多分辨率医学图像配准技术及自适应图像插值技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像配准技术是医学图像处理领域的一个重要的和基本的研究课题。医学图像配准技术可以将来源于不同成像设备的图像,或者不同时间利用同种成像设备得到的图像进行配准,得到更丰富的信息用于医疗诊断中。全自动医学图像配准不仅可以用于医疗诊断,还可以用于指导神经手术、放射治疗计划的制定、病灶的定位、病理变化的跟踪和治疗效果的评价等各个方面,为医生提供功能和形态的综合信息。
     随着图像数据量的增大,对于大多数断层扫描医学图像来说,二维、特别是三维体积数据集包含巨大的数据量,极大地增加了计算的负担,无法实时实现和临床应用,这也成为限制了现阶段配准性能较好的互信息相似性测度在配准方法中的应用。不论是刚性还是非刚性配准算法,在配准过程中,常使用多分辨率图像金字塔来进行由粗到精的搜索变换系数,提高计算效率、避免局部极小值,实现自动的更精确的配准结果。但是常见的图像金字塔,例如小波金字塔,滤波器的张量积形式使得小波变换缺乏平移和旋转不变性,这些不变性正是在图像配准中最需要的,只有具有这些不变性,才能保证从粗尺度上得到的平移、旋转和放缩参数的准确性,从而得到准确的结果。
     另外,由于成像系统内在和外在条件的限制,使获取的图像常常不能满足实际的需求。从软件方面来提高图像分辨率有着极大的现实意义和应用价值,而且无需增加额外的硬件设备,节省大量的费用。超分辨率技术在视频、遥感、医学和安全监控等领域都具有十分重要的作用,例如,随着高清电视(HDTV)的发展,利用超分辨率技术将大量的DTV信号转化为与HDTV接收机相匹配的信号,提高电视节目的兼容性。目前图像的超分辨率重建比较常用的是插值方法。常见的插值方法有近邻插值、双线性插值、双三次插值等,计算量比较小,但是图像插值后常常出现方块效应或细节退化(边缘模糊)。较好的视觉质量和较低的算法复杂度是处理视频、网络信号的关键要求。
     针对多分辨率医学图像配准和自适应图像插值技术,本文主要研究了以下几个方面:
     1.具有平移和旋转不变性的图像多分辨率分解可以提高配准过程的精度,避免陷入局部极值,导致误配准。提出一种改进的圆周对称多分辨率分解算法,用环形带通滤波器代替高通滤波器,使各尺度的子带都具有平移和旋转不变性。不丢失信息的前提下,降低计算的冗余度。
     2.改进的圆周对称塔式分解具有平移和旋转不变性,可以提高图像配准的性能。塔式分解的低频子带能量集中,用互信息进行配准;高频子带提供重要的解剖结构信息,构造基于边缘信息的模糊梯度场,并用模糊贴近度作为相似性测度,与互信息相结合。实验结果验证了新的金字塔算法的有效性,可以实现多模态医学图像的配准,结合模糊梯度场的配准算法提高了算法的鲁棒性,快速准确稳定地实现医学图像配准。
     3.为了提高医学图像配准的速度和有效性,提出一种结合改进的圆周对称塔式分解和边缘特性的图像配准方法。利用新的塔式分解结构中的带通子带进行处理,计算包含图像边缘信息的带通子图像的主轴和质心,作为低频子带配准过程的初值,提高配准的速度,也提高了对于发生较大形变的图像或图像初值比较大时进行配准的鲁棒性。
     4.针对数据量巨大的三维医学图像,提出了一种球形对称多分辨率金字塔分解框架(SSMP),McClellan算法用于实现球形和球环形的三维滤波器组。SSMP可以对三维图像实现低冗余度且具有平移和旋转不变性的多分辨率表示。对CT和PET医学图像进行的仿真实验实现了基于球对称塔式分解的医学图像配准的框架的配准过程,提高全局优化的性能,达到最优的变换参数。
     5.提出一种基于图像分类和非线性插值核的快速自适应插值算法。首先通过图像像素分类方法确定各像素的方向,并将像素点分为边缘区域、纹理区域和平滑区域;基于方向利用适当的提升框架中的Neville插值滤波器对各区域中的像素点进行自适应插值计算;为了得到更好的视觉效果,通过拉普拉斯算子对灰度变化大的区域进行增强处理。实验结果验证,本文算法在提高信噪比的同时,不仅减少了运算时间,在保持边缘方面也得到了较好的效果。
Image registration plays a crucial role in medical image analysis by providing comparative and/or complementary information from multimodal images or images taken at different times for the same or different subjects. Automated image registration has thus been widely used in clinical applications, such as diagnosis, staging, assessment of the response to the treatment, and image guided surgery.
