转TaLEA小黑杨dwf1的基因表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫造成的盐害首先表现为低渗透势作用和离子毒害等。由于吸收了土壤环境中的大量盐分,植物水分亏缺,生理代谢发生紊乱,在这期间植物细胞积累一系列的蛋白质来保护细胞免受脱水伤害,其中LEA蛋白是最普遍的一种。虽然人们推测LEA蛋白可能在脱水胁迫中起重要作用,但对它们的生理生化功能及抗逆机理还不是十分清楚。本实验室通过农杆菌介导法将TaLEA基因(DQ663481)转化到小黑杨花粉植株中,获得了11个转TaLEA小黑杨独立转化株系,研究过程中发现了一株显著不同于其他转TaLEA小黑杨的矮化突变株(将此株系暂命名为dwf1),经过耐盐性分析发现,dwf1的耐盐能力与对照相比明显增强,同时dwf1还表现出叶型改变、叶片较早老化等突变性状。为深入研究dwf1的抗盐机理及突变表型的分子机理,本研究分别在DNA、mRNA以及蛋白三个水平对dwf1进行了研究。
     利用TAIL-PCR的方法,在dwf1中克隆获得了TaLEA基因的2个侧翼序列。通过生物信息学分析发现这2个序列分别位于一个反转录转座子区和一个未知基因(与葡萄的假定蛋白XM 002267539.1同源)的启动子区。利用RT-PCR的方法扩增该反转录转座子中的反转录酶,结果在dwfl和野生型对照WT中均没有扩增出目的条带,推测该转座子可能处于无活性状态。利用荧光定量PCR的方法检测该未知基因的表达情况,结果发现该基因在dwfl中上调表达,表达量是WT中表达量的2.22倍,推测TaLEA的插入可能影响了该基因的表达。目前,该基因功能未知。dwfl突变性状是否是由于该基因的上调表达引起的,还有待进一步的功能验证。
     在正常生长条件下,对dwf1小黑杨突变株与野生型对照进行了Affymetrix微阵列芯片的差异转录表达谱分析。利用SAM软件对芯片数据进行了分析,以q-value (%)<5, Fold Change> 2或<0.5为标准筛选出差异基因537个,其中280个基因上调表达,257个基因下调表达。通过实时荧光定量PCR技术验证,结果与芯片结果基本一致,证明芯片结果是可靠的。这些差异基因中除43个功能未知或未分类的基因外,其他基因分为11类,包括代谢、胁迫、蛋白合成及降解、激酶、细胞壁、激素、信号转导、转录调控、运输、细胞结构基因及细胞命运等。通过分析发现,与野生型对照相比,dwfl中很多胁迫诱导表达基因如Osmotin、RD22、chitinase、beta-1,3 glucanase、peroxidase、chalcone synthase、glutathione S-transferase、WRKY、bZIP、AP2/EREBP、NAC、serine/threonine kinase、stress-induced receptor-like kinase、lipid transfer protein等都上调表达。在正常生长条件,这些胁迫诱导表达基因的高量表达为dwfl的耐盐性提供了分子依据。同时,在dwfl中很多与激素合成及调控相关的基因,如Cullin-1、DWF5、BAK1、AIL5、JAZ10等的表达水平也发生了显著变化,推测这些基因的变化很可能影响了激素的水平,进而影响了植物的生长发育,从而导致了dwf1植株矮化等的表型。
     利用无标记定量分析(Label-free LC MS/MS)的方法对dwf1小黑杨突变株与野生型对照进行了差异蛋白表达谱分析。结果显示,以score值>200,Flod Change>1.3或<0.75为标准,去除冗余后共筛选出99个差异表达的蛋白,dwf1与野生型对照相比,其中上调表达蛋白32个,下调表达蛋白17个,dwf1中特异表达蛋白33个,野生型中特异表达蛋白17个。在99个差异蛋白中,除15个蛋白未能分类外,其它蛋白共分为8大类:代谢、胁迫、蛋白折叠、加工、降解、转录调控、细胞命运、运输、细胞壁及细胞骨架。将无标记定量分析的结果与Affymetrix微阵列芯片结果进行比较发现,在糖酵解、肌醇磷酸代谢、氮代谢等代谢通路中的差异基因,mRNA和蛋白质丰度差异基本吻合。而信号转导、转录因子、激素及核糖体蛋白、转录起始因子等相关基因的mRNA与蛋白质丰度差异显著。差异转录表达谱与差异蛋白表达谱的不一致性为今后对抗逆基因转录后调控机制的研究提供了重要线索。
Primary symptoms of salt damage caused by salt stress comprise low osmotic potential effect and ion toxicity. Metabolic disorder of plant will occur due to lack of water when the plant absorbs too much salt from the soil. During that process, a series of proteins stored in plant cells will protect the cells from dehydration, among which the LEA protein is the most common one. Though it is believed that the LEA protein plays an important role in reducing dehydration stress, its physiological and biochemical functions and stress resistance mechanism are not clear yet. The TaLEA (DQ663481) gene was introduced into Populus simonii×P. nigra by Agrobacterium tumefaciens-mediated transformation. It was totally obtained 11 independent transgenic lines. Among them, a dwarf mutant (named dwfl) was found. Salt resistance analysis showed that the dwfl plant had stronger salt tolerance than the control group, and mutation symptoms like dwarf, change of leave shape, faster ageing of leave. To further research molecular mechanism causing mutant phenotypes of the dwfl plant and the salt resistance mechanism of the TalEA protein, we had studied the dwfl from the respective of DNA, mRNA and protein.
