基于方向小波图像处理与几何特征保持质量评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,以及人们需求的日益提高,从一维信号处理中发展起来的经典图像处理算法,已越来越难满足人们对高质量图像处理的需求。小波等经典图像处理方法忽略了高维数据的本征几何结构特征,并不是适于图像数据结构的视觉最优图像处理方法。因此,为了改善各类图像处理算法的效果,必须从图像数据的本身结构特点出发,根据人眼视觉系统特性,结合实际应用背景需求,设计真正适合于图像数据特征的图像处理算法。
     图像数据的离散属性,以及结构的复杂特性,决定了在数字图像处理过程中,建立符合视觉感知特点的适于应用背景的精确模型的困难性。本文在深入研究图像数据视觉感知特点的基础上,针对传统图像压缩、分辨率增强以及质量评价算法设计中的不足,对算法设计中的一些关键问题做出了深入研究。本文的主要工作和创新包括以下几个方面:
     1.针对基于小波变换图像压缩方法的不足,结合图像数据几何结构特征,提出了基于边缘导向的正交小波变换图像压缩方法。该方法在继承经典小波变换优点的基础上,能够充分理解图像数据的方向奇异结构特性,有效地利用图像数据空间不均匀的特性,提高图像压缩效率的同时,有效保护图像数据中人眼视觉感兴趣的几何奇异特征。同时,将方法根据SAR图像数据特点加以改进,拓展应用到SAR图像压缩中。
     2.针对传统插值方法的不足,提出了基于小波变换的边缘保持方向自适应图像插值方法。该方法通过改进双线性插值方法,自适应调整插值核函数,有效地保护了图像的边缘特征。同时结合小波变换的多分辨表示性能,有效地提高了插值图像的高频信息,并进行相关后处理,增强了图像的视觉效果。与传统方法比较,试验结果的主客观质量都得到了提高。
     3.在研究二分树复小波变换系数几何先验信息的基础上,建立了基于复小波变换的超分辨图像重建模型。该方法利用二分树复小波变换具有近似平移不变和灵活的方向选择性,实现图像的高效稀疏表示。同时,根据复小波变换系数模值和相位信息在边缘处的几何约束条件,结合超分辨重建问题,从而在复小波变换域建立一种新型的超分辨重建模型。最后,利用分裂Bregman方法实现模型的有效优化求解,得到高质量的超分辨率图像。
     4.针对传统质量评价方法的缺陷,根据视觉感知图像数据的特点,提出了基于几何结构失真模型的完全参考图像质量评价方法。该方法根据图像数据中引起视觉敏感的方向失真、幅度失真和锐度失真,建立了几何结构失真模型,物理意义明确,计算复杂度较低,符合人眼视觉感知特点,试验结果与主观预测结果具有很好的一致性。同时,利用小波变换与人眼视觉系统的多通道特性相匹配的特点,建立基于小波变换的几何结构失真模型的质量评价方法,试验结果验证了方法的有效性。
     5.根据自然图像统计先验信息,提出了基于边缘特征统计的部分参考型图像质量评价方法。图像边缘信息在人眼感知图像质量过程中占据着十分重要的地位,而自然图像的边缘统计分布符合一定的先验统计规律,该方法通过度量这种统计分布特征的变化程度预测图像质量,仿真试验对标准图像库中所有失真类型数据都得到较好的预测结果。
     总之,本文从图像数据结构特征出发,结合人眼视觉感知特性,解决基于方向小波图像处理算法与几何特征保持质量评价方法设计中的一些关键问题,获得了更加符合人眼视觉系统特性的试验结果。
With the development of technology and the increase of requirement, it is becoming more and more difficult to obtain visually satisfactory result by conventional image processing algorithms. The limitations of commonly used separable extensions from one-dimensional transforms for images, such as discrete wavelet transform (DWT), are well known; e.g. these separable transforms cannot take advantage of intrinsic geometrical structure in high dimensional signals and are not the optimal algorithms for image. To improve the performance of image processing algorithms, it is necessary to explore the geometry in image and the characteristic of human visual system which are desirable features for many consumers and practical applications. That is to say, the image processing algorithms should be directly driven by the structure of image data.
     The performance of image processing algorithms closely relies on the accuracy of employed models to characterize the image. However, it is difficult to construct an accurate image model in according to visual prediction and practical applications. The main challenge in exploring geometry in images comes from the discrete nature of image data and complexity of image structures. In this thesis, we study the characteristic of image data and human visual system and solve some crucial issues in algorithms to overcome the disadvantage of traditional image compression, image resolution enhancement, and image quality assessment. The main contributions of this thesis could be summarized as follows:
     1. In order to overcome the disadvantage of conventional wavelet based image compression, we propose an edge-directed orthogonal wavelet transform which is driven from the geometric structural feature of image. The proposed method inherits the advantage of wavelet and explores the directional features of images. Different schemes are implemented based on the property of image blocks to reduce the computational complexity. Experiments show that the new method can protect effectively the geometric feature which plays an important role in visual perception. Meanwhile, the extension of this method to wavelet packets for SAR image compression is straightforward.
