一氧化氮对棉花叶片衰老过程中抗氧化物酶及叶片蛋白质组的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究短季棉早衰的机理及一氧化氮(NO)对短季棉叶片蛋白质组的影响,本试验选用2个早熟不早衰(中棉所16和辽4086)和1个早熟早衰(中棉所10)的短季棉品种作为试验材料,对大田条件下叶片衰老不同阶段的各种生理指标、抗氧化物酶活性及编码基因和室内条件下叶片衰老中NO对抗氧化物酶的作用进行了研究;同时利用非定量标记法分析了NO对棉花叶片蛋白质组的作用和影响。主要研究结果如下:
     自然条件下,35天是早衰和不早衰两种短季棉材料叶片衰老发生差异的一个关键时期。早衰材料中H2O2和MDA的含量高于不早衰材料;NO含量在衰老叶片中迅速降低,同时早衰材料中NO含量更低且下降的更快,NO可能是延缓叶片衰老的一个重要因素。
     早衰类型材料中AsA的含量低于不早衰材料,GSH含量在叶片的整个生育进程和不同材料之间都没有显著的差异,这暗示着叶片衰老过程中AsA在清除ROS方面比GSH发挥着更为重要的作用。不早衰材料中CAT的活性显著高于早衰材料,基因的表达量变化和酶活性一致。APX活性差异出现在35至50天之间,基因的表达量和酶活性的趋势相似。Mn-SOD在短季棉叶片衰老过程中没有明显的变化,Fe-SOD基因的相对表达量在三个材料中表现趋势相同且没有显著差异。eCu/Zn-SOD和cCu/Zn-SOD在清除ROS和延缓衰老方面比ChlCu/Zn-SOD发挥着更为重要的作用。总的POD活性随着叶片的衰老而迅速增加,POD可能并不清除H2O2而是起到产生H2O2的作用。
     室内条件下,外施SNP溶液后的植株,其NO含量在子叶的整个生育期都比对照组高且差异显著。在同一时期,处理组中CAT和APX的活性显著高于对照组,在生育后期表现的更为明显。外施SNP可显著降低参试品种POD的活性和相关基因的表达。外源NO对SOD的活性有先抑制后促进的作用。不同类型的SOD对NO的反应不同,Cu/Zn SOD的反应最敏感,其中又以cCu/Zn SOD基因的作用更为突出。NO通过调控植株体内一系列的CAT、APX、POD和SOD等氧化/抗氧化系统,延缓叶片的衰老进程。
     本试验首次利用非定量标记法分析不同浓度的NO对棉花叶片蛋白质组的影响,一共得到了121个差异表达蛋白,这些蛋白按照功能分为13类,已知定位的蛋白分布在叶绿体、高尔基体、细胞质和线粒体中。信号通路分析发现,NO广泛地参与细胞的各种生理活动,并且对光合作用、氧化磷酸化和蛋白质加工过程产生了明显的调控作用。高浓度的NO会对细胞产生毒害作用,并且这种毒害作用可能是通过抑制光合元件的表达、减弱ATP合成能力及引起蛋白质错误折叠和装配而产生的。
To study the mechanism of early senescence and the effect of NO on leaf proteome in short season cotton, 2 cultivars with non-premature senescence (CCRI16 and Liao4086) trait and 1 clutivar with premature senescence (CCRI10) trait were selected as the experiment samples. Under field condition, various physiological parameters,activity of anti-oxidative enzymes and their corresponding genes were investigated at different stage of leaf senescence; under indoor condition, the effect of NO on anti-oxidative enzymes were also studied. Meanwhile, the effect of NO on cotton leaf proteome was also analyzed by using label-free method. The results are as follows:
     Under natural condition, the 35 day can be regarded as a watershed for the onset of leaf senescence in the two genotypes. The content of H2O2 and MDA was higher in the premature senescence (PS) genotype than in the non-premature senescence (NPS) plants; the content of NO decreased sharply and was significantly lower in PS than that of NPS cultivar at the late stage of leaf senescence, hence NO might be important factor delaying leaf senescence.
