方向变换及其在遥感图像压缩中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着遥感技术的进步,图像的空间、时间、光谱、辐照分辨率不断提高,以小波等经典变换理论为基础的算法,越来越难以满足高分辨遥感图像大倍率、高保真压缩的需求。经典变换理论的主要缺陷在于,无法稀疏表示遥感图像中特别丰富的几何正则奇异特征。因此,研究适合遥感图像压缩、具有强方向表示能力的新型变换理论,是当前图像压缩算法设计中非常重要的课题。由于压缩对变换冗余度的严格限制,以及实际应用系统对算法实时性的高要求,研究新型方向变换的构造,特别是快速低冗余变换的构造方法,及其高速编码方案,就成为具有挑战性和现实意义的问题。
     针对经典压缩变换理论存在的问题,本文从方向特征的稀疏表示着手,深入研究了双树结构多尺度变换、方向提升变换这两类适于图像压缩的方向变换的性质与构造,给出了具有更优方向表示能力和快速实现方案的新型变换算法;并在此基础上,进一步研究了这些新型变换在遥感图像压缩中的应用,特别是针对方向性变换系数的高效编码算法,获得了比现有算法有显著改进的压缩效果。
     本文的主要工作包括:
     研究了双树变换结构的方向性机理,得到了方向性更优的改进变换算法。(1)针对双树复数小波(DT-CWT)中,基于小波函数的解析性解释方向性存在的不足,通过定义高通滤波器的Hilbert变换对,给出了DT-CWT系数方向性的严格证明。(2)针对原有双树结构中第一层高通滤波器并未构成Hilbert变换对这一缺陷,提出了方向改进双树变换,使得所有变换系数均具有了严格的方向性。(3)将滤波器构成Hilbert变换对作为约束条件,引入到双树滤波器的参数化构造过程中,得到了方向性更优且具有更高消失矩、适于图像压缩的滤波器对。
     研究了遥感图像双树变换(DT)系数编码,提出了高效编码方案。针对现有编码方法未充分利用DT系数特性的问题:(1)依据DT系数的方向性,设计了子带方向自适应编码算法。(2)在证明子带不相关性的基础上,给出了适合于DT的失真度计算方法,并进一步提出了基于率失真优化的DT系数编码方案,编码后图像的峰值信噪比(PSNR)较已有算法提高0.1-0.4dB。(3)研究了双树小波域中去噪对压缩的影响,给出了双树小波中噪声的概率密度函数(PDF)的精确表示,与现有PDF相比,更接近于噪声的实际分布,去噪后压缩遥感图像的PSNR可提高0.3dB。
     提出了快速方向提升双正交叠式变换(LBT),并给出了相应的低复杂度编码算法。针对现有方向提升计算量过大的缺点:(1)设计了无插值方向模式,提出了可完全重构的快速方向提升LBT,计算量与原有LBT相当。(2)提出了基于裁剪树的全局提升方向优化算法,与现有方向提升块变换(LBT为一种块变换)优化算法相比,计算复杂度由O ( A3 N )降低为O ( AN ),其中A为方向个数,N为像素个数。(3)提出了针对LBT系数特性的量化集合分裂快速编码方法,压缩图像PSNR优于现有方向提升块变换。
     本文提出的新型遥感图像变换与编码方法,对于遥感数据的高保真、高速率实时传输具有实用价值。本文中的部分变换及编码技术已经成功应用于航空航天遥感设备的研制中。
With the development of remote sensing, it is becoming more and more difficult to compress remote sensing images with much higher resolution. The traditional transforms used in image compression, such as discrete wavelet transform (DWT), cannot take advantage of geometric regularity in high dimensional signals, which is a central issue to improve compression performance. So, it is critical to develop the transforms with directional selectivity that can represent the anisotropic edges and textures more sparsely. Because remote sensing data must be processed in real time in many cases, the construction of directional transforms with limited redundancy and their fast coding algorithms are the two main challenges.
     To get better sparsity, the nature of directions in dual tree (DT) multiscale transform and directional lifting scheme is deeply studied in this thesis. And new fast transforms with improved directional selectivity are constructed. Furthermore, the corresponding efficient codecs are designed and used in remote sensing images compression.