     2. The blur and jaggy of image details or edges are inevitable during conventional image interpolation. In order to obtain interpolated images with better quality, we propose wavelet based edge-preserving direction adaptive image interpolation method. We apply the improved bilinear interpolation method with adaptive direction to interpolated image. Wavelet is implemented to provide more high frequency information, and post-processing is applied to improve the visual quality of interpolated images. The experimental results show that our method can achieve interpolated image with high quality, both subjectively and objectively.
     3. A novel single image super-resolution reconstruction algorithm is proposed based on the geometrical model on the phase and amplitude of dual-tree complex wavelet coefficients of the image. The dual-tree complex wavelet has the properties of approximate shift-invariance and flexible directionality, and can achieve sparser image representation compared with standard wavelet. The appropriate geometric regularization is designed based on the priors of the amplitude and phase of complex wavelet coefficients for super resolution image reconstruction. Then, Split Bregman iteration is utilized in our proposed approach for optimization to gain high quality super resolution image.
     4. Inspired by the researches of quality prediction of human visual system and the intrinsically geometric structural features of natural images, a novel geometric structural distortion model based full reference image quality assessment method is proposed to overcome the deficiencies in traditional methods. Basically there are three components in our measurement to characterize the geometric structural distortion: direction, magnitude and sharpness. The proposed measurement fits the physical observations for various image distortions and has relatively low computational complexity. The experimental results on image database show that the performance of our method is consistent with the subjective assessment of human beings. Meanwhile, wavelet based geometric structural distortion is proposed in according with perceptual property of human eye, where wavelet transform is used because it matches well the multi-channel model of HVS. The experimental results demonstrate the advantage of proposed model.
     5. A novel reduced reference image quality assessment based on natural image statistical prior in gradient domain is proposed. The research in human visual system shows that edge information plays an important role in visual perception. On the other hand, it obeys a specify distribution for natural image, where some statistical features of reference image are extracted and sent to receiver side. The distortion measure for distorted image is defined with comparison of these features. The experimental resuts on standard image database shows that proposed method is general purposed for all distortion types.
     In summary, following the characteristic of image data and human visual perception, this thesis provides several systemic researches about the problem of direction adaptive wavelet based image processing algorithms and geometric structural features preserving image quality assessment.
引文
[1] Mallat S. A Wavelet Tour of Signal Processing [M]. Academic Press, 2nd edition, 1999.
    [2] Nussbaumer H J. Fast Fourier Transform and Convolution Algorithms [M]. New York: Springer-Verlag, 2nd edition, 1981.
    [3] Rao K R, Yip P. Discrete Cosine Transform: Algorithms, Advantages, Applications [M]. New York: Academic, 1990.
    [4] Chui C K. An Introduction to Wavelets [M]. Academic Press, 1992.
    [5] DeVore R A. Nonlinear Approximation [M]. Acta Numerica, Cambridge University Press, 1998.
    [6] Do M N. Directional Multiresolution Image Representations [D]. Switzerland, Swiss Federal Institute of Technology Lausanne, 2001.
    [7] Field D J. Relations between the Statistics of Natural Images and the Response Properties of Cortical Cells [J]. Journal of the Optical Society of America A, 1987, 4(12): 2379–2394.
    [8] Lyu S. Natural Image Statistics for Digital Image Forensics [D]. USA, Department of Computer Science, Dartmouth College, 2005.
    [9] Lu Y. Multidimensional Geometrical Signal Representation Constructions and Applications [D]. USA, University of Illinois at Urbana-Champaign, Dept. of Electrical and Computer Engineering, 2007.
    [10] Srivastava A, Lee A B, Simoncelli E P, Zhu S. On Advances in Statistical Modeling of Natural Images [J]. Journal of Mathematical Imaging and Vision, 2003, 18(1): 17-33.
    [11]焦李成,谭山.图像多尺度几何分析:回顾和展望[J].电子学报,2003, 31(12): 1975-1981.
    [12] Candès E J. Monoscale Redgelets for the Representation of Images with the Edges [R]. USA, Stanford University, Department of Statistic, 1999.
    [13] Hubel D H, Wiesel T N. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex [J]. Journal of Physiology, 1962, 160(1): 106-154.
    [14] Olshausen B A, Field D J. Emergence of Simple-cell Receptive Field Properties by Learning a Sparse Code for Natural Images [J]. Nature, 1996, 381(6583): 607-609.