     With the advance of medical imaging techniques, the image data size increases dramatically. As a result, the computational complexity for image registration, in particular three-dimensional (3D) image registration, increases exponentially, which leads to a higher possibility of mismatching, i.e., the current intensity-based similarity measures may likely be trapped into local extrema. While multiresolution analysis (MRA), such as wavelet transforms, provides a potential mechanism to improve the registration accuracy and reduce the computational complexity, it does not have the necessary properties, such as translation- and rotation- invariance, required for image registration.
     In many image processing applications, it is necessary to interpolate digital images so that high resolution images can be obtained from low resolution images. For example, digital TV signals are transformed into signals that match those of high-definition television (HDTV) receivers. Image interpolation algorithms are also in demand in the field of remote sensing and sensor networking, where low resolution images are usually captured by inexpensive imaging devices.
     In practice, simple interpolation methods, such as nearest-neighbor, linear, bilinear, and bicubic interpolation are most widely used. However, these methods usually yield an interpolated image with blurred edges, which degrade the perceptual quality of the image. Improving the subjective quality and reducing the computational complexity of interpolation algorithms are important issues in video and network signal processing.
     In multiresolution medical image registration and image interpolation, the main contributions in this thesis including:
     1. The translation- and rotation- invariance of the multi-resolution analysis improvesthe registration accuracy and avoids trapping in local extrema which frequentlyleads to misregistration. A new multiresolution analysis, improved circular symmetric multiresolution decomposition is proposed. An annular band-pass filter takes place of the high pass filter in the circular symmetric multiresolution analysis to reduce the redundancy. All the subbands possess translation- and rotation-invariance.
     2. The improved circular symmetric image pyramid decomposition with translation-and rotation- invariant properties can improve the performance of image registration. Low-pass subband has noise-removing property and is suitable to image registration based on mutual information. Band-pass subband has more significant structural information, which establishes image fuzzy gradient field and constructs the fuzzy approach degree. A coarse-to-fine procedure is adopted to utilize these features to achieve registration procedure. Experiments demonstrate the good performance of the proposed novel pyramid decomposition. The local extrema can be reduced and these characteristics of combined measures yield more robust and accurate registration results.
     3. To improve the medical image registration accuracy and efficiency, a new approach of image registration based on circular symmetric multiresolution decomposition and edge information is proposed. Firstly low pass subbands in the multiresolution decomposition preserve the global image information, and are utilized to perform image registration based on mutual information. Then the cross-weighted moments are calculated in the first level of band pass subband which includes sufficient spatial information. It provides the initial transformation parameters to the hierarchical registration. So the transformation displacements will be calculated rapidly and accurately in the optimization algorithm. Experiments demonstrate that the intensity and edge information combined method based on circular symmetric pyramid improves the registration accuracy and robustness. It also reduces the iterations of optimization and has low computation complexity.
     4. A novel 3D spherical symmetric multiresolution pyramid (SSMP) is proposed. In our SSMP, McClellan algorithm is applied to build the sphere and spherical ring 3D filter banks. SSMP can be used to generate a multiresolution representation of 3D image with a low redundancy framework which possesses the translation- and rotation- invariant subbands. Our experiments on clinical CT and PET datasets have demonstrated that the registration performance, both in terms of speed and accuracy, based on this new multiresolution decomposition has been improved significantly.