     The AsA concentration was lower in the PS genotype when compared with NPS genotype, and no significant distinction of GSH in both genotypes was observed throughout the whole lifespan of leaf development and among different materials. It is suggested AsA plays a more crucial role than GSH in terms of ROS scavenging during cotton leaf senescence. The activity of CAT was significantly higher in the NPS plant than in the PS plant, and change in its relative mRNA expression of CAT was consistent with enzyme activity. The activity of APX differed significantly between the NPS and PS from 35- to 50-days and the relative mRNA expression level of APX exhibited the similar pattern with its coresponding enzyme activity. No significant change in the relative expression level of Mn-SOD during leaf aging was observed; throughout the whole leaf development, there was also no significant difference of the relative expression level of Fe-SOD among the three cotton genotypes. The cCu/Zn-SOD and eCu/Zn-SOD play more pronounced roles than chloroplastic Cu/Zn-SODs in terms of ROS scavenging and delaying senescence. Overall POD activity in leaf increased strikingly when undergoing natural senescence, therefore it is suggested that POD did not act to eliminate H2O2 but involved in H2O2 generation.
     Under indoor condition, after exogenous application of SNP, the NO content was significantly higher in the treatment group than that of control group during the whole cotyledon development stage. At the same stage, the activity of CAT and APX in treatment group was significantly higher than that of control group, especially at the late stage of cotyledons. The activity of POD and its gene expression substantially declined in the subject cultivar by exogenous spray of SNP. Although exogenous NO could inhibit the activity of SOD at early stage of cotyledon development, the treatment group demonstrated greater SOD activity than that of control group with the advancement of leaf senescence. The responses to NO varied among different types of SOD, and the Cu/Zn SOD was the most sensitive isoforms among which cCu/Zn SOD’s genes played a more potent role. The physiological and molecular mechanism underlying the delaying effect of NO on leaf senescence is thus revealed by fine coordination of the activity of oxidation and anti-oxidation systems (CAT, APX, POD and SOD) in plant.
     To date, it is the first time that the effect of different concentrations of NO on the leaf proteome in cotton was investigated using the label-free approach. In this study, 121 differentially expressed proteins were obtained which were functionally divided into 13 groups and spread accross chloroplast, Gogi apparatus, cytoplasm and mitochondria. The pathway analysis demonstrated that NO involved in various physiological activities and had a pronounced impact on photosynthesis, oxidative phosphorylation and protein processing. High concentrations of NO could constitute a toxic threat on cells and the toxic effect may be induced by inhibiting expression of photosynthetic components, decreasing the capability of ATP synthesis and leading to the misfold and assembly of proteins.
引文
1.陈明,应万涛,方勤美,孙薇,贺福初,钱小红.基于液相色谱质谱联用的蛋白质组非标记定量研究策略的建立及应用.生物化学与生物物理进展, 2008, 35:401-409
    2.丁鸿,邱东萍.蛋白质组学研究技术综述.江西农业学报, 2008, 20:88-90
    3.皇甫海燕,官春云,郭宝顺,张秀英.蛋白质组学及植物蛋白质组学研究进展.作物研究, 2006, 20:577-581
    4.刘维仲,张润杰,裴真明,何奕昆.一氧化氮在植物中的信号分子功能研究,进展和展望自然科学进展, 2008, 18:10-24
    5.陆定志,傅家瑞,宋松泉.植物衰老及其调控.北京:中国农业出版社, 1997, 267:66-60
    6.潘瑞炽.植物生理学.北京:高等教育出版社,2004, 273-277
    7.潘瑞炽.植物生理学.北京:高等教育出版社. 2001,70-73
    8.沈法富.短季棉衰老的激素变化及衰老相关基因的克隆[博士学位论文].北京:中国农业科学院, 2004
    9.宋慧,冯佰利,高小丽,高金锋,王鹏科,柴岩,张盼盼.不同小豆品种(系)叶片衰老与活性氧代谢.作物学报, 2009,36:347-353
    10.宋美珍.短季棉早熟不早衰生化遗传机制及QTL定位. 2006, 14-16
    11.王镜岩,朱圣庚,徐长法.生物化学.北京:高等教育出版社. 2002, 214-224
    12.王鹏程,杜艳艳,宋纯鹏.植物细胞一氧化氮信号转导研究进展.植物学报, 2009, 517-525