    [15] Donoho D L, Flesia A G. Can Recent Innovations in Harmonic Analysis‘Explain’Key Findings in Natural Image Statistics? [J]. Network: Computation in Neural Systems, 2001, 12(3): 371-393.
    [16] Donoho D L. Orthonormal Ridgelets and Linear Singularities [R]. USA, Stanford University, Department of Statistics, 1998.
    [17] Meyer F G, Coifman R R. Brushlets: A Tool for Directional Image Analysis and Image Compression [J]. Applied and Computational Harmonic Analysis, 1997, 4(2): 147-187.
    [18] Kingsbury N K. Image Processing with Complex Wavelets [J]. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1999, 357(1760): 2543-2560.
    [19] Candès E J. Ridgelets: Theory and Applications [D]. USA, Stanford University,Department of Statistics, 1998.
    [20] Candès E J, Donoho D L. Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Curves and Surfaces [M]. Schumaker L L. et al. (eds), Vanderbilt University Press, Nashville, TN, 1999.
    [21] Coifman R, Geshwind F, Meyer Y. Noiselets [J]. Applied and Computational Harmonic Analysis, 2001, 10(1): 27-44.
    [22] Pennec E L, Mallat S. Image Compression with Geometrical Wavelets [C]. Proceedings of the IEEE International Conference on Image Processing, Vancouver, Canada, 2000: 661-664.
    [23] Mallat S, Pennec E L. Sparse Geometric Image Representation with Bandelets, IEEE Transactions on Image Processing, 2005, 14(4): 423-438.
    [24] Donoho D L, Huo X. Beamlets and Multiscale Image Analysis [R]. USA, Stanford University, 2001.
    [25] Do M N, Vetterli M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation [J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.
    [26] Lu Y, Do M N. CRISP-Contourlet: A Critically Sampled Directional Multiresolution Image Representation [C]. Proceeding of SPIE Conference on Wavelets X, San Diego, 2003, 5207: 655-665.
    [27] Velisavljevic V, Beferull L, Vetterli M, Dragotti P. Directionlets: Anisotropic Multi-directional Representation with Separable Filtering [J]. IEEE Transactions on Image Processing, 2006, 15(7): 1913-1933.
    [28] Egger O, Fleury P, Ebrahimi T, Kunt M. High-Performance Compression of Visual Information-A Tutorial Review-Part I: Still Pictures [J]. Proceedings of the IEEE, 1999, 87(6): 976-1011.
    [29] Rabbani M, Jones P W. Digital Image Compression Techniques [M]. Bellingham, Washington USA, SPIE Optical Engineering Press, 1991.
    [30] Wallace G K. The JPEG Still Picture Compression Standard [J]. Communications of the ACM, 1991, 34(4): 30-44.
    [31] Christopoulos C, Skodras A, Ebrahimi T. The JPEG2000 Still Image Coding System: An Overview [J]. IEEE Transactions on Consumer Electronics, 2000, 46(4): 1103-1127.
    [32] Fisher Y. Fractal Image Compression: Theory and Application [M]. New York, USA: Springer-Verlag, 1995.
    [33] Dony R D, Haykin S. Neural Network Approaches to Image Compression [J]. Proceeding of IEEE, 1995, 83(2): 288-303.
    [34] Taubman D S, Marcellin M W. JPEG2000: Image Compression Fundamentals, Standards and Practice [M]. Boston, Kluwer Academic Publishers, 2002.
    [35] Shapiro J M. Embedded Image Coding Using Zerotree of Wavelet Coefficients [J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3445-3462.
    [36] Wheeler F W, Pearlman W A, SPIHT Image Compression without Lists [C]. Proceeding of IEEE International Conference ASSP, Vancouver, Canada, 2000, 4: 2047-2050.
    [37] Taubman D. High Performance Scalable Image Compression with EBCOT [J]. IEEE Transactions on Image Processing, 2000, 9(7): 1158-1170.
    [38] Bamberger R H, Smith M J. A Filter Bank for the Directional Decomposition of Images: Theory and design [J]. IEEE Transactions on Signal Processing, 1992, 40(4): 882-893.
    [39] Wang D, Zhang L, Vincent A, Speranza F. Curved Wavelet Transform for Image Coding [J]. IEEE Transactions on Image Processing, 2006, 15(8): 2413-2421.
    [40] Cunha A L, Do M N. On Two-Channel Filter Banks with Directional Vanishing Moments [J]. IEEE Transactions on Image Processing, 2007, 16(5): 1207-1219.
    [41] Sweldens W. The Lifting Scheme: A Construction of Second Generation Wavelets [J]. SIAM Journal on Mathematical Analysis, 1998, 29(2): 511-546.