     Two flanking sequences of TaLEA gene were cloned from the dwfl by TAIL-PCR. Bioinformatics analysis showed that the two sequences were located in a retroposon and the promoter regions of an unknown gene (homologous with hypothetical protein of grape, XM_002267539.1) respectively. After amplifying the reverse transcriptase of the retroposon by RT-PCR, the target band was not found in dwfl or wild type, so we supposed that the transposon was inactive. Fluorescence quantitative PCR was used for testing expression of the unknown gene and found that expression of the gene was up-regulated in the dwfl up to 2.22 times the expression of the control group. We presumed that the insertion may affect the expression of the gene. The function of the gene is still unknown. Whether the mutant characters of dwfl are related with the up-regulated expression of the gene shall be determined by further functional verification.
     Differential transcription expression profiling of the dwfl and wild type control group was carried out by Afrymetrix microarray in non-stress condition. Differential genes were screened by SAM software and 537 differential genes were selected on the basis of q-value (%)<5 and Fold Change>2 or<0.5.280 genes have up-regulated expression and others have down-regulated expression. Real-time fluorescence quantitative PCR verification showed the same results with the microarray chip analysis, thus the microarray chip analysis was reliable. Except 43 genes which have unknown functions or cannot be classified, the differential genes can be classified into 11 groups, including metabolism, stress, protein synthesis and degradation, kinase, cell wall, hormone, signal transduction, transcriptional regulation, transportation, cellular structure and cell fate. Analysis showed that most stress-induced genes had up-regulated expression, such as Osmotin, RD22, chitinase, beta-1,3 glucanase, peroxidase, chalcone synthase, glutathione S-transferase, WRKY, bZIP, AP2/EREBP, NAC, serine/threonine kinase, stress-induced receptor-like kinase, lipid transfer protein and so on. In normal growth condition, high level expression of these stress-induce genes provides the molecular basis for the salt tolerance of dwfl. Moreover, many genes, such as Cullin-1, DWF5, BAK1, AIL5, JAZ10 that were related to hormone synthesis and regulation in the dwfl also expressed significantly differently. These genes are very likely to influence the level of hormone. Hormone change may impact on growth of the plant, causing the mutant phenotypes of dwfl like dwarf.
     Differential protein expression profiling of the dwfl and wild type control group was carried out by Label-free LC MS/MS in non-stress condition. Differential proteins were screened and 99 differential non-redundant proteins were selected on the basis of Score value>200, q-value (%) <5 and Fold Change>1.3 or<0.75.32 proteins have up-regulated expression and 17 have down-regulated expression.33 proteins Specifically expressed in dwfl and 17 proteins Specifically expressed in WT. Except 43 proteins which have unknown functions or cannot be classified, the differential proteins can be classified into 8 groups, including metabolism, stress, protein synthesis and degradation, transcriptional regulation, cell fate, transportation, cell wall, and cytoskeleton. The results of Label-free LC MS/MS are compared with that of Affymetrix microarray. Analysis finds that mRNA and protein expression abundant of the genes in the glycosis, inositol phosphate metabolism, nitrogen metabolism pathway is similar. While mRNA and protein expression abundant of the genes that are related to signal transduction, transcription factor, hormone, ribosomal protein and translation initiation factor is significantly different. The inconsistency of the transcription and protein expression profiles may provide important clues to the research of post-transcriptional regulation of stress resistance genes.