     5. We propose a fast adaptive image interpolation algorithm that classifies pixels and uses different linear interpolation kernels that are adaptive to the class of a pixel. Pixels are classified into regions relevant to the perception of an image, either in a texture region, an edge region, or a smooth region. Image interpolation is performed with Neville filters, which can be efficiently implemented by a lifting scheme. Since linear interpolation tends to over-smooth pixels in edge regions and texture regions, we apply the Laplacian operator to enhance the pixels in those regions. The results of simulations show that the proposed algorithm not only reduces the computational complexity of the process, but also improves the visual quality of the interpolated images.
引文
[1]X.Wang,S.Stefan,M.Fulham,S.Som,and D.Feng,"Data Registration and Fusion",Chapter 8 in D.Feng(Ed.) "Biomedical Information Technology",pp.187-210,Elsevier Publishing 2008
    [2]郑亚琴,田心.医学图像配准技术研究进展.国际生物医学工程杂志,vol.29,no.2,pp.88-92,2006.
    [3]P.A.van den Elsen,E.J.D.Pol,and M.A.Viergever,"Medical Image matching-A review with classification," IEEE Eng.Med.Biol.,vol.12,no.3,pp.12-39,1993.
    [4]B.Zitova,J.Flusser,"Image Registration Methods:A Survey," Image and Vision Computing,vol.21,no.11,pp.977-1000,2003.
    [5]J.Pluim,J.Maintz,and M.Viergever,"Mutual-information Based Registration of Medical Images:A Survey," IEEE Transactions on Medical Imaging,vol.22,no.8,pp.986-1004,2003.
    [6]J.Maintz,M.Viergever,"A Survey of Medical Image Registration," Medical Image Analysis,vol.2,no.1,pp.1-16,1998.
    [7]L.G.Brown,"A survey of image registration techniques," ACM Computing Surveys,vol.24,no.4,pp.325-376,1992.
    [8]H.Lester,S.R,Arridge,"A Survey of Hierarchical Non-linear Medical Image Registration,"Pattern Recognition,vol.32,pp.129-149,1999.
    [9]C.R.Maurer et al,"Registration of head volume images using implantable fiducial markers,"IEEE Trans.Med.Imaging,vol.16,no.4,pp.447-461,1997.
    [10]T.Peters et al,"Three-dimensional multimodal image guidance for neurosurgery," IEEE Trans.Med.Imaging,vol.15,no.2,pp.121-128,1996.
    [11]M.Fuchs,H.A.Wischman,A.Neumann,et al,"Accuracy analysis for image-guided neurosurgery using fiducial skin markers,3D CT imaging and an optical localizer system,"Computer Assisted Radiology,vol.1124,pp.770-775,1996.
    [12]W.D.Leslie,A.Borys,D.McDonald,et al,"External reference markers for the correction of head rotation in brain single-photon emission tomography," European Journal of Nuclear Medicine,vol.22,pp.351-355,1995.
    [13]J.P.Thirion,"New feature points based on geometric invariants for 3-D image registration,"Int.J.Comput.Vis.,vol.18,no.2,pp.121-137,1996.
    [14]P.J.Besl and N.D.McKay,"A method for registration of 3D shapes," IEEE Trans.PAMI,vol.14,no.2,pp.239-256,1992.
    [15]K.Rohr et al,"Landmark-based elastic registration using approximating thin-plate splines,"IEEE Trans.Med.Imaging,vol.20,no.6,pp.526-534,2000.
    [16] P. A. van den Elsen, et al, "Automatic registration of CT and MR brain images using correlation of geometrical features," IEEE Trans. Med. Imaging, vol. 14, no. 2, pp. 384-396, 1995.
    [17] C. Davatzikos, J. L. Prince, and R. N. Bryan, "Image registration based on boundary mapping," IEEE Trans. Med. Imaging, vol. 15, no. 1, pp. 112-115,1996.
    [18] C. A. Pelizzari, G. T. Y. Chen, D. R. Spelbring, et al, "Accurate three-dimensional registration of CT, PET, and MR images of the brain, " Journal of Computer Assisted Tomography, vol. 13, pp. 20-26,1989.