    [42] Chang C L, Girod B. Direction-Adaptive Discrete Wavelet Transform for Image Compression [J]. IEEE Transactions on Image Processing, 2007, 16(5): 1289-1302.
    [43] Ding W, Wu F, Li S. Lifting-Based Wavelet Transform with Directionally Spatial Prediction [C]. Proceeding of Picture Coding Symposium, San Francisico, CA, USA, 2004.
    [44] Zhang N, Lu Y, Wu F, et al. Efficient Multiple-Description Image Coding Using Directional Lifting-Based Transform [J]. IEEE Transactions on Circuits and Systems for Video Technolongy, 2008, 18(5): 646-656.
    [45] Daubechies I. Ten lectures on wavelets [M]. SIAM: Philadelphia, 1992.
    [46] Wang Z, Bovik A C. Modern Image Quality Assessment [M]. San Rafael, CA: Morgan & Claypool, 2006.
    [47] Oliver C, Quegan S. Understanding Synthetic Aperture Radar Imagery [M]. Artech House, 1998.
    [48] Gleich D, Planinsic P, Gergic B, Banjanin B, Cucej Z. Comparison of Different Coding Schemes for SAR Image Compression [C]. Proceeding of IEEE International Symposium on Industrial Electronics, 1999: 114-117.
    [49] Rangy R K, Wessels G J. Spatial Considerations in SAR Speckle Simulation [J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(5): 667-671.
    [50] Chang C Y, Kwok R. Spatial Compression of Seasat SAR Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6): 673-685.
    [51] Zeng Z Z, Cumming I G. SAR Image Data Compression Using a Tree-Structured Wavelet Transform [J]. IEEE Transactions on Geoscience Remote Sensing, 2001, 39(3): 546-552.
    [52] Hou X S, Liu G Z, Zou Y Y. SAR Image Data Compression Using Wavelet Packet Transform and Universal-Trellis Coded Quantization [J]. IEEE Transactions on Geoscience Remote Sensing, 2004, 42(11): 2632-2641.
    [53] Coifman R R, Wickerhauser M V. Entropy-Based Algorithms for Best Basis Selection [J]. IEEE Transactions on Information Theory, 1992, 38(3): 713-718.
    [54] Ramchandran K, Vetterli M. Best Wavelet Packet Bases in A Rate Distortion Sense [J]. IEEE Transactions on Image Processing, 1993, 2(4): 160-175.
    [55] Achim A, Tsakalides P, Bezerianos A. SAR Image Denoising via Bayesian Wavelet Shrinkage Based on Heavey-tailed Modeling [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(8): 1413-1421.
    [56] Arsenault H, April G, Properties of Speckle Integrated with A Finite Aperture and Logarithmic Transformation [J]. Journal of the Optical Society of America, 1976, 66(11): 1160-1163.
    [57]成礼智,王红霞,罗永.小波的理论与应用[M].科学出版社, 2004.
    [58] Donoho D L, Johnstone I M. Ideal Spatial Adaptation by Wavelet Shrinkage [J]. Biometrika, 1994, 81(3): 425-455.
    [59] Donoho D L. De-noising by Soft-Thresholding [J]. IEEE Transactions on Information Theory, 1995, 41(5): 613–627.
    [60] Franceschetti G, Lanari R. Synthetic Aperture Radar Processing [M], CRC Press, Danvers, MA, 1999.
    [61] Meyer F G, Averbuch A Z, Stromberg J O. Fast Adaptive Wavelet Packet Image Compression [J]. IEEE Transactions on Image Processing, 2000, 9(5): 792-800.
    [62] Chaudhuri S. Super-Resolution Imaging [M]. Norwell, MA: Kluwer, 2001.
    [63] Harris J L. Diffraction and Resolving Power [J]. Journal of the Optical Society of America, 1964, 54(7): 931-936.
    [64] Goodman J W. Introduction to Fourier Optics [M], McGrow_Hill, New York, 1968.
    [65] Tsai R Y, Huang T S. Multiframe Image Restoration and Registration [M], Advances in Computer Vision and Image Processing [M], Greenwich, JAI Press, 1984, 1(7): 317-339.
    [66] Park S C, Park M K, Kang M G. Super-Resolution Image Reconstruction: A Technical Overview [J]. IEEE Signal Processing Magazine, 2003, 20(5): 2-36.
    [67] Castleman K R. Digital image processing [M]. Prentice Hall, 1995.
    [68] Kim S, Bose N, Valenzuela H. Recursive Reconstruction of High Resolution Image from Noisy Undersampled Multiframes [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(6): 1013-1027.
    [69] Kim S P, Su W Y. Recursive High-resolution Reconstruction of Blurred Multi-frame Images [J]. IEEE Transactions on Image Processing, 1993, 2(2): 534-539.