    13.王英超,党源,李晓艳,王兴龙.蛋白质组学及其技术发展.生物技术通讯, 2010,139-144
    14.卫功宏,印莉萍.蛋白质组学相关概念与技术及其研究进展.生物学杂志, 2002, 19:1-3
    15.喻树迅,储钟稀.短季棉子叶荧光动力学及SOD酶活性的研究.中国农业科学, 1993, 26:14-20
    16.喻树迅,聂先舟.不同短季棉品种衰老过程生化机理的研究.作物学报, 1994, 20:629-636
    17.喻树迅,宋美珍,范术丽,原日红.短季棉早熟不早衰生化辅助育种技术研究.中国农业科学, 2005, 38:664-670
    18.喻树迅.我国短季棉50年早熟性育种成效研究与评价.棉花学报, 2005, 17:294-298
    19.喻树迅.中国短季棉育种学.北京:科学出版社. 2007,10-15
    20.翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社. 2000,164-172
    21.詹显全,陈主初.蛋白质组中蛋白质鉴定技术的研究近况.国外医学:分子生物学分册, 2002, 24:129-133
    22.张阿英. MAPK在ABA诱导的玉米叶片抗氧化防护中的作用[博士学位论文].南京:南京农业大学,2006
    23.张洪艳,赵小明,白雪芳,杜昱光.植物体内一氧化氮合成途径研究进展.西北植物学报, 2009, 1496-1506
    24. Alamillo JM, García‐Olmedo F. Effects of urate, a natural inhibitor of peroxynitrite‐mediated toxicity, in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. The Plant Journal, 2001, 25:529-540
    25. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochemical Journal, 2001, 357:593-615
    26. Almagro L, Gómez Ros L, Belchi-Navarro S, Bru R, Ros BarcelóA, Pedre o M. Class III peroxidases in plant defence reactions. Journal of experimental botany, 2009, 60:377-390
    27. Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants: relationships in green cells. Physiologia Plantarum, 1997, 100:224-233
    28. Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of experimental botany, 2002, 53:1331-1341
    29. Anderson L, Mansfield T. The effects of nitric oxide pollution on the growth of tomato. Environmental Pollution, 1979, 20:113-121
    30. Arasimowicz M, Floryszak-Wieczorek J. Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Science, 2007, 172:876-887
    31. Asai S, Ohta K, Yoshioka H. MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. The Plant Cell 2008, 20:1390-1406
    32. Barroso JB, Corpas FJ, Carreras A, Rodríguez-Serrano M, Esteban FJ, Fernández-Oca a A, Chaki M, Romero-Puertas MC, Valderrama R, Sandalio LM. Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. Journal of Experimental Botany, 2006, 57:1785-1793
    33. Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupiáez JA, del R o LA. Localization of nitric-oxide synthase in plant peroxisomes. Journal of Biological Chemistry, 1999, 274:36729-36733
    34. Beligni MV, Lamattina L. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta, 1999, 208:337-344
    35. Beligni MV, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta, 2000, 210:215-221
    36. Bethke PC, Badger MR, Jones RL. Apoplastic synthesis of nitric oxide by plant tissues. The Plant Cell Online, 2004, 16:332-341
    37. Briesemeister S, Blum T, Brady S, Lam Y, Kohlbacher O, Shatkay H. SherLoc2: a high-accuracy hybrid method for predicting subcellular localization of proteins. Journal of Proteome Research, 2009, 8:5363-5366
    38. Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. ABA‐induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. The Plant Journal, 2006, 45:113-122
    39. Buchanan-Wollaston V, Ainsworth C. Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridisation. Plant Molecular Biology, 1997, 33:821-834
    40. Byrne ME. Networks in leaf development. Current opinion in plant biology, 2005, 8:59-66
    41. Caro A, Puntarulo S. Nitric oxide decreases superoxide anion generation by microsomes from soybean embryonic axes. Physiologia Plantarum, 1998, 104:357-364
    42. Chandok MR, Ekengren SK, Martin GB, Klessig DF. Suppression of pathogen-inducible NO synthase (iNOS) activity in tomato increases susceptibility to Pseudomonas syringae. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101:8239-8244
    43. Chandok MR, Ytterberg AJ, van Wijk KJ, Klessig DF. The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell, 2003, 113:469-482
    44. Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant physiology, 2007, 145:890-904