     The main contributions in this thesis are as follows.
     A new dual-tree structure is proposed, which can represent directional edges and textures in remoting sensing images better. (1) Firstly, the Hilbert transform pair of the high pass filters in DT is defined. Based on the definition, the directional selectivity of DT structure is proved, which is stricter than the explanation based on the analyticity of wavelet functions. (2) Secondly, considering that the filters in the first level DT are not a Hilbert transform pair, a modified DT structure that offers more directional information is proposed. (3) At last, a wavelet pair with better directional selectivity and higher vanishing moments is obtained, by constraining their high pass filters to form a Hilbert transform pair.
     A highly efficient codec of DT coefficients is designed based on the proposed DT structure. (1) A direction adaptive context model is developed to reveal the correlation left between adjacent coefficients. (2) The corresponding bands in different trees are proved to be uncorrelated. Using the uncorrelation, a rate-distortion optimization algorithm is proposed and used in DT based compression. Comparing with available DT based compression methods, peak signal-to-noise ratios (PSNR) of our method are 0.1-0.4 dB higher. (3) The influence of denoising on compression in the DT domain is investigated. And a closed-form probability density function (PDF) of noise in DT coefficients is deduced, which approximates the true distribution better comparing with other PDFs now used and gets about 0.3dB coding gain.
     A fast directional lifting biorthogonal lapped transform (LBT) is constructed to reduce the computation. (1) The directional mode without interpolation is given and used in directional lifting LBT. It can be performed as efficiently as LBT. (2) An algorithm based on tree pruning is proposed to optimize lifting directions globally. Comparing with the algorithm available, its computation decreases form O ( A3 N ) to O ( AN ), where A is the number of directions and N is the size of the image. (3) A set partition codec is used to code directional lifting LBT coefficients, and the compressed remote sensing images get higher PSNRs.
     Our directional transforms and coding algorithms are practical for the high speed and high fidelity transmission of remote sensing images. Some of them have been successfully used in space and aviation remote sensing.
引文
[1] Yua G, Vladimirovaa T, Sweetinga M N. Image Compression Systems on Board Satellites [J]. ACTA ASTRONAUTICA, 2009, 64: 988-1105.
    [2] Delp E, Mitchell O. Image Compression Using Block Truncation Coding [J]. IEEE Transactions on Communications, 1979, 27(9): 1335-1342.
    [3] Guo J M, Wu M F. Improved Block Truncation Coding Based on the Void-and-Cluster Dithering Approach [J]. Image Processing, IEEE Transactions on, 2009, 18(1): 211-213.
    [4] Salomon D. Data Compression [M]. New York: Springer, 2000.
    [5] Brower B V, Couwenhoven D, Gandhi B, et al. Adpcm for Advanced Landsat Downlink Applications [C]. Proceedings of the The 27th Asilomar Conference on Signals, Systems and Computers, 1993, 2: 1338-1341.
    [6] Ksaner J H, Marcellin M W, Hunt B R. Universal Trellis Coded Quantization [J]. IEEE Transactions on Image Processing, 1999, 8(12): 1677-1687.
    [7] Gersho A, Gray R M. Vector Quantization and Signal Compression [M]. Boston: Kluwer Academic Publishers, 1992.
    [8] Pennebaker W, Mitchell J. JPEG: Still Image Data Compression Standard [M]. New York, NY, USA: Kluwer Academic, 1992.
    [9] Taubman D S, Marcellin M W. JPEG2000: Image Compression Fundamentals, Standards and Practice [M]. Boston/Dordrecht/London: Kluwer Academic Publisher, 2002.
    [10] Weinberger M J, Seroussi G, Sapiro G. The LOCO-I Lossless Image Compression Algorithm: Principles and Standarization into JPEG-LS [J]. IEEE Transactions on Image Processing, 2000, 9(8): 1309-1324.
    [11] Lossless Data Compression, Recommendation for Space Data System Standards, CCSDS 121.0-B-1 [M]. CCSDS, 1997.
    [12] Image Data Compression, Recommendation for Space Data System Standards, CCSDS 122.0-B-1 [M]. CCSDS, 2005.