    [19] M. Audette, F. Ferrie, and T. Peters, "An algorithm overview of surface registration techniques for medical imaging," Med. Image Anal, vol. 4, no. 4, pp. 201-217,2000.
    [20] J. Ales, S. Franc, "Moments of superllipsoids and their application to range image registration," IEEE Trans. on Systems, Man and Cybernetics, vol. 33, no. 4, pp. 648-657, 2003.
    [21] R. P. Woods, J. C. Mazziotta, and S. R. Cherry, "Rapid and automated algorithm for aligning and reslicing PET images," J. Comput. Assist. Tomogr., vol. 19, no. 4, pp. 536-546,1993.
    [22] J. B. A. Maintz, P. A. van den Elsen, and M. A. Viergever, "Evaluation of ridge seeking operators for multimodality medical image matching," IEEE Trans. PAMI, vol. 18, no. 4, pp. 353-365,1996.
    [23] A. Collignon et al, "Automated multimodality image registration based on information theory," In Y. Bizais et al. Proc. 14th International Conference of Information Processing in Medical Imaging: Computational Imaging and Vision, vol. 3, pp. 263-274,1995.
    [24] P. A. Viola and W. M. Wells, "Alignment by maximization of mutual information," Proc.5.th International Conference of Computer Vision, pp. 16-23,1995.
    [25] F. Maes, D. Vandermeulen, and P. Suetens, "Medical image registration using mutual information," Proc. IEEE., vol. 91, no. 10, pp. 1699-1722, 2003.
    [26] F. Maes, A. Collignon, D. Vandermeulen, et al, "Multimodality image registration by maximization of mutual information," IEEE Transactions on Medical Imaging, vol. 16, no. 2, pp. 187-198,1997.
    [27] W. M. Wells III, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, "Multi-modal volume registration by maximization of mutual information," Med. Image Anal., vol. 1, no. 1, pp. 35-51,1996.
    [28] C. Studholme, D. L.G.Hill, and D. J. Hawkes, "An overlap invariant entropy measure of 3D medical image alignment," Pattern Recognit., vol. 32, no. 1, pp. 71 - 86, 1999.
    [29] J. P. Pluim, J. B. A. Maintz, and M. A. Viergever, "Image registration by maximization of combined mutual information and gradient information," IEEE Trans. Med. Imaging, vol.19, pp. 809-814,2000.
    [30] B. Likar, F. Pernus, "A hierarchical approach to elastic registration based on mutual information," Image Vis. Comput., vol. 19, pp. 33-44, 2001.
    [31] M. Mellor, M. Brady, "Phase mutual information as a similarity measure for registration," Med. Image Anal., vol. 9, no. 4, pp. 330-343,2005.
    [32]G.P. Penney, J. Weese, et al, "A comparison of similarity measures for use in 2D-3D medical image registration," IEEE Trans. on Med. Imaging, vol. 17, no. 4, pp. 586-595,1998.
    [33] P. Thevenaz, M. Unser, "Spline pyramids for inter-modal image registration using mutual information, " In Wavelet Applications in Signal and Image Processing, Bellingham, WA: SPIE Press, 1997.
    
    [34] D. Rueckert, M. J. Clarkson, D. L. G.Hill, et al, "Non-rigid registration using higher-order mutual information," In Medical Imaging: Image Processing, K. M. Hanson, Ed. Bellingham, WA: SPIE Press, 2000.
    
    [35] C. C. Liu, K. Li, Z. G.Liu, "Medical image registration by maximization of combined mutual information and edge correlative deviation," Engineering in Medical and Biology Society. Shanghai: IEEE-EMBS, pp. 6379-6382,2005.
    
    [36] W. Q. Chen, Z. Y. Ou, W. W. Song, "A coarse-to-refined approach of medical image registration based on combing mutual information and shape information," In ICNN&B, vol. 2, pp. 916-820,2005.
    [37] J. P. Pluim, J. B. A. Maintz , and M. A. Viergever, "F-Information measures in medical image registration," IEEE Trans. Med. Image Registration, vol. 23, no. 12, pp. 1508-1516, 2004.