    45. Clark D, Durner J, Navarre DA, Klessig DF. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Molecular plant-microbe interactions, 2000, 13:1380-1384
    46. Cooney RV, Harwood PJ, Custer LJ, Franke AA. Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Environmental Health Perspectives, 1994, 102:460-462
    47. Corpas FJ, Barroso JB, Carreras A, Quiros M, Leon AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiology, 2004, 136:2722-2733
    48. Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, León AM, Sandalio LM, del Río LA. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta, 2006, 224:246-254
    49. Courtois C, Besson A, Dahan J, Bourque S, Dobrowolska G, Pugin A, Wendehenne D. Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. Journal of Experimental Botany, 2008, 59:155-163
    50. Crawford NMGM, Tischner RHYM, Okamoto MMA. Response to Zemojtel et al: Plant nitric oxide synthase: back to square one. Trends in Plant Science, 2006, 11:526-526
    51. Cueto M, Hernández-Perera O, Martín R, Bentura ML, Rodrigo J, Lamas S, Golvano MP. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS letters, 1996, 398:159-164
    52. De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, Sanita di Toppi L, Lo Schiavo F. Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiology, 2009, 150:217-228
    53. de Pinto MC, Tommasi F, De Gara L. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells. Plant Physiology, 2002, 130:698-708
    54. Dean RA, Overall CM. Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ(tm) labeling reveals a diverse MMP-2 substrate degradome. Molecular & Cellular Proteomics, 2007, 6:611-623
    55. Del Río LA, Sandalio LM, Altomare DA, Zilinskas BA. Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. Journal of Experimental Botany, 2003, 54:923-933
    56. Delledonne M, Zeier J, Marocco A, Lamb C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98:13454-13459
    57. DeRidder BP, Salvucci ME. Modulation of Rubisco activase gene expression during heat stress in cotton (Gossypium hirsutum L.) involves post-transcriptional mechanisms. Plant Science, 2007, 172:246-254
    58. Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. Journal of Experimental Botany, 2004, 55:205-212
    59. Desikan R, Griffiths R, Hancock J, Neill S. A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsisthaliana. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99:16314-16318
    60. Díaz M, Achkor H, Titarenko E, Martínez MC. The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS letters, 2003, 543:136-139
    61. DORDAS C, RIVOAL J, HILL RD. Plant haemoglobins, nitric oxide and hypoxic stress. Annals of Botany, 2003, 91:173-178
    62. Durner J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95:10328-10333
    63. Durzan DJ, Pedroso MC. Nitric oxide and reactive nitrogen oxide species in plants. Biotechnology and Genetic Engineering Reviews, 2002, 293-338
    64. Farias-Eisner R, Chaudhuri G, Aeberhard E, Fukuto JM. The chemistry and tumoricidal activity of nitric oxide/hydrogen peroxide and the implications to cell resistance/susceptibility. Journal of Biological Chemistry, 1996, 271:6144-6151
    65. Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ. A central role for S-nitrosothiols in plant disease resistance. Science's STKE, 2005, 102:8054-8059
    66. Ferrer M, Ros BarcelóA. Differential effects of nitric oxide on peroxidase and H2O2 production by the xylem of Zinnia elegans. Plant, Cell & Environment, 1999, 22:891-897
    67. Flores FB, Sánchez-Bel P, Valdenegro M, Romojaro F, Martínez-Madrid MC, Egea MI. Effects of a pretreatment with nitric oxide on peach (Prunus persica L.) storage at room temperature. European Food Research and Technology, 2008, 227:1599-1611
    68. Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR. Nitric oxide regulates K+ andCl-channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100:11116-11121