    [13] Ahmed N, Natarajan T, Rao K. Discrete Cosine Tranform [J]. IEEE Transactions Computer, 1974, 23: 88-93.
    [14] Mallat S. A Wavelet Tour of Signal Processing [M]. 2th ed.: Academic Press, 1999.
    [15] Simoncelli E P. Statistical Models for Images: Compression, Restoration and Synthesis [C]. Proceedings of the the Thirty-First Asilomar Conference on Signals, Systems & Computers, 1997, 1: 673-678.
    [16] Devore R. Non-Linear Approximation [M]. Cambridge Unviversity Press, 1998.
    [17]成礼智,王红霞,罗永.小波的理论与应用[M].科学出版社, 2003.
    [18] Taubman D. High Performance Scalable Image Compression with EBCOT [J]. IEEE Transactions on Image Processing, 2000, 9(7): 1158-1170.
    [19] Ordentlich E, Weinberger M, Seroussi G. A Low-Complexity Modeling Approach for Embedded Coding of Wavelet Coefficients [C]. Proceedings of the IEEE data compression conference, 1998: 408-417.
    [20] Ortega A, Ramchandran K. Rate-Distortion Techniques in Image and Video Compression [J]. Signal Processing, 1998, 15(6): 23-50.
    [21] Vetterli M. Wavelets, Approximation, and Compression [J]. IEEE Signal Processing Magazine, 2001, 18(5): 59-73.
    [22] Meyer F G, Coifman R R. Brushlets: A Tool for Directional Image Analysis and Image Compression [J]. Applied and Computational Harmonic Analysis, 1997, 4(2): 147-187.
    [23] Candes E J, Donoho D L. Curvelets, Multiresolution Representation, and Scaling Laws [C]. Proceedings of the SPIE 4119, 2000.
    [24] Figueras I Ventura R M, Vandergheynst P, Frossard P. Low-Rate and Flexible Image Coding with Redundant Representations [J]. IEEE Transactions on Image Processing, 2006, 15(3): 726-739.
    [25] Do M N, Vetterli M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation [J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.
    [26] Da Cunha a L, Do M N. On Two-Channel Filter Banks with Directional Vanishing Moments [J]. IEEE Transactions on Image Processing, 2007, 16(5): 1207-1219.
    [27] Lu Y, Do M. Crisp-Contourlets: A Critically Sampled Directional Multiresolution Image Representation [C]. Proceedings of the SPIE Conf. Wavelet Applications Signal Image Processing, 2003, X: 655-665.
    [28] Eslami R, Hayder R. On Low Bit-Rate Coding Using the Contourlet Transform [C]. Proceedings of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, 2003, 2: 1524-1528.
    [29] Velisavljevic V, Beferull-Lozano B, Vetterli M, et al. Directionlets: Anisotropic Multidirectional Representation with Separable Filtering [J]. IEEE Transactions on Image Processing, 2006, 15(7): 1916-1933.
    [30] Velisavljevic V, Beferull-Lozano B, Vetterli M. Space-Frequency Quantization for Image Compression with Directionlets [J]. IEEE Transactions on Image Processing, 2007, 16(7): 1761-1773.
    [31] Le Pennec E, Mallat S. Sparse Geometric Image Representations with Bandelets [J]. IEEE Transactions on Image Processing, 2005, 14(4): 423-438.
    [32] Peyre G, Mallat S. Discrete Bandelets with Geometric Orthogonal Filters [C]. Proceedings of the International conference on image processing, 2005.
    [33]焦李成,侯彪,王爽,等.图像多尺度几何分析理论与应用[M].西安电子科技大学出版社, 2008.
    [34] Nguyen T T, Oraintara S. A Directional Decomposition: Theory, Design, and Implementation [C]. Proceedings of the International Symposium on Circuits and Systems, 2004, 3: 281-284.
    [35] Tanaka Y, Ikehara M, Nguyen T Q. Multiresolution Image Representation Using Combined 2-D and 1-D Directional Filter Banks [J]. IEEE Transactions on Image Processing, 2009, 18(2): 269-280.
    [36] Nguyen T T, Oraintara S. Multiresolution Direction Filterbanks: Theory, Design, and Applications [J]. IEEE Transactions on Signal Processing, 2005, 53(10): 3895- 3905.