引文
白永琴,杨青川.LEA蛋白研究进展[J].生物技术通报.2009,9:1-7
    布坎南BB,格鲁依森姆W,琼斯RL.植物生物化学与分子生物学[M].科学出版社.2004,341-342
    陈华友,张春霞,马晓珂,张毅.极端嗜热古菌的热休克蛋白[J].生物工程学报.2008,24(12):2011-2021
    陈明,应万涛,方勤美,孙薇,贺福初,钱小红.基于液相色谱质谱联用的蛋白质组非标记定量研究策略的建立及应用[J].生物化学与生物物理进展.2008,35(4):401-409
    冯晓昆.植物LEA蛋白研究综述.安徽农学通报[J].2009,15(21):43-46
    高彩球,李艳霞,刘桂丰,王玉成,李孝国.翻译起始因子(eIF1A)基因的获得及抗旱性分析[J].东北林业大学学报.2007,35(8):1-9
    何苗,武雪,王喆之.丹参BTF3基因的克隆及生物信息学分析[J].武汉植物学研究.2009,27(6):582-588
    侯彦强. 蛋白质组学研究方法学进展[J].医学分子生物学杂志.2004,1(1):44-46
    皇甫海燕,官春云,郭宝顺等. 蛋白质组学及植物蛋白质组学研究进展[J].作物研究.2006,5:577-581
    黄丽俊,王建华.蛋白质组研究技术及其进展[J].生物学通报.2005,40(8):4-6
    蒋智文,刘新光周中军.组蛋白修饰调节机制的研究进展[J].生物化学与生物物理进展.2009,36(10):1252-1259
    金宏滨,刘东辉,左开井,苗志奇,陈玉辉,孙小芬,唐克轩.植物ABC转运蛋白与次生代谢产物的跨膜转运[J].中国农业科技导报.2007,9(3):32~37
    梁宇,荆玉祥,沈世华.植物蛋白质组学研究进展[J].植物生态学报.2004,28(1):114-125
    林海建,张志明,沈亚欧,高世斌,潘光堂.基因芯片研究植物逆境基因表达新进展[J].遗传.2009,31(12):1192-1204
    刘关君,田旭,刘昌财,曲春浦,刘桂丰,杨传平.西伯利亚蓼非特异性脂质转移蛋白编码序列的克隆及其盐胁迫下的表达[J].中国生物化学与分子生物学报.2008,24(12):1140~1145
    刘丽娜,刘祥林,陈志玲.细胞周期调控的一个重要元素-CDC48[J].生物技术通报.2006, (5):26-29
    刘昀,李冉辉,汪为茂等.植物抗逆蛋白(LEA3)22-氨基酸耐盐结构域在酵母细胞中的鉴定[J].植物研究.2009,29(1):74-79
    罗小敏,崔妍,陈彤等. 植物蛋白质组学面临的挑战和前景[J].生物技术通报.2004,(4):14-18
    马立人,蒋中华.生物芯片[M].北京:化学工业出版社.2001—2171
    任晓米,朱诚,曾广文.与种子耐脱水性有关的基础物质研究进展[J].植物学通报.2001,18(2):183-189
    邵淑红,潘芳.葡萄糖调节蛋白的生物学特性及其在应激免疫应答中的作用[J].中国行为医学科学2004,13(6):711-712
    孙立平,李德全.LEA蛋白的分子生物学研究进展[J].生物技术通报,2003,(6):5-9
    唐益苗,马有志.植物反转录转座子及其在功能基因组学中的应用[J].植物遗传资源学报.2005,6(2)
    田丽丽.拟南芥t387突变体的基因芯片分析及其抗干旱机理的初步研究[D].首都师范大学,2007
    万东石,李洪玉等. 植物体内干旱信号的传递与基因表达[J].西北植物学报.2003,23(1):151-157
    万军庭,陈照丽,赫捷.肽基脯氨酰顺反异构酶Pinl与肿瘤发生发展的研究进展[J].中华肿瘤防治杂志.2008,15(15):1185-1187
    王锋,郭尧君.蛋白质组学及其技术进展[J].现代科学仪器.2006,5:9-13
    王小纯,安帅,熊淑萍等.小麦叶片谷氨酰胺合成酶的分离纯化及鉴定[J].麦类作物学报.2010,30(1):83-86
    王英超,党源,李晓艳,王兴龙.蛋白质组学及其技术发展[J].生物技术通讯.2010,21:139-144
    魏丕伟,施季森.杂交鹅掌楸多聚泛素基因家族LhUB Is的分离和同源克隆[J].林业科技开发.2009,23(4):30-33
    吴利民,陈键,田连福,栾升,李东屏.水稻锚蛋白基因家族分析和锚定膜蛋白的表达模式研究[J].激光生物学报.2007,16(1):58-61
    吴松峰,朱云平,贺福初.转录组与蛋白质组比较研究进展[J].生物化学与生物物理进展.2005,32(2):99-105
    吴岩,龚丽.基因芯片技术研究进展[J].内蒙古医学院学报.2003,9(25):213-217
    许杨,阮琼芳,李燕萍.表达基因分析方法[J].食品与生物技术学报.2008,27(1):122-125
    许志茹,李玉花,杨传平.基因芯片技术在拟南芥研究中的应用[J].生物技术通讯.2004,15(5):509-512
    杨天旭,汪耀富,宋世旭等.逆境胁迫下植物LEA蛋白的研究进展[J].干旱地区农业研究[J].2006,24(6):120-124