    69. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48:909-930
    70. Godber BLJ, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. Journal of Biological Chemistry, 2000, 275:7757-7763
    71. Guo FQ, Crawford NM. Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 2005, 17:3436-3450
    72. Guo FQ, Okamoto M, Crawford NM. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science, 2003, 302:100-103
    73. Harrison R. Structure and function of xanthine oxidoreductase: where are we now? Free Radical Biology and Medicine, 2002, 33:774-797
    74. Hayashi K, Noguchi N, Niki E. Action of nitric oxide as an antioxidant against oxidation of soybean phosphatidylcholine liposomal membranes. FEBS letters, 1995, 370:37-40
    75. He JM, Xu H, She XP, Song XG, Zhao WM. The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Functional Plant Biology, 2005, 32:237-247
    76. He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F. Nitric oxide represses the Arabidopsis floral transition. Science, 2004, 305:1968-1971
    77. Hebelstrup KH, Jensen E. Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana. Planta, 2008, 227:917-927
    78. Henry Y, Ducastel B, Guissani A. Basic chemistry of nitric oxide and related nitrogen oxides. Nitric oxide research from chemistry to biology: EPR spectroscopy of nitrosylated compounds, 1997, 15-46
    79. HK L. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology, 1987, 148:350-382
    80. Hong JK, Yun BW, Kang JG, Raja MU, Kwon E, Sorhagen K, Chu C, Wang Y, Loake GJ. Nitric oxide function and signalling in plant disease resistance. Journal of Experimental Botany, 2007, 147-154
    81. Hung KT, Kao CH. Nitric oxide acts as an antioxidant and delays methyl jasmonate-inducedsenescence of rice leaves. Journal of plant physiology, 2004, 161:43-52
    82. Hung KT, Kao CH. Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. Journal of plant physiology, 2003, 160:871-879
    83. Hung KT, Kao CH. Nitric oxide counteracts the senescence of rice leaves induced by hydrogen peroxide. Botanical Bulletin of Academia Sinica, 2005, 46:21-28
    84. Imonovi ováM, HuttováJ, Mistrik I, irokáB, Tamás L. Root growth inhibition by aluminum is probably caused by cell death due to peroxidase-mediated hydrogen peroxide production. Protoplasma, 2004, 224:91-98
    85. Jasid S, Galatro A, Villordo JJ, Puntarulo S, Simontacchi M. Role of nitric oxide in soybean cotyledon senescence. Plant Science, 2009, 176:662-668
    86. Jimenez A, Hernandez JA, Pastori G, Del Río LA, Sevilla F. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiology, 1998, 118:1327-1335
    87. Klepper L. NOx evolution by soybean leaves treated with salicylic acid and selected derivatives* 1. Pesticide biochemistry and physiology, 1991, 39:43-48
    88. Kliebenstein DJ, Monde RA, Last RL. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiology, 1998, 118:637-650
    89. Kuo W, Ku T, Jones D, Jn-Baptiste J. Nitric oxide synthase immunoreactivity in baker's yeasts, lobster, and wheat germ. Biochemical archives, 1995, 11:73-78
    90. Lamotte O, Courtois C, Dobrowolska G, Besson A, Pugin A, Wendehenne D. Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells. Free Radical Biology and Medicine, 2006, 40:1369-1376
    91. Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. The Plant Cell Online, 2002, 14:2627-2641
    92. Lee S, Lee DW, Lee Y, Mayer U, Stierhof YD, Jürgens G, Hwang I. Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. The Plant Cell 2009, 21:3984-4001
    93. Leshem Y, Haramaty E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. Journal of plant physiology, 1996,148:258-263
    94. Leshem YY, Pinchasov Y. Non‐invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch.) and avocados Persea americana (Mill.). Journal of Experimental Botany, 2000, 51:1471-1473