    [37] Truong T N, Soontorn O. A Class of Multiresolution Directional Filter Banks [J]. IEEE Transactions on Signal Processing, 2007, 55(3): 949-961.
    [38] Kin-on C, Ngai-Fong L, Wan-Chi S. A Novel Fast and Reduced Redundancy Structure for Multiscale Directional Filter Banks [J]. IEEE Transactions on Image Processing, 2007, 16(8): 2058-2068.
    [39] Da Cunha a L, Do M N. Bi-Orthogonal Filter Banks with Directional Vanishing Moments [C]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, 4: 553-556.
    [40] Nguyen T T, Oraintara S. Multidimensional Filter Banks Design by Direct Optimization [C]. Proceedings of the IEEE International Symposium on Circuits and Systems, 2005: 1090-1093.
    [41] Kingsbury N G. The Dual-Tree Complex Wavelet Transform: A New Technique for Shift Invariance and Directional Filters [C]. Proceedings of the 8th IEEE DSP Workshop, 1998.
    [42] Selesnick I W, Baraniuk R G, Kingsbury N G. The Dual-Tree Complex Wavelet Transform [J]. IEEE Signal Processing Magazine, 2005, (11): 123-151.
    [43] Reeves T H, Kingsbury N G. Overcomplete Image Coding Using Iterative Projection-Based Noise Shaping [C]. Proceedings of the International Conference on Image Processing, 2002, 3: 597-600.
    [44] Kingsbury N G, Reeves T. Iterative Image Coding with Overcomplete Complex Wavelet Transforms [C]. Proceedings of the Visual Communications and Image Processing, 2003, 5150.
    [45] Kingsbury N, Reeves T. Redundant Representation with Complex Wavelets: How to Achieve Sparsity [C]. Proceedings of the International Conference on Image Processing, 2003, 1: 45-48.
    [46] Kingsbury N. Design of Q-Shift Complex Wavelets for Image Processing Using Frequency Domain Energy Minimization [C]. Proceedings of the InternationalConference on Image Processing, 2003, 1: 1013-1016.
    [47] Gerek O N, Cetin a E. A 2-D Orientation-Adaptive Prediction Filter in Lifting Structures for Image Coding [J]. IEEE Transactions on Image Processing, 2006, 15(1): 106-111.
    [48] Taubman D. Adaptive, Non-Separable Lifting Transforms for Image Compression [C]. Proceedings of the International Conference on Image Processing, 1999, 3: 772-776.
    [49] Xu H, Xu J, Wu F. Lifting-Based Directional DCT-Like Transform for Image Coding [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(10): 1325-1335.
    [50] Zeng B, Fu J. Directional Discrete Cosine Transforms - a New Framework for Image Coding [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(3): 305-313.
    [51] Yu L, King N N, Feng W. 3-D Shape-Adaptive Directional Wavelet Transform for Object-Based Scalable Video Coding [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(7): 888-899.
    [52] Nan Z, Yan L, Feng W, et al. Efficient Multiple-Description Image Coding Using Directional Lifting-Based Transform [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(5): 646-656.
    [53] Wang D, Zhang L, Vincent A, et al. Curved Wavelet Transform for Image Coding [J]. IEEE Transactions on Image Processing, 2006, 15(8): 2413-2421.
    [54] Chappelier V, Guillemot C. Oriented Wavelet Transform for Image Compression and Denoising [J]. IEEE Transactions on Image Processing, 2006, 15(10): 2892-2903.
    [55] Ding W, Wu F, Wu X, et al. Adaptive Directional Lifting-Based Wavelet Transform for Image Coding [J]. IEEE Transactions on Image Processing, 2007, 16(2): 416-427.
    [56] Liu Y, King N N. Weighted Adaptive Lifting-Based Wavelet Transform for Image Coding [J]. IEEE Transactions on Image Processing, 2008, 17(4): 500-511.
    [57] Bamberger R H, Smith M J T. A Filter Bank for the Directional Decomposition of Images: Theory and Design [J]. IEEE Transactions on Signal Processing, 1992, 40(4): 882-893.