    杨学文,彭镇华.一个毛竹细胞色素P450基因的克隆与表达研究[J].安徽农业大学学报.2010,37(1):116-121
    杨珍珍,李萍,王崇英.T-DNA介导的基因诱捕技术及其在植物功能基因组学研究中的应用[J].植物学通报.2008,25(1):112-120
    尹梅,程在全,夏小环,张伟媚,陈善娜.GPAT基因表达载体的构建及对非洲菊的遗传转化[J].西南农业学报.2007,20(1):91-94
    俞嘉宁,山仑.LEA蛋白与植物的抗旱性[J].生物工程进展.2002,22(2):10-14
    张改娜,何王贾.盐胁迫下植物基因的表达与基因工程研究进展[J].武汉植物学研究.2005(2):188-195
    张宏一.蛋白质组学研究技术及其进展[J].生物技术通讯.2005,4:31-35
    张姗姗,陶勇生,郑用琏,张方东.玉米DEAD-box RNA解旋酶基因的克隆及分析[J].中国生物化学与分子生物学报.2006,22(8):640-646
    周卫红,杨文,Stephen G.等.细胞色素P450 153C1蛋白的表达、纯化及初步晶体学研究[J].生物物理学报.2009,25:378-379
    左豫虎,康振生,杨传平,芮海英,娄树宝,刘惕若.β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系[J].植物病理学报.2009,39(6):600-607
    Albert A, Lavoie S, Vincent M. A hyperphosphorylated form of RNA polymerase Ⅱ is the major interphase antigen of the phosphoprote in antibody MPM22 and interacts with the peptidylprolyl isomerase Pinl [J].J Cell Sci.1999,112(15):2493-2500
    Andersson T,Joharmson M,Bolmsjo Q James P. Automating MALDI sample plate loading[J].J ProteomeRes.2007,6 (2):894-896
    Arango D, Wilson AJ, Shi Q, et al. Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells [J].Br J Cancer.2004,91 (11):1931-1946
    Asakura T, Hirose S, Asatsuma S,et al. Proteomic characterization of tissue expansion of rice scutellum stimulated by abscisic acid[J].Biosci Biotechnol Biochem.2007,71(5):1260-1268
    Balmer Y,Vensel WH,Tanaka CK, et al. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria[J].Proc Natl Acad Sci USA.2004,101(8):2642-2647
    Bartels D, Hanke C, Schneider K, Michel D, Salamini F. A desiccation related Elip-like gene from the resurrection plant Craterostigma plan-tagineun is regulated by light and ABA[J].EMBO J.1992,11(8):2771-2778
    Becker JD, Boavida LC, Carneiro J, et al. Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome[J].Plant Physio.2003,133(2):713-725
    Benschop JJ, Mohammed S, O'Flaherty M, et al.Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis[J].Mol Cell Proteomics.2007,6(7):1198-1214
    Blasi F, Ciarrocchi A, Luddi A et al. Stage-specific gene expression in early differentiating oligodendrocytes[J].Glia.2002,39(2):114-123
    Bray EA. Molecular responses to water deficit [J].Plant Physiol.1993,103(4):1035-1040
    Bray EA. Molecular responses to water deficit [J].Plant Physiol.1993,103(4):1035-1040.