    [38] H. Lester and S. R. Arridge, "A survey of hierarchical non-linear medical image registration," Pattern Recognition, vol. 32, pp. 129-149, 1999.
    
    [39] R. Allen, F. Kamangar, and E. Stokely, "Laplacian and orthogonal wavelet pyramid decompositions in coarse-to-fine registration," IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3536-3541,1993.
    
    [40] M. Unser and A. Aldroubi, "A multiresolution image registration procedure using spline pyramids," presented at the SPIE, Mathematical Imaging: Wavelet Applications in Signal and Image Processing, San Diego, CA, 1993.
    [41] P. Thevenaz and M. Unser, "Optimization of mutual information for multiresolution image registration," IEEE Trans. Image Process., vol. 9, no. 12, pp. 2083-2099, 2000.
    [42] M. Unser, A. Aldroubi, and M. Eden, "The L2-polynomial spline pyramid," IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 4, pp. 364-379, Apr. 1993.
    [43] P. Thevenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process., vol. 7, no. 1, 1998.
    [44] Y. Xie and G.E. Farin, "Image registration using hierarchical B-spline," IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 1, pp. 8594, 2004.
    
    [45] J. LeMoigne, "Parallel registration of multi-sensor remotely sensed imagery using wavelet coefficients," The International Society for Optical Engineering, Wavelet Applications Conference. Orlando: Proceedings of the SPIE, pp. 432-443,1994.
    [46] J. Le Mogine, 'Towards a parallel registration of multiple resolution remote sensing data," In: Proceedings of International Geoscience and Remote Sensing Symposium, Firenze, Italy, pp. 10-14, July, 1995.
    [47] J. LeMogine, W. J. Campbell, and R. F. Cromp, "An automated parallel image registration techinique based on the correlation of wavelet features," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 5, pp. 1849-1864,2002.
    [48] E. Kaymaz, B. Lerner, W.J. Campbell, et al, "Registration of satellite imagery utilizing the low-low components of the wavelet transform", Emerging Applications of Computer Vision. Washington, DC, USA: SPIE 2962, pp. 45-54,1997.
    [49] R. Shannan, J. M. Tyler, O. S. Pianykh, "Wavelet based registration and compression of sets of images," Wavelet Applications IV. Proc. SPIE 3078, pp. 497-505,1997.
    [50] J. C. Olivo, J. Deubler, C. Boulin, "Automatic registration of images by a wavelet-based multi-resolution approach," Journal of Mathematical Imaging and Vision, vol. 7, no. 3, pp. 234-244,1995.
    [51] Z. Zhang, R. S. Blum, "A hybrid image registration technique for a digital camera fusion application," Information Fusion, vol. 2, no. 2, pp. 135-149, 2001.
    [52] J. You and P. Bhattacharya, "A wavelet-based coarse-to-fine image matching scheme in a parallel virtual machine environment," IEEE Transactions on Image Processing, vol. 9, no. 9, pp. 1547-1559, 2000.
    [53] X. Wang and D. Feng, "An efficient wavelet-based biomedical registration for abdominal image," J. Nucl. Med., vol. 46, pp. 161,2005.
    [54] S. Gefen et al, "Surface alignment of an elastic body using a multiresolution wavelet representation," IEEE Trans. Biomed. Eng., vol. 51, no. 7, pp. 1230-1241,2004.
    [55] H. Stone, J. LeMoigne, and M. McGuire, "The translation sensitivity of wavelet-based registration," IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 10, pp. 1074-1081, Oct. 1999.
    [56] J. LeMoigne, I. Zavorine, "Use of wavelet for image registration," In: SPIE Aerosense, Wavelet Applications VI, Orlando, FL, pp. 24-28,2000.
    [57] J. Le Moigne, I. Zavorine, An application of rotation- and translation-invariant overcomplete wavelets to the registration of remotely sensed imagery, in: SPIE Aerosense, Wavelet Applications VI, Orlando, FL, pp. 6-8 April, 1999.