    95. Leshem YY, Wills RBH, Ku VVV. Evidence for the function of the free radical gas--nitric oxide (NO-)--as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiology and Biochemistry, 1998, 36:825-833
    96. Leshem YY. Nitric oxide in biological systems. Plant Growth Regulation, 1996, 18:155-159
    97. Leshem YY. Nitric oxide in plants: Occurrence and function. Kluwer Academic Publishers, Dordrecht. 2000,
    98. Li GZ, Vissers JPC, Silva JC, Golick D, Gorenstein MV, Geromanos SJ. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics, 2009, 9:1696-1719
    99. Lindermayr C, Saalbach G, Bahnweg G, Durner J. Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. Journal of Biological Chemistry, 2006, 281:4285-4291
    100. Lindermayr C, Saalbach G, Durner J. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiology, 2005, 137:921-930
    101. Lu J, Ertl JR, Chen C. Transcriptional regulation of nitrate reductase mRNA levels by cytokinin-abscisic acid interactions in etiolated barley leaves. Plant Physiology, 1992, 98:1255-1260
    102. Ma W, Smigel A, Walker RK, Moeder W, Yoshioka K, Berkowitz GA. Leaf senescence signaling: The Ca2+-conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming. Plant Physiology, 2010, 154:733-743
    103. Magalhaes J, Monte D, Durzan D. Nitric oxide and ethylene emission in Arabidopsis thaliana. Physiology and Molecular Biology of Plants, 2000, 6:117-127
    104. Mallick N, Mohn FH, Rai L, Soeder C. Evidence for the non-involvement of nitric oxide synthase in nitric oxide production by the green alga Scenedesmus obliquus. Journal of plant physiology, 2000, 156:423-426
    105. Manjunatha G, Lokesh V, Neelwarne B. Nitric oxide in fruit ripening: Trends and opportunities.iotechnology Advances, 2010, 28:489-499
    106. Mayer B, Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells. Trends in Biochemical Sciences, 1997, 22:477-481
    107. Millar T, Stevens C, Blake D. Xanthine oxidase can generate nitric oxide from nitrate in ischaemia. Biochemical Society Transactions, 1997, 25:528S
    108. MISHINA TE, Lamb C, ZEIER J. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant, Cell & Environment, 2007, 30:39-52
    109. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002,:405-410
    110. Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T, QuilleréI, Leydecker M, Kaiser W, Morot-Gaudry J. Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta, 2002, 215:708-715
    111. Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R, Shono Y, Nagata N, Ikeuchi M, Shinozaki K. A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. The Plant Cell Online, 2008, 20:3148-3162
    112. Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I. Nitric oxide, stomatal closure, and abiotic stress. Journal of Experimental Botany, 2008, 59:165-176
    113. Neill SJ, Desikan R, Hancock JT. Nitric oxide signalling in plants. New Phytologist, 2003, 159:11-35
    114. Niewiadomska E, Polzien L, Desel C, Rozpadek P, Miszalski Z, Krupinska K. Spatial patterns of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves. Journal of plant physiology, 2009, 166:1057-1068
    115. Ninnemann H, Maier J. Indications for the Occurrence of Nitric Oxide Synthases in Fungi and Plants and the Involvement in Photoconidiation of Neurospora crassa*. Photochemistry and Photobiology, 1996, 64:393-398
    116. Nishimura H, Hayamizu T, Yanagisawa Y. Reduction of nitrogen oxide (NO2) to nitrogen oxide (NO) by rush and other plants. Environmental Science & Technology, 1986, 20:413-416
    117. Ono M, Shitashige M, Honda K, Isobe T, Kuwabara H, Matsuzuki H, Hirohashi S, Yamada T. Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry. Molecular & Cellular Proteomics, 2006, 5:1338-1347
    118. Pagnussat GC, Lanteri ML, Lamattina L. Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiology, 2003, 132:1241-1248