    Cameron KD, Teece MA, Smart L B. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco [J].Plant Physiol.2006,140(l):176-183
    Caray Arroyo A, Colmenero Flores JM, Caroiarrubio A, et al. Highly hydrophilic proteins in prokaryates and eukaryates are common during conditions of water deficit[J].Biolchem.2000,275(8):5668-5674
    CHANG JC, HILSENBECK SG, FUQUA SA. Genomic approaches in the management and treatment of breast cancer[J].Br J Cancer.2005,92 (4):618-624
    Chen G, Gharib TG, Huang CC, et al. Discordant protein and mRNA expression in lung adenocarcinomas[J]. MolCell Proteomics.2002, 1(4):304-313
    Chen M, Ying W, Song Y, et al. Analysis of human liver proteome using replicate shotgun strategy[J].Proteomics.2007,7 (14):2479 ~2488
    Chen W, Provant NJ, Clazebrock J, et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative function in response to environmental stress[J].Plant Cell.2002,14:559-574
    Cho K, Agrawal GK, Shibato J, et al. Survey of differentially expressed proteins and genes in jasmonic acid treated rice seedling shoot and root at the proteomics and transcdptomics levels[J].J Proteome Res.2007,6:3581-3603
    CLOSE TJ. Dehydrins:emergence of a biochemical role of a family plant dehydration proteins[J].Plant Physiol.1996,97:795~801
    Condit CM, Meagher RB.A gene encoding a novel glycine-rich structural protein of petunia[J].Nature.l986,323,178-181
    Conti A, Fortunato D, Ortolani C, et al. Determination of the primary structure of two lipid transfer proteins from apricot (Prunus armeniaca) [J].J Chromatogr B Biomed Sci Appl.2001,756 (122):123-129
    Das S, Shetty P, Valapala M, et al. Signal transducer and activator of transcription 6 (STAT6) is a novel interactor of annexin A2 in prostate cancer cells[J].Biochemistry.2010,49(10):2216-26
    Deng Z, Zhang X, Tang W, et al. A proteomics study of brassinosteroid response in Arabidopsis[J].Mol Cell Proteomics.2007,6:2058-2071
    DUNAEVA M,ADAMSKA I. Identification of genes expressed in response to light stress in leaves of Arabidop sisthaliana using RNA differential display[J].Eur J Biochem,2001.268(21):5521-55291
    Dure Ⅲ L, Crouch M, Harada J, et al. Common amino acid sequence domains among the LEA proteins of higher plants [J].Plant Molecular Biology.1989,12(5):475-486
    Dure Ⅲ L,Chlan CA. Developmental biochemistry of cotton seed embryogenesis and germination. X Ⅱ. Purufication and properties of principle storage protein [J].Plant physiol.1981,63:180-186
    Ebert M P,Kruger S,Fogeron M L,et al.Overexpression of cathepsin B in gastric cancer identified by proteome analysis[J].Proteomics.2005,5(6):1693—1704
    Espelund M, Saeboe-Larssen S, Hughes DW, et al. Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress [J]. Plant J.1992,2(2):241-252
    Feschotte C, Jiang N, Wessler S R. Plant transposable elements:where genetics meets genomics[J].Nat Rev Genet.2002,3:329-341
    Franco LO, de Oliveir DE, Sachetto-Martins G. Plant glycine-rich proteins:a family or just proteins with a common motif[J].Biochim Biophys Acta.2000,1492(1):1-14
    Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, et al. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit[J]. J Biol Chem. 2000,275(8):5668-5674
    Glokler J,Angenendt P.Protein and antibody microarray technology[J] J Chromatogr B Analyt Technol Biomed Life Sci.2003,717(1-2):229-240
    Gorg A, Weiss W, Dunn M J. Current two-dimensional electrepheresis technology for proteomics[J].Proteomics.2004,4(12):3665-3685
    Habash DZ, Massiah AJ, Rong HL, et al. The role of cytosolic glutamine synthetase in wheat[J].Annals of Applied Biology.2001,138(1):83-89
    Harrison J, Crescenzo MP, Sene O, et al. Does Lowering Glutamine synthetase activity in nodules modify nitrogen metabolism and growth of Lotus japonicas[J].Plant Physiology.2003,133(1):253-262