    [58] Vaidyanathan P P. Multirate Systems and Filter Banks [M]. Prentice-Hall,, 1993.
    [59] Eslami R, Radha H. A New Family of Nonredundant Transforms Using Hybrid Wavelets and Directional Filter Banks [J]. IEEE Transactions on Image Processing, 2007, 16(4): 1152-1167.
    [60] Yilong L, Nguyen T T, Oraintara S. Embedded Image Coding Using Quincunx Directional Filter Bank [C]. Proceedings of the IEEE International Symposium on Circuits and System, 2006: 4.
    [61] Kingsbury N. Complex Wavelets for Shift Invariant Analysis and Filtering of Signals [J]. Applied and Computational Harmonic Analysis, 2001, 10(3): 234-253.
    [62] Daubechies I, Defrise M, De Mol C. An Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint [J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457.
    [63] Blumensath T, Davies M. Iterative Thresholding for Sparse Approximations [J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 629-654.
    [64] Wang B B, Wang Y, Selesnick I, et al. Video Coding Using 3d Dual-Treewavelet Transform [J]. EURASIP Journal on Image and Video Processing, 2007, 2007(1):
    [65] Boettcher J B, Fowler J E. Video Coding Using a Complex Wavelet Transform and Set Partitioning [J]. IEEE Signal Processing Letters, 2007, 14(9): 633-636.
    [66] Fowler J E, Boettcher J B, Pesquet-Popescu B. Image Coding Using a Complex Dual-Tree Wavelet Transform [C]. Proceedings of the the Eur. Signal Processing Conf., 2007.
    [67] Yang J, Wang Y, Xu W, et al. Image Coding Using Dual-Tree Discrete Wavelet Transform [J]. IEEE Transactions on Image Processing, 2008, 17(9): 1555-1569.
    [68] Selesnick I W. Hilbert Transform Pairs of Wavelet Bases [J]. IEEE Signal Processing Letters, 2001, 8(6): 170-173.
    [69] Yu R, Ozkaramanli H. Hilbert Transform Pairs of Orthogonal Wavelet Bases: Necessary and Sufficient Conditions [J]. IEEE Transactions on Signal Processing, 2005, 53(12): 4723-4725.
    [70] Yu R, Ozkaramanli H. Hilbert Transform Pairs of Biorthogonal Wavelet Bases [J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2119-2125.
    [71] Daubechies I, Sweldens W. Factoring Wavelet Transforms into Lifting Steps [J]. Journal of Fourier Analysis and Applications, 1998, 4(3): 247-269.
    [72] Jie L, Tran T D. Fast Multiplierless Approximations of the DCT with the Lifting Scheme [J]. IEEE Transactions on Signal Processing, 2001, 49(12): 3032-3044.
    [73] Claypoole R L, Davis G M, Sweldens W, et al. Nonlinear Wavelet Transforms for Image Coding Via Lifting [J]. IEEE Transactions on Image Processing, 2003, 12(12): 1449- 1459.
    [74] Breiman L, Friedman J H, Olshen R A, et al. Classification and Regression Trees [M]. Wadsworth, 1984.
    [75] Dekel S, Leviatan D, Sharir M. On Bivariate Smoothness Spaces Associated with Nonlinear Approximation [J]. Constr. Approx., 2004, 20(4): 625-646.
    [76] Dekel S, Leviatan D. Adaptive Multivariate Approximation Using Binary Space Partitions and Geometricwavelets [J]. SIAM J. Numer. Anal., 2005, 43(2): 707-732.
    [77] Karaivanov B, Petrushev P. Nonlinear Piecewise Polynomial Approximation Beyond Besov Spaces [J]. Appl. Comput. Harmon. Anal., 2003, 15: 177-223.
    [78] Kazinnik R, Dekel S, Dyn N. Low Bit-Rate Image Coding Using Adaptive Geometric Piecewise Polynomial Approximation [J]. IEEE Transactions on Image Processing, 2007, 16(9): 2225-2233.
    [79] He Z. Peak Transform for Efficient Image Representation and Coding [J]. IEEE Transactions on Image Processing, 2007, 16(7): 1741-1754.