    [70] Bose N K, Kim H C, Valenzuela H M. Recursive Implementation of Total Least Squares Algorithm for Image Reconstruction from Noisy, Undersampled Multiframes [C]. Proceeding of IEEE Conference on Acoustics, Speech and Signal Processing, Minneapolis, MN, Apr. 1993, 5: 269-272.
    [71] Kaltenbacher E, Hardie R C. High-Resolution Infrared Image Reconstruction Using Multiple Low-Resolution Aliased Frames [C]. Proceeding of IEEE National Aerospace Electronics Conference, Dayton, OH, 1996, 2: 702-709.
    [72] Komatsu T, Igarashi T, Aizawa K, Saito T. Very High Resolution Imaging Scheme with Multiple Different Aperture Cameras [J]. Signal Processing Image Communication, 1993, 5(5-6): 511-526.
    [73] Irani M, Peleg S. Improving Resolution by Image Registration [J]. CVGIP: Graphical Model and Image Processing, 1993, 53(12):324-335.
    [74] Mann S, Picard R W. Virtual Bellows: Constructing High Quality Stills from Video [C]. Proceeding of IEEE International Conference on Image Processing. Austin, TX. 1994: 363-367.
    [75] Sauer K, Allebach J. Iterative Reconstruction of Band-Limited Images from Non-uniformly Spaced Samples [J]. IEEE Transactions on Circuits and Systems, CAS-34: 1987, 1497-1505.
    [76] Tekalp A, Ozkan M, Sezan M. High-Resolution Image Reconstruction from Lower-Resolution Image Sequences and Space-Varying Image Restoration [C]. Proceeding of International Conference on Acoustics, Speech, and Signal Processing, San Francisco, CA, March 1992, 3: 169-172.
    [77] Schutz R R, Stevenson R L. Extraction of High-resolution Frames from Video Sequences [J]. IEEE Transactions on Image Processing, 1996, 5(6): 996-1011.
    [78] Hardie R C, Barnard K J, Armstron E E. Joint MAP Registration and High-resolution Image Estimation using A Sequence of Undersampled Images [J]. IEEE Transactions on Image Processing, 1997, 6(12): 1621-1633.
    [79] Borman S, Stevenson R L. Simultaneous Multi-frame MAP Super-resolution Video Enhancement using Spatial-temporal Priors [C]. Proceeding of IEEE International Conference on Image Processing, 1999: 469-473.
    [80] Elad M, Feuer A. Restoration of a Single Super-Resolution Image from Several Blurred, Noisy and Undersampled Measured Images [J]. IEEE Transactions on Image Processing, 1997, 6(12): 1646-1658.
    [81] Elad M, Hel-Or Y. A Fast Super-Resolution Reconstruction Algorithm for Pure Translational Motion and Common Space Invariant Blur [J]. IEEE Transactions on Image Processing, 2001, 10(8): 1187–1193.
    [82] Farsiu S, Robinson D, Elad M, Milanfar P. Fast and Robust Super-Resolution [C]. Proceeding of IEEE International Conference on Image Processing, 2003: 291–294.
    [83] Elad M, Feuer A. Superresolution Restoration of an Image Sequence: Adaptive Filtering Approach [J]. IEEE Transaction on Image Processing, 1999, 8(3): 387-395.
    [84] Connolly T, Lane R. Gradient Methods for Superresolution [C]. Proceeding of IEEE International Conference on Image Processing, 1997, 1: 917-920.
    [85] Chan R, Chan T, Ng M, et al. Preconditioned Iterative Methods for High-Resolution Image Reconstruction from Multisensors [C]. Advancee Signal Processing Algorithms, Architectures, Implementations VIII, San Diego CA, 1998, 3461: 348–357.
    [86] Nguyen N. Numerical Techniques for Image Superresolution [D]. USA, Stanford University, 2000.
    [87] Chan R H, Chan T F, Shen L X, Shen Z W. Wavelet Algorithms for High-Resolution Image Reconstruction [J]. SIAM Journal on Scientific Computing, 2003, 24(4): 1408-1432.
    [88] Chan R H, Riemenschneider S D, Shen L X, Shen Z W. Tight frame: an Efficient Way for High-Resolution Image Resolution [J]. Applied and Computational Harmonic Analysis, 2004, 17(1): 91-115.
    [89] Bose N K, Lertrattanapanich S. Advance in Wavelet Superresolution [C]. Proceeding of International Conference on Sampling Theory and Application, 2001: 5-12.
    [90] Baker S, Kanade T. Hallcinating Faces [C]. Proceeding of IEEE International Conference on Automatic Face and Gesture Recognition, 2000: 83-88.