    [58] I. Zavorin, H. Stone, and J. LeMoigne, "Iterative pyramid-based approach to subpixel registration of multisensor satellite imagery," presented at the SPIE Int. Symp. Optical Science and Technology, Earth Observing Systems VII, Seattle, WA, Jul. 2002.
    [59] A. A. Cole-Rhodes, K. L. Johnson, J. LeMoigne, et al, "Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient," IEEE Trans.on Image Processing,vol.12,no.12,pp.1495-1511,2003.
    [60]I.Zavorin,J,Le Moigne,"Use of Multiresolution Wavelet Feature Pyramids for Automatic Registration of Multisensor Imagery," IEEE Transactions on Image.Processing,vol.14,no.6,pp.770-782,2005.
    [61]Z.Liu,Y.K.Ho,K.Tsukada,et al,"Using multiple orientational filters of steerable pyramid for image registration," Information Fusion,Elsevier,vol.3,pp.203-214,2002.
    [62]X.Wang,D.Feng,"Medical image registration via steerable pyramid," Proceedings of the 29th Annual International Conference of the IEEE EMBS Cite International,Lyon,France,,pp.6396-6398,2007.
    [63]孙少燕,基于像素灰度的医学图像刚性配准方法研究:(博士学位论文).大连:大连理工大学,2007。
    [64]彭文,基于特征的医学图像配准中若干关键技术的研究:(博士学位论文).浙江:浙江大学,2007.
    [65]T.M.Lehmann,C.G(o|¨)nner,and K.Spitzer,"Interpolation methods in medical image processing," IEEE Trans.Med.Imaging,vol.18,no.11,pp.1049-1075,1999.
    [66]J.X.Ji,H.Pan,and Z.Liang,"Further analysis of interpolation effects in mutual information-based image registration," IEEE Trans.Med.Imaging,vol.22,no.9,pp.1131-1140,2003.
    [67]W.H.Press,B.P.Flannery,and S.A.Teukolsky,et al.Numerical Recipes in C,2ed Ed,Cambridge Univ.Press,1993.
    [68]K.F.Man,K.S.Tang,and S.Kwong,"Genetic algorithms:Concepts and applications," IEEE Trans.Industrial Electronics,vol.43,no.5,pp.519-534,1996.
    [69]D.W.Marquardt,"An algorithm for least-squares estimation of nonlinear parameters," J.SIAM,vol.11,pp.431-441,1963.
    [70]S.Kirkpatrick,C.D.Gelatt,and M.P.Vecchi,"Optimization by Simulated Annealing,"Science,vol.220,No.4598,pp.671-680,1983.
    [71]J.Kennedy,and R.Eberhart,"Particle swarm optimization," In Proc.of the IEEE Int.Conf.on Neural Networks,Piscataway,NJ,pp.1942-1948,1995.
    [72]罗述谦,周国宏.医学图像处理与分析.北京:科学出版社,2003.
    [73]焦李成,谭山.图像的多尺度几何分析:回顾和展望,电子学报,vol.33(12A),pp.1975-1981.2003.
    [74]P.J.Burt,A.E.Adelson,"The Laplacian pyramid as a compact image code," IEEE Trans.Commun.,vol.31,no.4,pp.532-540,1983.
    [75]E.P.Simoncelli,E.H.Adelson,"Subband transforms",Subband Image Coding,John W.Woods,Ed.,Norwell,MA:Kluwer,1990,Ch.4.
    [76]S.G Mallat,"A theory for multiresolution signal decomposition:The wavelet representation,"IEEE Trans.Pattern Anal.Machine Intell.,vol.11,no.7,pp.674-693,1989.
    [77]S.G Mallat.A Wavelet Tour of Signal Processing.San Diego:Academic Press,1998.
    [78]彭玉华.小波变换与工程应用.第一版.北京:科学出版社,1999.
    [79]杨福生.小波变换的工程分析与应用.北京:科学出版社,2003.
    [80]E.P.Simoncelli,W.T.Freeman,E.H.Adelson,et al,"Shiftable multiscale transforms," IEEE Transactions on Information Theory,vol.38,no.2,pp.587-607,1992.