    119. Pan Y, Wu LJ, Yu ZL. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regulation, 2006, 49:157-165
    120. Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman DW, Goldman SL. Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechnology Journal, 2004, 2:359-366
    121. Pastori GM, del Rio LA. Natural senescence of pea leaves (an activated oxygen-mediated function for peroxisomes). Plant Physiology, 1997, 113:411-418
    122. Planchet E, Jagadis Gupta K, Sonoda M, Kaiser WM. Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. The Plant Journal, 2005, 41:732-743
    123. Qiao W, Fan LM. Nitric oxide signaling in plant responses to abiotic stresses. Journal of Integrative Plant Biology, 2008, 50:1238-1246
    124. Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101:4003-4008
    125. Ribeiro Jr EA, Cunha FQ, Tamashiro W, Martins IS. Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS letters, 1999, 445:283-286
    126. Rio LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB. Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB life, 2003, 55:71-81
    127. Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany, 2002, 53:103-110
    128. Romero‐Puertas MC, Perazzolli M, Zago ED, Delledonne M. Nitric oxide signalling functions in plant–pathogen interactions. Cellular microbiology, 2004, 6:795-803
    129. Romijn EP, Krijgsveld J, Heck AJR. Recent liquid chromatographic-(tandem) mass spectrometric applications in proteomics. Journal of Chromatography A, 2003, 1000:589-608
    130. Saher S, Piqueras A, Hellin E, Olmos E. Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress. Physiologia Plantarum, 2004, 120:152-161
    131. She XP, Song XG, He JM. Role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia faba.植物學報, 2004, 46:1292-1300
    132. Shen Z, Li P, Ni RJ, Ritchie M, Yang CP, Liu GF, Ma W, Liu GJ, Ma L, Li SJ. Label-free quantitative proteomics analysis of etiolated maize seedling leaves during greening. Molecular & Cellular Proteomics, 2009, 8:2443
    133. Shen Z, Li P, Ni RJ, Ritchie M, Yang CP, Liu GF, Ma W, Liu GJ, Ma L, Li SJ. Label-free quantitative proteomics analysis of etiolated maize seedling leaves during greening. Molecular & Cellular Proteomics, 2009, 8:2443-2460
    134. Shiio Y, Aebersold R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nature Protocols, 2006, 1:139-145
    135. Silva JC, Denny R, Dorschel C, Gorenstein MV, Li GZ, Richardson K, Wall D, Geromanos SJ. Simultaneous Qualitative and Quantitative Analysis of theEscherichia coli Proteome. Molecular & Cellular Proteomics, 2006, 5:589-607
    136. Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li GZ, McKenna T, Nold MJ, Richardson K, Young P. Quantitative proteomic analysis by accurate mass retention time pairs. Analytical chemistry, 2005, 77:2187-2200
    137. Srivalli B, Khanna-Chopra R. Induction of new isoforms of superoxide dismutase and catalase enzymes in the flag leaf of wheat during monocarpic senescence. Biochemical and Biophysical Research Communications, 2001, 288:1037-1042
    138. St hr C, Strube F, Marx G, Ullrich WR, Rockel P. A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta, 2001, 212:835-841
    139. Stamler JS, Lamas S, Fang FC. Nitrosylation. the prototypic redox-based signaling mechanism. Cell, 2001, 106:675-683
    140. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science, 1992, 258:1898-1902
    141. SykorováB, Kure ováG, Daskalova S, Tr kováM, HoyerováK, RaimanováI, Motyka V, TrávníkováA, Elliott MC, Kamínek M. Senescence-induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. Journal of Experimental Botany, 2008, 59:377-387
    142. Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science, 2008, 321:952-956
    143. Tanou G, Job C, Belghazi M, Molassiotis A, Diamantidis G, Job D. Proteomic signatures uncover hydrogen peroxide and nitric oxide cross-talk signaling network in citrus plants. Journal of Proteome Research,