    [91] Baker S, Kanade T. Limits on Super-Resolution and How to Break Them [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1167-1183.
    [92] Freeman W T, Jones T R. Pasztor E C. Example-Based Super-Resolution [J]. IEEE Computer Graphic and Applications, 2002, 22(2): 56-65.
    [93] Joshi M V, Chaudhuri S, Panuganti R. A Learning-Based Method for Image Super-Resolution from Zoomed Observation [J]. IEEE Transactions on Systems, Man and Cybernetics, 2005, 35(3): 527-537.
    [94] Liu C, Shum H Y, Freeman W T. Face Hallucination: Theory and Practice [J]. International Journal of Computer Vision, 2007, 75(1): 115-134.
    [95] Allebach J, Wong P W. Edge-Directed Interpolation [C]. Proceeding of IEEE International Conference on Image Processing, Lausanne, Switzerland, 1996, 3: 707-710.
    [96] Li X, Orchard M T. New Edge Directed Interpolation [J]. IEEE Transactions onImage Processing, 2001, 10(10): 1521-1527.
    [97] Hwang J W, Lee H S. Adaptive Image Interpolation Based on Local Gradient Features [J]. IEEE Signal Processing Letters, 2004, 11(3): 359-362.
    [98] Temizel A, Vlachos T. Wavelet Domain Image Resolution Enhancement [J]. IEE Proceedings - Vision, Image, and Signal Processin, 2006, 153(2): 25-30.
    [99] Chang S G, Cvetkovic Z, Vetterli M. Locally Adaptive Wavelet-Based Image Interpolation [J]. IEEE Transactions on Image Processing, 2006, 15(6): 1471-1485.
    [100] Wang Q, Ward R K, A New Orientation-Adaptive Interpolation Method [J]. IEEE Transactions on Image Processing, 2007, 16(4): 889-900.
    [101] Muresan D D. Fast Edge Directed Polynomial Interpolation [C]. Proceeding of IEEE International Conference on Image Processing, Arlington, VA USA, 2005, 2: 990-993.
    [102] Cha Y, Kim S. The Error-Amended Sharp Edge (EASE) Scheme for Image Zooming [J]. IEEE Transactions on Image Processing, 2007, 16(6): 1496-1505.
    [103]张军,数值计算,清华大学出版社,2008.
    [104] Cunha A L, Zhou J, Do M N. The Nonsubsampled Contourlet Transform: Theory, Design and Applications [J]. IEEE Transactions on Image Processing, 2006, 15(6): 1610-1620.
    [105] Chang S G, Yu B, Vetterli M. Spatially Adaptive Wavelet Thresholding with Context Modeling for Image Denoising [J]. IEEE Transactions on Image Processing, 2000, 9(9): 1522–1531.
    [106] Starck J L, Candes E J, Donoho D L. The Curvelet Transform for Image Denoising [J]. IEEE Transactions on Image Processing, 2002, 11(6): 670–684.
    [107] Muresan D D. Fast Edge Directed Polynomial Interpolation [C]. Proceeding of IEEE International Conference on Image Processing, Arlington, VA USA, 2005, 2:990-993.
    [108] Farsiu S, Robinson M, Elad M, Milanfar P. Fast and Robust Multiframe Super Resolution [J]. IEEE Transactions on Image Processing, 2004, 13(10): 1327-1344.
    [109] Dai S, Han M, Wu Y, et al. SoftCuts: A Soft Edge Smoothness Prior for Color Image Super-Resolution [J]. IEEE Transactions on Image Processing, 2009, 18(5): 969-981.
    [110] Selesnick I, Baraniuk R, Kingsbury N G. The Dual-tree Complex Wavelet Transform [J]. IEEE Signal Processing Magazine, 2005, 22(6): 123-151.
    [111] Goldstein T, Osher S. The Split Bregman Method for L1 Regularized Problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343.
    [112] Miller M, Kingsbury N G. Image Modeling using Interscale Phase Properties of Complex Wavelet Coefficients [J]. IEEE Transactions on Image Processing, 2008, 17(9): 1491-1499.
    [113] Reeves T H, Kingsbury N G. Prediction of Coefficients from Coarse to Fine Scales in the Complex Wavelet Transform [C]. Proceeding of nternational Conference on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, May, 2000: 508-511.
    [114] Donoho D L. For Most Large Underdetermined Systems of Linear Equations, the Minimal L1-Norm Solution is Also the Sparest Solution [J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829.
    [115] Cai J, Chan R, Shen Z. A Framelet-Based Image Inpainting Algorithm [J].Applied and Computational Harmonic Analysis, 2008, 24(2): 131-149.
    [116] Donoho D L. Compress Sensing. IEEE Transactions on Information Theory, 2006, 52 (4): 1289-1306.