    [80] Andr, Jalobeanu, Blanc-F L, et al. Satellite Image Deblurring Using Complex Wavelet Packets [J]. Int. J. Comput. Vision, 2003, 51(3): 205-217.
    [81] Rahman S, Ahmad M O, Swamy M. Statistics of 2-D Dt-Cwt Coefficients for a Gaussian Distributed Signal [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55(7): 2013-2025.
    [82] Malvar H S. Biorthogonal and Nonuniform Lapped Transforms for Transform Coding with Reduce Blocking and Ringing Artifacts [J]. IEEE Transactions on Signal Processing, 1998, 46(4): 1043-1053.
    [83] Mallat S G. Multiresolution Representations and Wavelets [D]: University of Pennsylvania,School of Engineering and Applied Science, Dept. of Computer and Information Science, 1988.
    [84] Ozkaramanli H, Yu R. On the Phase Condition and Its Solution for Hilbert Transform Pairs of Wavelet Bases [J]. IEEE Trans. Signal Process., 2003, 15(12): 3293-3294.
    [85] Selesnick I W. The Design of Approximate Hilbert Transform Pairs of Wavelet Bases [J]. IEEE Trans. Signal Processing, 2002, 50(5): 1144–1152.
    [86] Kingsbury N G. A Dual-Tree Complex Wavelet Transform with Improved Orthogonality and Symmetry Properties [C]. Proceedings of the IEEE International Conference on Image Processing, 2000, 2: 375-378.
    [87] Thiran J P. Recursive Digital Filters with Maximally Flat Group Delay [J]. IEEE Trans. Circuit Theory, 1971, 18(6): 659-664.
    [88] Herrity K K, Gilbert a C, Tropp J A. Sparse Approximation Via Iterative Thresholding [C]. Proceedings of the IEEE Acoustics, Speech and Signal Processing, 2006.
    [89] Elad M, Matalon B, Shtok J, et al. A Wide-Angle View at Iterated Shrinkage Algorithms [C]. Proceedings of the Wavelets XII, 2007: SPIE, 6701: 02-19.
    [90] Donoho D L. Compressed Sensing [J]. IEEE Trans. on Information Theory, 2006, 52(4): 1289-1306.
    [91] Mallat S, Zhang Z. Matching Pursuits with Time-Frequency Dictionaries [J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
    [92] Chen S S, Donoho D L, Saunders M A. Atomic Decomposition by Basis Pursuit [J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61.
    [93] Donoho D L. De-Noising by Soft-Thresholding [J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
    [94] Yang Y, Galatsanos N P. Removal of Compression Artifacts Using Projections onto Convex Sets and Line Process Modelling [J]. IEEE Trans. Image Processing, 1997, 6: 1345-1357.
    [95] Chaux C, Pesquet J C, Duval L. Noise Covariance Properties in Dual-Tree Wavelet Decompositions [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4680-4700.
    [96] Averkamp R, Houdre C. Some Distributional Properties of the Continuous Wavelet Transform of Random Processes [J]. IEEE Transactions on Information Theory, 1998, 44(3): 1111-1124.
    [97] Shapiro J M. Embedded Image Coding Using Zerotrees of Wavelet Coefficients [J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3445-3462.
    [98] Shapiro J M. A Fast Technique for Identifying Zerotrees in the Ezw Algorithm [C]. 1996: 1455-1458.
    [99] Ramaswamy V N, Namuduri K R, Ranganathan N. Context-Based Lossless Image Coding Using Ezw Framework [J]. IEEE Transactions on Circuit and System for Video Technology, 2001, 11(4): 554-559.
    [100] Said A, Pearlman W A. A New, Fast, and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees [J]. IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(3): 243-250.
    [101] Islam A, Pearlman W A. An Embedded and Efficient Low-Complexity, Hierarchical Image Coder [C]. Proceedings of the Visual Communication and Image, 1999: SPIE, 3653: 294-305.
    [102] Zandi A, Allen J, Schwartz E, et al. CREW: Compression with Recersible Embedded Wavelets [M]. Los Alamitos, CA; IEEE Computer Society, 1999: 212-221.
    [103] Simard P, Steinkraus D, Malvar H. On-Line Adaptation in Image Coding with a 2-D Tarp Filter [C]. Proceedings of the Data Compression Conference, 2002: 23-32.