    144. Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. The Plant Journal, 2009, 60:795-804
    145. Tian QY, Sun DH, Zhao MG, Zhang WH. Inhibition of nitric oxide synthase (NOS) underlies aluminum‐induced inhibition of root elongation in Hibiscus moscheutos. New Phytologist, 2007, 174:322-331
    146. Uchida A, Jagendorf AT, Hibino T, Takabe T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 2002, 163:515-523
    147. Van Camp W, InzéD, Van Montagu M. The regulation and function of tobacco superoxide dismutases. Free Radical Biology and Medicine, 1997, 23:515-520
    148. Vanacker H, Sandalio L, Jiménez A, Palma J, Corpas F, Meseguer V, Gomez M, Sevilla F, Leterrier M, Foyer C. Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition. Journal of Experimental Botany, 2006, 57:1735-1745
    149. JPC, Langridge JI, Aerts JMFG. Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Molecular & Cellular Proteomics, 2007, 6:755-766
    150. Vissers JPC, Langridge JI, Aerts JMFG. Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Molecular & Cellular Proteomics, 2007, 6:755
    151. Wang Y, Yun BW, Kwon EJ, Hong JK, Yoon J, Loake GJ. S-nitrosylation: an emerging redox-based post-translational modification in plants. Journal of Experimental Botany, 2006, 57:1777-1784
    152. Wendehenne D, Pugin A, Klessig DF, Durner J. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends in Plant Science, 2001, 6:177-183
    153. Wilhelmova N, Fuksova H, Srbova M, Mikova D, MytinováZ, Prochazkova D, Vytáek R, Wilhelm J. The effect of plant cytokinin hormones on the production of ethylene, nitric oxide, and protein nitrotyrosine in ageing tobacco leaves. Biofactors, 2006, 27:203-211
    154. Wilkinson JQ, Crawford NM. Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2. The Plant Cell 1991, 3:461-471
    155. Wilson ID, Neill SJ, Hancock JT. Nitric oxide synthesis and signalling in plants. Plant, Cell &Environment, 2008, 31:622-631
    156. Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90:9813-9817
    157. Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biology and Medicine, 1998, 25:434-456
    158. Wojtaszek P. Nitric oxide in plants:: To NO or not to NO. Phytochemistry, 2000, 54:1-4
    159. Xu MJ, Dong JF. Involvement of nitric oxide signaling in mammalian Bax-induced terpenoid indole alkaloid production of Catharanthus roseus cells. Science in China Series C: Life Sciences, 2007, 50:799-807
    160. Yamasaki H, Cohen MF. NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trends in Plant Science, 2006, 11:522-524
    161. Ye Z, Rodriguez R, Tran A, Hoang H, de los Santos D, Brown S, Vellanoweth RL. The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Science, 2000, 158:115-127
    162. Zago E, Morsa S, Dat JF, Alard P, Ferrarini A, InzéD, Delledonne M, Van Breusegem F. Nitric oxide-and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiology, 2006, 141:404-411
    163. Zavaleta-Mancera HA, López-Delgado H, Loza-Tavera H, Mora-Herrera M, Trevilla-García C, Vargas-Suárez M, Ougham H. Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. Journal of plant physiology, 2007, 164:1572-1582
    164. Zhang A, Jiang M, Zhang J, Tan M, Hu X. Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiology, 2006, 141:475-487
    165. Zhao MG, Tian QY, Zhang WH. Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiology, 2007, 144:206-217
    166. Zhu S, Sun L, Liu M, Zhou J. Effect of nitric oxide on reactive oxygen species and antioxidant enzymes in kiwifruit during storage. Journal of the Science of Food and Agriculture, 2008, 88:2324-2331
    167. Zottini M, Costa A, De Michele R, Ruzzene M, Carimi F, Lo Schiavo F. Salicylic acid activates nitric oxide synthesis in Arabidopsis. Journal of Experimental Botany, 2007, 58:1397-1405

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700