    [117] Osher S, Burger M, et al. An Iterated Regularization Method for Total Variation-Based Image Restoration [J]. Multiscale Modeling & Simulation, 2005, 4(2): 460-489.
    [118] Darbon F, Osher S. Fast Discrete Optimizations for Sparse Approximations and Deconvolutions [J]. to appear, 2007.
    [119] Cai J F, Osher S, Shen Z W. Linearized Bregman Iterations for Compressed Sensing [J]. Mathematics of Computation, 2009, 78(267): 1515-1536.
    [120] Wang Z, Bovik A. C, Lu L G. Why is Image Quality Assessment So difficult? [C]. Proceeding of IEEE Conference on Acoustics, Speech and Signal Processing, Orlando, 2000, IV: 3313-3316.
    [121] Sheikh H R, Sabir M F, Bovik A C. A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms [J]. IEEE Transactions on Image Processing, 2006, 15(11): 3441-345.
    [122] Corriveau P, Hughes B, Stelmach L, Gojmerac C. All Subjective Scales Are Not Created Equal: The Effects of Context on Different Scales [J]. Signal Processing, 1999, 77(1): 1-9.
    [123] Wang Z, Bovik A C. Mean Squared Error: Love it or Leave it? - A New Look at Signal Fidelity Measures [J]. IEEE Signal Processing Magazine, 2009, 26(1): 98-117.
    [124] Daly S. The Visible Difference Predictor: An Algorithm for the Assessment of Image Fidelity [M]. Digital Images and Human Vision [M]. A. B. Watson, Ed. Cambridge, MA: MIT Press, 1993, pp. 179-206.
    [125] Bradley A P. A Wavelet Visible Difference Predictor [J]. IEEE Transactions on Image Processing, 1999, 8(5): 717-730.
    [126] Lubin J. A Visual Discrimination Mode for Image System Design and Evaluation [M]. Visual Models for Target Detection and Recognition [M]. Peli E. Editor, 1995, World Scientific: Singapore. pp. 207-220.
    [127] Watson A B. Digital Images and Human Vision [M]. The MIT Press, Cambridge, MA, 1993.
    [128] Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image Quality Assessment: From Error Visibility to Structural Similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
    [129] Sheikh H R, Bovik A C, Veciana G. An Information Fidelity Criterion for Image Quality Assessment using Natural Scene Statistics [J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117–2128.
    [130] Sheikh H R, Bovik A C. Image Information and Visual Quality [J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.
    [131] Girod B, What’s Wrong with Mean-Squared Error [M]. Digital Images and Human Vision [M]. Watson A B. Ed. Cambridge, MA: MIT Press, 1993, pp. 207-220.
    [132] Simoncelli E P, Olshausen B A. Natural Image Statistics and Neural Representation [J]. Annual Review of Neuroscience, 2001, 24(5): 1193-216.
    [133] Chandler M, Hemami S. VSNR: A Wavelet-Based Visual Signal-to-Noise Ratio for Natural Images [J]. IEEE Transactions on Image Processing, 2007, 16(9): 2284-2298.
    [134] Shnayderman A, Gusev A, Eskicioglu A M. An SVD-based Grayscale Image Quality Measure for Local and Global Assessment [J]. IEEE Transactions on Image Processing, 2006, 15(2): 422-429.
    [135] Ran X, Farvardin N. Aperceptually Motivated Three-Component Image Model-Part I: Description of Model [J]. IEEE Transactions on Image Processing, 1995, 4(4): 401-405.
    [136] Chen G H, Yang C L, Xie S L. Gradient-based Structural Similarity for Image Quality Assessment [C]. Proceeding of IEEE International Conference on Image Processing, Atlanta, USA, 2006: 2929-2932.
    [137] Yang C, Chen G, Xie, S. Gradient Information based Image Quality Assessment [J]. Acta Electronic Sinca, 2007, 35(7): 1313-1317.
    [138] Fattal R. Image Upsampling via Imposed Edge Statistics [J]. ACM Transactions on Graphics, 2007, 26(3): 95:1-95:8.
    [139] Sun J, Sun J, Xu Z, et al., Image Super-Resolution using Gradient Profile Prior [C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2008: 1-8.
    [140] Wang H, Zhong W, Wang J, Xia D. Research of Measurement for Digital Image Definition [J]. Journal of Image and Graphics, 2004, 9(7): 828-832.
    [141] Sheikh H R, Wang Z, Bovik A C, Cormack L. Live Image Quality Assessment Database Release2 [EB/OL]. http://live.ece.utexas.edu/research/quality
    [142] VQEG. Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment [EB/OL]. http://www.vqeg.org
    [143] Eskicioglu A M, Fisher P S. Image Quality Measures and Their performance [J]. IEEE Transactions on Communications, 1995, 43(12): 2959-2965.