    [104] Li J, Cheng P, Kuo C J. On the Improvement of Embedded Zerotree Wavelet (EZW) Coding [C]. Proceedings of the SPIE: Visual Comm. and Image Proc., 1995, 2601: 14901501.
    [105] Chao T, Hemami S S. An Embedded Image Coding System Based on Tarp Filter with Classification [C]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, 3: 49-52.
    [106] Taubman D. Kakadu Software [OL]. http://www.kakadusoftware.com/Downloads. html.
    [107] Pearlman W A. SPIHT Image Compression [OL]. http://www.cipr.rpi.edu/ research/SPIHT/.
    [108] Fowler J E. Qccpack - Quantization, Compression, and Coding Library [OL].http://qccpack.sourceforge.net/download.shtml.
    [109] Cambanis S, Houdre C. On the Continuous Wavelet Transform of Second-Order Random Processes [J]. IEEE Transactions on Information Theory, 1995, 41(3): 628-642.
    [110] Chang S G, Bin Y, Vetterli M. Adaptive Wavelet Thresholding for Image Denoising and Compression [J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546.
    [111] Sendur L, Selesnick I W. Bivariate Shrinkage Functions for Wavelet-Based Denoising Exploiting Interscale Dependency [J]. IEEE Transactions on Signal Processing, 2002, 50(11): 2744- 2756.
    [112] Portilla J, Strela V, Wainwright M J, et al. Image Denoising Using Scale Mixtures of Gaussians in the Wavelet Domain [J]. IEEE Transactions on Image Processing, 2003, 12(11): 1338- 1351.
    [113] Hirakawa K, Parks T W. Image Denoising Using Total Least Squares [J]. IEEE Transactions on Image Processing, 2006, 15(9): 2730-2742.
    [114] Blu T, Luisier F. The Sure-Let Approach to Image Denoising [J]. IEEE Transactions on Image Processing, 2007, 16(11): 2778-2786.
    [115] Luisier F, Blu T, Unser M. A New Sure Approach to Image Denoising: Interscale Orthonormal Wavelet Thresholding [J]. IEEE Transactions on Image Processing, 2007, 16(3): 593-606.
    [116] Hammond D K, Simoncelli E P. Image Modeling and Denoising with Orientation-Adapted Gaussian Scale Mixtures [J]. IEEE Transactions on Image Processing, 2008, 17(11): 2089-2101.
    [117] Miller M, Kingsbury N. Image Denoising Using Derotated Complex Wavelet Coefficients [J]. IEEE Transactions on Image Processing, 2008, 17(9): 1500-1511.
    [118] Raphan M, Simoncelli E P. Optimal Denoising in Redundant Representations [J]. IEEE Transactions on Image Processing, 2008, 17(8): 1342-1352.
    [119] Luisier F, Blu T. Sure-Let Multichannel Image Denoising: Interscale Orthonormal Wavelet Thresholding [J]. IEEE Transactions on Image Processing, 2008, 17(4): 482-492.
    [120] Achim, Kuruoglu E E. Image Denoising Using Bivariate a-Stable Distributions in the Complex Wavelet Domain [J]. IEEE Signal Processing Letters, 2002, 12(1): 17-20.
    [121] Guerrero-Colon J A, Mancera L, Portilla J. Image Restoration Using Space-Variant Gaussian Scale Mixtures in Overcomplete Pyramids [J]. IEEE Transactions on Image Processing, 2008, 17(1): 27-41.
    [122] Rabbani H, Vafadust M, Gazor S. Image Denoising Based on a Mixture of Laplace Distributions with Local Parameters in Complex Wavelet Domain [C]. Proceedings of the IEEE International Conference on Image Processing, 2006:2597-2600.
    [123] Milton A, Irene S. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables [M]. New York: Dover, 1972.
    [124] Kingsbury N. Approximation Formulae for the Gaussian Error Integral, Q(X) [J/OL] 2005, http://cnx.org/content/m11067/2.4/.
    [125] Donoho D L, Johnstone I M. Ideal Spatial Adaptation by Wavelet Shrinkage [J]. Biometrika, 1994, 81(3): 425-455.