    Hartman NT, Sicilia F, Lilley KS, Dupree P.Proteomic complex detection using sedimentation[J].Anal Chem.2007,79:2078-2083
    Hsing YI, Chen ZY, Chow TY. Nucleotide sequences of a soybean complementary DNA encoding a 50-kilodalton late embryogenesis abundant protein[J]. Plant Physiol.1992,99(1):354-355
    Hundertmark M, Hincha DK. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana [J]. BMC Genomics.2008,9:118
    Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants[J].Annu Rev Plant Physiol Plant Mol Biol.1996,47:377-403
    Jiang G, Wang Z, Shang H, et al. Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration[J].Planta.2007,225:1405-1420
    Jiang YQ, Deyholos MK. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes [J].BMC Plant Biol.2006,6:25
    Jones BL, Marinac LA. Purification and partial characterization of a second cysteine proteinase inhibitor from ungerminated barley (Hordeum vulgare L.) [J].J Agric Food Chem.2000, 48(2):257-264
    Kader JC. Lipid transfer proteins in plants [J].Annu Rev Plant Physiol Plant Mol Biol.1996,47:627- 654
    Kang SG, Matin MN, Bae H, Natarajan S. Proteome analysis and characterization of phenotypes of lesion mimic mutant spotted Leaf in rice [J].Proteomics.2007,7:2447-2458
    Kathuria H,Giri J,Nataraja KN,et al. Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes[J].Plant Biotechnol J.2009,7(6):512-526
    Kawasaki S,Borchert C,Deyholos M,et al. Gene expression profiles during the initial phase of salt stress in rice[J].Plant Cell.2001,13(4):889-905
    Kim HS, Lee JH, Kim JJ, et al. Molecular and functional characterization of CaLEA6,the gene for a hydrophobic LEA protein from Capsicum annuum[J]. Gene.2005,344:115-123
    Koag MC, Wilkens S, Fenton RD, et al. The-K segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes[J].Plant Physiol.2009,150(3):1503-1514
    Komatsu M, Shimamoto K, Kyozuka J. Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma[J].Plant Cell.2003,15:1934-1944
    Komatsu S, Yang G, Khan M, et al. Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants [J].Mol Genet Genomics. 2007,277:713-723
    Krishnaswamy SS, Srivastava S, Mohammadi M, et al. Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana[J].BMCPlantBiology.2008,8:91
    Lanquar V, Kuhn L, Lelievre F, et al.15N-metabolic labeling for comparative plasma membrane proteomics in Arabidopsis cells[J].Proteomics.2007,7:750-754
    Lemaire R, Desmons A, Tabet JC, et al. Direct analysis and MALD imaging of formalin-fixed, paraffin-embedded tissue sections [J] J Proteome Res.2007,6(4):1295-1305
    Li L, Chen SH, Yu CH, et al. Identification of hepatoeellular carcinoma associated antigens and autoantibodies by serological proteome analysis combined 试m protein micronnay[J].J Proteome Res.2008,7(2):611-620
    Liu AX, Dong HS, Liang CY, et al. Inhibition of tobacco chitinase and β-1,3 glucanase to some pathogenic fungi (in Chinese) [J]. Microbiology.1999,26 (1):15-17
    Liu D, Luo JC, Zhu Y X, et al. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array[J]. Nucleic Acids Research.2003,31(10):2534-2543
    Lopachin RM, Jones RC, Patterson TA, et al. Application of proteomics to the study of molecular mechanisms in merrotoxicology[J].R.M.Neuro Toxicology.2003,24:761-775
    Majeran W, Zybailov B, Ytterberg AJ, et al. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophy 11 and bundle sheath cells[J].Mol Cell Proteomics. 2008,7:1609-1638
    MANFRE AJ,LANN IL M,MARCOTTEW R JRl.The Arabidopsis group 1 late embryogenesis abundnt protein AIEM6 is required far nomel seed development[J].Plant Physiol.2006,140 (1): 140-1491
    MICHIELS S,KOSCIELNY S,HILL C. Prediction of cancer outcome with microarrays:A multiple random validation strategy [J].Lancet.2005,365 (9458):488-492