    [81]E.P.Simoncelli,W.T.Freeman,"The steerable pyramid:a flexible architecture for multiscale derivative computation," In:2nd Annual International Conference on Image Processing,Washington,DC,pp.444-447,1995.
    [82]H.Greenspan,S.Belongie,R.Goodman,et al,"Overcomplete steerable pyramid filters and rotation invariance," In Proceedings,CVPR,pp.222-228,1994.
    [83]Q.Wu,M.A.Schulze,K.R.Castleman,"Steerable Pyramid Filters for Selective Image Enhancement Applications," ISCAS '98,pp.325-328,1998.
    [84]I.Koren,A.Laine,and F.Taylor,"Image Fusion Using Steerable Dyadic Wavelet Transform," In proceedings of IEEE Int.Conf.In image processing,Vol.3,pp.132-135,1995.
    [85]W.T.Freeman,E.H.Adelson,"The design and use of steerable filters," IEEE Transaction on Pattern Analysis and Machine Intelligence,vol.13,no.9,pp.891-907,1991.
    [86]E.P.Simoncelli,"Design of multi-dimensional derivative filters," In Proceedings of First International Conference on Image Processing,pp.790-793,1994.
    [87]K.R.Castleman,M.A.Schulze,and Q.Wu,"Simplified design of steerable pyramid filters,"In Proc.IEEE ISCAS,1998.
    [88]A Karasaridis,E Simoncelli,"A Filter Design Technique for Steerable Pyramid Image Transforms",Atlanta,GA.,pp.2387-2390,1996.
    [89]Y.Lu,M.N.Do,"Multidimensional directional filter banks and surfacelets," IEEE Trans.on Image Processing,vol.16,no.4,pp.918-931,2007.
    [90]练秋生,孔令富.圆对称轮廓波变换的构造.计算机学报,vol.29,n0.4,pp.652-657,2006.
    [91]练秋生,孔令富.具有多方向选择性的小波构造.电子学报,vol.10,no.33,pp.1905-1909,2005.
    [92]练秋生.基于视觉特性的多方向小波构造及其应用研究:(博士学位论文).燕山:燕山大学,2006.
    [93]N.Kingsbury,"Complex wavelets for shift invariant analysis and filtering of signals," Appl.Comput.Harmon.Anal.,vol.10,pp.234-253,2001.
    [94]A.L.da Cunha,J.Zhou,M.N.Do,"Nonsubsampled Contourlet Transform:Filter Design and Applications in Denoising," IEEE International Conference on linage Processing,Genoa,Italy, pp.749-752,2005.
    [95]A.L.da Cunha,J.Zhou,M.N.Do,"The Nonsubsampled Contourlet Transform:Theory,Design and Applications," IEEE Trans.on Image Processing,vol.15,no.10,pp.3089-3101,2006.
    [96]R.Eslami,H.Radha,"Image denoising using translation-invariant contourlet transform,"IEEE Int.Conf.on Acoustics,Speech,and Signal Porc,vol.4,pp.557-560,2005.
    [97]J.H.McClellan,"The design of two-dimensional digital filters by transformation," in Proc.7th Annu.Princeton Conf.Inform.Sci.Syst.,pp.247-251,1973.
    [98]J.H.McClellan,T.W.Parks,"A unified approach to the design of optimum FIR linear phase digital filters," IEEE Trans.Circuit Theory,vol.CT-20,pp.697-701,1973.
    [99]J.H.McClellan,T.W.Parks,and L.R.Rabiner,"A computer program for designing optimum FIR linear phase digital filters," IEEE Trans.Audio Electroacoust,vol.AU-21,pp.506-526,1973.
    [100]D.T.Nguyen,M.N.S.Swamy,"Formulas for Parameters Scaling in the McClellan Theorem," IEEE Trans,CAS-33,vol.1,pp.108-109,1986.
    [101]C.Charalambous,"Design of N-dimensional multiplierless spherically symmetric FIR digital filters by transformation," IEE Proceedings Part G,vol.135,pp.203-210,1988.
    [102]何振亚.多维数字信号处理.北京:国防工业出版社,1995.
