根林.遗传算法研究综述.计算机应用与软件,2004, 21:69~73
    142. 周明,孙树栋著.遗传算法原理及应用.北京:国防工业出版社,1999
    143. (美)米凯利维茨Michaleqicz著.遗传算法和数据编码的结合.周家驹,何险峰译.北京:科学出版社, 2000
    144. 李敏强, 寇纪淞, 林丹, 李书全著.遗传算法的基本理论与应用.北京:科学出版社, 2002
    145. 畲春峰,杨华中,胡冠章,汪蕙.浮点遗传算法的收敛性及其在模型参数提取问题中的 应用.电子学报, 2000, 28: 133-136
    146. Brezinski M E . Fujimoto J G. Optical coherence tomography: High-resolution imaging in nontransparent tissue. IEEE J. Select.Topics Quantum Electron, 1999, 5: 1185~1192
    147. Gayen S K, Alrubaiee M, Savage H E, et al. Parotid gland tissues investigated by picosecond time-gated and optical spectroscopic imaging techniques.IEEE J. Select. Topics Quantum Electron., 2001, 7: 906~911
    148. Gauderon R, Lukins P B, et al. Effect of a confocal pinhole in two~photon microcopy. Microsc. Res. and Tech.,1999, 47:210~214
    149. Jackson M. Introductory lecture from biomolecules to biodiagnostics: Spectroscopy does it all. Faraday Discuss., 2004, 126: 1~18
    150. Jacques S L, Ramella-Roman J C, Lee K. Imaging skin pathology with polarized light. J. Biomed. Opt., 2002, 7: 329~340
    151. Kuranov R V, Sapozhnikova V V, Turchin I V, et al. Complementary use of cross-polarization and standard OCT for differential diagnosis of pathological tissues. Opt. Exp., 2002, 10: 707~713
    152. Jiao S L. Polarization-sensitive Mueller-Matrix Optical Coherence Tomography. Ph.D. dissertation,Texas A&M University, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700