    Mosavi LK, Minor DL Jr, Peng ZY. Consensus-derived Structural Determinants of the Ankyrin Repeat Motif [J]. Proc Natl Acad Sci USA.2002,99(25):160292-16034
    Narendra Tuteja. A method to confer salinity stress tolerance to plants by helicase overexpression [J]. Methods Mol Biol.2010,587:377-87
    Natarajan S, Xu C, Bae H, et al. Proteomic and genetic analysis of glycinin subunits of sixteen soybean genotypes[J].Plant Physiol Biochem.2007,45:436-444
    Natarajan S, Xu C, Bae H, et al. Proteomic and genomic characterization of Kunitz trypsin inhibitors in wild and cultivated soybean genotypes[J].J Plant Physiol.2007,164:756-763
    Nishizuka S, Charboneau L, Young L, et al. Proteomic profiling of the NCI cancer cell lines using new high-density reverse-phase lysate microarrays[J].Proc Natl Acad Sci USA.2003,100(24):14229-14234
    Oki M, Aihara H,Ito T. Role of histone phosphorylation in chromatin dynamics and its implications in diseases[J].Subcell Biochem.2007,41:319-336
    Paper JM, Scott-Craig JS, Adhikari ND, et al. Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum[J].Proteomics. 2007,7:3171-3183
    Park OK. Proteomic studies in plants[J] Journal of Biochemistry and Molecular Biology.2004,37 (1):133-138
    Patterson J, Ford K, Cassin A, et al. Increased abundance of proteins involved in phytosiderophore production in boron-tolerant barley[J].Plant Physiol.2007,144:1612-1631
    Patterson J, Ford K, Cassin A, et al. Increased abundance of proteins involved in phytosiderophore production in boron-tolerant barley[J].Plant Physio.2007,144:1612-1631
    Pawlowski TA. Proteomics of European beech (Fagus sylvatica L.)seed dormancy breaking: influence of abscisic and gibberellic acids[J].Proteomics.2007,7:2246-2257
    Posas F, Chambers JR, Heyman JA, et al. The Transcriptional Response of Yeast to Saline Stress [J]. J Biol Chem.2000,275(23):17249-55
    Pyee J, Yu H, Kolattukudy PE. Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. [J]. Arch Biochem Biophys.1994,311 (2):460-468
    Rausell A, Kanhonou R, Yenush L, et al. The translation initiation factor e IFIA is an important determinant in the tolerance to NaCl stress in yeast and plants [J]. Plant J.2003,34 (3):257-267
    Ring C, Keller B, Ryser U. Glycine-rich proteins as structural components of plant cell walls[J].Cell MolLifeSci.2001,58 (10):1430-1441
    Rltsema T, Joore J, van Workum W, et al. Kinome profiling of Arabidopsis using arrays of kinase consensussubstrates[J].Plant Methode.2007,12:3-3
    Rorat T. Plant dehydrins — tissue location,structure and function[J]. Cell Mol Biol Lett.2006,11(4):536-556
    Ryan RP,McCarthy Y,Andrade M,et al. Cell-cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris [J].Proc Natl Acad Sci USA.2010,107(13):5989-94
    Sakuta C, Satoh S. Vascular tissue-specific gene expression of xylem sap glycine-rich proteins in root and their localization in the walls of metaxylem vessels in cucumber[J]. Plant Cell Physiol.2000,41(5):627-638
    Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNAmicroarray[J]. Science.1995,270:467-470
    SHAO HB, LIANG ZS, SHAO MA.LEA proteins in higher plants:Structure, function gene expression and regulation[J].Colloids and Surfaces B:Biointerfaces.2005,45(3-4):131-135
    SHEN Q, HO TH. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element [J].Plant Cell.1995,7(3):295-307
    Shen Z, Li P Ni RJ, et al. Label-free Quantitative Proteomics Analysis of Etiolated Maize Seedling Leaves during Greening [J]. Mol Cell Proteomics.2009 8(11):2443-60
    Shinozaki K, Yamaguchi shinozaki K. Gene expression and signal transduction in water stress response [J].Plant Physiol.1997,115:327-334
    Singh S, Cornilescu CC, Tyler R C, et al. Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein[J].Protein Sci.2005,14 (10):2601-2609