    [144] Lee T S. Image Representation Using 2D Gabor Wavelets [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(1): 9959-971.
    [145] Nadenau M J, Reichel J, Kunt M. Wavelet-based Color Image Compression: Exploiting the Contrast Sensitivity [J]. IEEE Transactions on Image Processing, 2003, 12(1): 58-70.
    [146] Mannos J L, Sakrison D J. The Effect of Visual Fidelity Criterion on the Encoding of Images [J]. IEEE Transactions on Information Theory, 1974, 20(2): 525-536.
    [147] Sheikh H R, Wang Z, Cormackl L, et al. Live Image Quality Assessment Database Release 1 [EB/OL]. http://live.ece.utexas.edu/research/quality.
    [148]楼斌,基于NSS与HVS的图像质量评价方法研究[D].浙江,浙江大学电气学院,电路与系统, 2009.
    [149]庞建新,图像质量客观评价研究[D].合肥,中国科技大学信号与信息处理, 2008.
    [150]路文,基于视觉感知的影像质量评价方法研究[D].西安,西安电子科技大学模式识别与智能系统, 2009.
    [151] Kusuma T M, Zepernick H J. A Reduced-Reference Perceptual Quality Metric for In-service Image Quality Assessment [C]. Proceeding of Joint First Workshop on Mobile Future and IEEE Symposium on Trends in Communications, 2003: 71-74.
    [152] Carnec M, Callet P, Barba D. Objective Quality Assessment of Color Images based on a Generic Perceptual Reduced Reference [J]. Image Communication, 2008, 23(4): 239-256.
    [153] Gunawan I, Ghanbari M. Image Quality Assessment based on Harmonics gain/ loss information [C]. Proceeding of IEEE International Conference on Image Processing, 2005, 1: 29-32.
    [154] .Gunawan I, Ghanbari M. Reduced-reference Video Quality Assessment using Discriminative Local Harmonic Strength with Motion Consideration [J]. IEEE Transactions Circuits and System for Video Technology, 2008, 18(1): 71-83.
    [155] Wang Z, Wu G, Sheikh H R, Simoncelli E P, Yang E, Bovik A C. Quality-Aware Images [J]. IEEE Transactions on Image Processing, 2006, 15(6): 1680–1689.
    [156] Wang S, Zheng D, Zhao J, James W, et al. An Image Quality Evaluation Method based on Digital Watermarking [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(1): 98-105.
    [157] Gao X, Lu W, Li X, Tao D. Wavelet-based Contourlet in Quality Evaluation of Digital images [J]. Neurocomputing, 2008, 72(1): 378-385.
    [158] Li X, Tao D, Gao X, Lu W. A Natural Image Quality Evaluation Metric based on HWD [J]. Signal Processing, 2009, 89(4): 548-555.
    [159] Gao X, Lu W, Tao D, Li X. Image Quality Assessment based on Multiscale Geometric Analysis [J]. IEEE Transactions on Image Processing, 2009, 18(7): 1409-1423.
    [160] Simoncelli E P, Heeger D J. Representing Retinal Image Speed in Visual Cortex [J]. Nature Neuroscience, 2001, 4(5): 461-462.
    [161] Huang J, Mumford D. Statistics of Natural Images and Models [C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999: 541-547.
    [162] Lee A B, Pedersen K S, Mumford D. The Nonlinear Statistics of High-contrast Patches in Natural Images [R]. APPTS, 2001.
    [163] Donoho D. Can Recent Developments in Harmonic Analysis Explain the Recent Findings in Natural Scene Statistics [J]. Network: Computation in Neural Systems, 2001, 12(3): 371-393.
    [164] Roth S, Black M J. Fields of Experts: A Framework for Learning Image Priors [C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 860-867.
    [165] Tappen M F, Russell B C, Freeman W T. Exploiting the Sparse Derivative Prior for Super-Resolution and Image Demosaicing [C]. Proceeding of IEEE Workshop on Statistical and Computational Theories of Vision, 2003.
    [166] Levin A. Blind Motion Deblurring using Image Statistics [C]. Proceeding of Advances in Neural Information Processing Systems, 2006: 841-848.
    [167] Field D J. What Is The Goal of Sensory Coding? [J]. Neural Computation, 1994, 6: 559-601.
    [168] Cover T M, Thomas J A. Elements of Information Theory [M]. New York: Wiley, 1991.
    [169] Johnson D, Sinanovic S. Symmetrizing the Kullback-Leibler Distance [R]. Rice University, 2001.
    [170] Arandjelovic O, Cipolla R. Face Recognition from Face Motion Manifolds using Robust Kernel Resistor-Average Distance [C]. Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshop, June 2004: 88-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700