    [103]陈明,陈武凡,冯前进等.基于互信息量和模糊梯度相似性的医学图像配准.电子学报。vol.12,pp.1835-1838,2003.
    [104]L.A.Zadeh,"Fuzzey sets.Inform.Control." vol.8.pp.338-353.1965.
    [105]汪培庄.模糊集合论及其应用.上海:上海科技出版社,1983.
    [106]刘法贵,赵娟.模糊贴近度及应用.华北水利水电学院学报,vol.3,pp.104-106,2006.
    [107]Z.W.Yang,F.S.Cohen,"Cross-weighted moments and affine invariants for image registration and matching," IEEE transactions on Pattern Analysis and Machine Intelligence,vol.21,no.8,pp.804-813,1999.
    [108]A.Rangarajan,J.S.Duncan,"Matching point features using mutual information," IEEE Trans.Med.Imag.,vol.2,no.6,2001.
    [109]刘新刚.医学图像弹性配准新算法的研究:(博士学位论文).第一军医大学,2006.
    [110]王季方,卢正鼎.模糊控制中隶属度函数的确定方法.河南科学.vol.18,no.4,pp.348-351,2000.
    [111]周永新,罗述谦.一种人机交互式快速脑图像配准系统.北京生物医学工程,vol.21,no.1,pp.11-14,2002.
    [112]S.Battiato,G.Gallo,and F.Stanco,"A locally-adaptive zooming algorithm for digital images," Image and Vision Computing,vol.20(11),pp.805-812,2002.
    [113]X.Li and M.T.Orchard,"New edge-directed interpolation," IEEE Trans.On Image Processing,vol.10,no.1,pp.1521-1527,2001.
    [114]J.W.Hwang and H.S.Lee,"Adaptive image interpolation based on local gradient features," IEEE Signal Processing Letters,vol.3,pp.359-362,2004.
    [115]K.Jensen and D.Anastassiou,"Subpixel edge localization and the interpolation of still images," IEEE Trans.Image Process.,vol.4,no.3,pp.285-295,1995.
    [116]L.Zhang and X.Wu,"An edge guided image interpolation algorithm via directional filtering and data fusion," IEEE Trans.On Image Processing,vol.15,pp.2226-2238,2006.
    [117]W.K.Carey,D.B.Chuang,and S.S.Hemami,"Regularity-Preserving image interpolation," IEEE Trans.Image Process.,vol.8,no.9,pp.1293-1297,1999.
    [118]A.Temizel and T.Vlachos,"Wavelet domain image resolution enhancement," IEE Proceedings,Vision,Image,and Signal Processing,vol.153,no.1,pp.25-30,Feb.2006.
    [119]S.Zhao,H.Han,S.Peng,"Wavelet-domain HMT-based Image Superresolution," IEEE International Conference on Image Processing,2003.
    [120]K.Kinebuchi,D.D.Muresan,and T.W.Parks,"image interpolation using wavelet-based hidden Markov trecs," Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing,vol.3,pp.1957-1960,2001.
    [121]M.J.Chen,C.H.Huang,and W.L.Lee,"A fast edge-oriented algorithm for image interpolation," Image and Vision Computing,vol.23,no.9,pp.791 -798,2005.
    [122]J.K.Romberg,M.Wakin,and R.Baraniuk,"Multiscale wedgelet image analysis:fast decomposition and modeling," IEEE International Conference on Image Processing,June 2002.
    [123]X.N.Wang and D.Q.Lin,"Orientation information measure based image restoration,"Second International Conference on Machine Learning and Cybernetics,Xi'an,Nov.2003.
    [124]G.Deslauriers and S.Dubuc,"Interpolation dyadique," in Fractals,Dimensions Non Entieres et Applications,Masson,Paris,pp.44-55,1987.
    [125]J.Kovacevic and W.Sweldens,"Wavelet Families of increasing order in arbitrary dimensions," IEEE Trans.on Image Processing,vol.9,no.3,pp.480-496,2000.
    [126]冈萨雷斯.数字图像处理第二版.北京:电子工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700