    Skinne HB, McGee TP, McMster CR, et al. The Saccharomyces cerevisiae phosphatidylinositol transfer protein effects a ligand dependent inhibition of choline-phosphate cytidylyl transferase activity [JJ.Proc Natl Acad Sci USA.1995,92(1):112-116
    Smith SA, Blake TA, Ifa DR, et al. Dual-source mass spectrometer with MALDI-LIT-ESI configuration[J].J Proteome Res.2007,6:837-845
    Stahl R,Horvath H,Van Fleet J, et al. T-DNA integration into the barley genome from single and double cassette vectors[J].Proc Natl Acad Sci USA.2002,99(4):2146-51
    Sun LP, Li DQ. Progress in molecular biology of LEA protein [J].Biotechnology Bulletin.2003 (6): 628 (in Chinese)
    Szymkowiak EJ, Sussex IM. The internal meristem layer (L3) determines floral meristem size and carpel number in tomato periclinal chimeras [J].Plant Cell.1992,4:1089-1100
    Taji T, Seki M, Satou M, Sakurai T, et al. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt Cress using Arabidopsis microarray [J].Plant Physiol.2004,135(3):1697-1709
    Torres-Padilla ME, Parfitt DE, Kouzarides T, et al. Histone arginine methylation regulates pluripotency in the early mouse embryo [J]. Nature.2007,445 (7124):214-218
    Vincent D, Ergul A, Bohlman MC, et al. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. [J] J Exp Bot.2007,58:1873-1892
    Wang L, Li X, Chen S, et al. Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3[J].Biotechnol Lett.2009,31(2):313-319
    Wang YC,Jiang J,Zhao X,Liu GF, et al. A novel LEA gene from Tamarix androssowii confers drought tolerance in transgenic tobacco [J]. Plant Science.2006,171(6):655-662
    Washburn MP, Koller A, Oshiro G, et al. Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae[J].Proc Natl Acad Sci USA.2003,100(6):3107-3112
    Washburn MP, Wolters D, and Yates III JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology[J]. Nature biotechnology.2001,19:242-247
    Werck-Reichhart D,Feyereisen R. Cytochromes P450:a success story[J]. Genome Biology.2000,1(6):3003.1-3.003.9
    Wiedmann B, Sakai H, Davis TA, Wiedmann M. A protein complex required for signal sequence specific sorting and translocation [J]. Nature.1994,370:434-440
    Wilson D S. Recent developments in protein microarray technology [J].Angew Chem Int Ed Engl.2003,42(5):494-500
    Wise MJ, Tunnacliffe A. POPP the question:what do LEA proteins do? [J].Trends Plant Sci.2004, 9(1):13-17
    Yang KS, Kim HS, Jin UH, et al. Silencing of NbBTF3 results in developmental defects and disturbed gene expression in chloroplasts and mitochondria of higher plants[J]. Planta.2007,225: 1459-1469
    Yosuke Kimure, Saorio Shimada, Ryochei Sogo, et al. OARE21,A Tylcopia retrotransposon in Oat activated by Abiotic and Biotic[J].Plant Cell Physiol.2001,42 (12):1345-1354
    Yu K, Salomon AR. HTAPP:high-throughput autonomous proteomic pipeline[J].Proteomics.2010
    Zhang Y,Cao G,Qu LJ,Gu H. Involvement of an R2R3-MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis [J].Plant Cell Rep.2009,28(3):337-46
    Zhou JL, Wang XF, Jiao YL, et al. Global genome expression analysis of rice in response to drought an d high-salinity stresses in shoot,flag leaf,and panicle[J].Plant Mof Biol.2007,63(5):591-608
    Zhu JK. Salt and Drought Stress Signal Transduction in Plants[J]. Annual Review of Plant Biology.2002,53:247-273
    Zhu Y,Wang Z,Jing Y, et al. Ectopic over-expression of BhHsfl,a heat shock factor from the resurrection plant Boea hygrometrica, leads to increased thermotolerance and retarded growth in transgenic Arabidopsis and tobacco. Plant Mol Biol.2009,71(4-5):451-67
    Zybailov B, Rutschow H, Friso G, et al.Sorting signals,N-terminal modifications and abundance of the chloroplast proteome[J]. PLoS One.2008,23;3(4):e1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700