    [126] Chen Y-J, Amaratunga K S. M-Channel Lifting Factorization of Perfect Reconstruction Filter Banks and Reversible M-Band Wavelet Transforms [J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2003, 50(12): 963- 976.
    [127] Sweldens W. The Lifting Scheme: A New Philosophy in Biorthogonal Wavelet Constructions [J]. Proc. SPIE, 1995, 2569: 68-79.
    [128] Sweldens W. The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets [J]. Appl. Comput. Harmon. Anal., 1996, 3(2): 186-200.
    [129] Boulgouris N V, Tzovaras D, Strintzis M G. Lossless Image Compression Based on Optimal Prediction, Adaptive Lifting, and Conditional Arithmetic Coding [J]. IEEE Transactions on Image Processing, 2001, 10(1): 1-14.
    [130] Piella G, Heijmans H J a M. Adaptive Lifting Schemes with Perfect Reconstruction [J]. IEEE Transactions on Signal Processing, 2002, 50(7): 1620-1630.
    [131] Chang C-L, Girod B. Direction-Adaptive Discrete Wavelet Transform for Image Compression [J]. IEEE Transactions on Image Processing, 2007, 16(5): 1289-1302.
    [132]钟广军,成礼智,陈火旺.双正交重叠变换的整数实现算法与图像压缩[J].电子学报, 2001, 29(11): 2001.
    [133] Tu C, Tran T D. Context-Based Entropy Coding of Block Transform Coefficients for Image Compression [J]. IEEE Transactions on Image Processing, 2002, 11(11): 1271-1283.
    [134] Chen B, Cheng L, Wang H. LBT Based Low Complexity Image Compression Method [C]. Proceedings of the 18th International Conference on Pattern Recognition, 2006: IEEE Computer Society, 1: 941-944.
    [135] Li W, Wu X. Comments on 'New Family of Lapped Biorthogonal Transform Via Lifting Steps' [J]. IET Image Processing, 2009, 3(3): 174-175.
    [136]成礼智.离散与小波变换新型算法及其在图像处理中应用的研究[D].长沙:国防科学技术大学, 2002.
    [137] De Queiroz R L, Nguyen T Q, Rao K R. The GenLOT: Generalized Linear-Phase Lapped Orthogonal Transform [J]. IEEE Transactions on Signal Processing, 1996,44(3): 497-507.
    [138] Malvar H S, Staelin D H. The LOT: Transform Coding without Blocking Effects [J]. IEEE Transactions on Acoust. Speech, Signal Processing, 1989, 37(4): 553-559.
    [139] Tran T D, Jie L, Chengjie T. Lapped Transform Via Time-Domain Pre- and Post-Filtering [J]. IEEE Transactions on Signal Processing, 2003, 51(6): 1557- 1571.
    [140] Tran T D. The binDCT: Fast Multiplierless Approximation of the DCT [J]. IEEE Signal Processing Letters, 2000, 7(6): 141-144.
    [141] Abhayaratne G C K. Reversible Integer-to-Integer Mapping of N-Point Orthonormal Block Transforms [J]. Signal Processing, 2007, 87(5): 950-969.
    [142] Wiegand T, Sullivan G J, Bjontegaard G, et al. Overview of the H.264/Avc Video Coding Standard [J]. Circuits and Systems for Video Technology, IEEE Transactions on, 2003, 13(7): 560-576.
    [143] Advanced Video Coding for Generic Audiovisual Services [M]. ITU-T Rec H.264 ISO/IEC 14496-10 (AVC). Mar. 2005.
    [144] Kauff P, Schuur K. Shape-Adaptive DCT with Block-Based DC Separation and ?dc Correction [J]. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(3): 237-242.
    [145] Sikora T, Bauer S, Makai B. Efficiency of Shape-Adaptive 2-D Transforms for Coding of Arbitrarily Shaped Image Segments [J]. IEEE Transactions on Circuits and Systems for Video Technology, 1995, 5(3): 254-258.
    [146] Zhao D, Gao W. Low Complexity and Low Memory Entropy Coder for Image Compression [J]. IEEE Transactions on Circuit and System for Video Technology, 2001, 11(10): 1140-1145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700