基于小波分析的高分辨率雷达目标识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达目标识别系统在战场上的应用对现代战争的发展有重大的意义,增强目标识别系统分类算法对动态多变环境的自适应性,提高识别系统的智能化,是雷达目标识别领域乃至整个自动目标识别(ATR)领域的一个关键性问题。合成孔径雷达(SAR)技术不断发展,星载与机载SAR成像数量极大,在SAR图像分析中应用ATR技术,加强对高分辨率雷达图像目标的识别分类具有重要价值。
     小波分析理论对信号的分解具有良好的局域化特性,运用小波分析理论可以在多尺度下分析目标特征,符合人脑对信息加工的基本特点,成为雷达目标信号处理强有力的数学工具。
     SAR图像的斑点噪声对识别率影响较大,在目标识别前需把斑点从图像中去除掉。传统的滤波技术在一定条件下很难满足滤波的高性能要求,而利用基于小波分析的滤波方法在保持目标边缘特征方面具有很大的优势。面对大量的滤波算法,根据不同图像类型和任务要求,选用不同滤波方法的研究急待深入。本文对采用空间域常用的滤波算法、时间频率域相结合的滤波算法滤除SAR图像噪声的结果进行了比较。分别选用增强Lee滤波算法、无偏GMAP算法、小波系数压缩滤波算法、小波变换与维纳滤波相结合、小波变换与空间滤波相结合的方法对四幅不同的SAR图像进行滤波,指出了各滤波算法对不同图像处理的优缺点,给出了在不同应用环境下,选择使用不同滤波器的意见。本文根据SAR图像小波分析中各级细节子图方差间存在的近似线性关系及经验的阈值比例系数改进了常用的小波滤波方法,在保证精度的基础上提高了运算速度。
     二维小波变换可使图像目标特性在不同分辨率下显露出来,所得细节图像和近似图像可在多分辨下反映分布目标的纹理等特征,具有更强的类别可分性,对SAR图像分析十分有意义。
     传统二进小波变换缺少模式识别所需的移不变特征,需要确定适合于模式识别的具有移不变特性的二维小波变换。本文对传统二维小波变换与过完全小波变换进行了区别和比较;并对常规的二维小波变换、无下采样的小波变换与多孔算法小波变换提取纹理能量特征进行了研究与对照比较。本文首次利用图像灰度均值与无下采样小波变换细节图像纹理能量组成特征矢量,使目标间纹理特征的差异比Seisuke Fukuda等方法所得更明显。在比较利用传统小波变换与过完全小波算法提取SAR图像纹理能量特征的主要区别过程中,发现本文采用过完全小波变换提取的纹理特征方便宜用,完全可以作为SAR图像面目标的统计特征。
     人工神经网络是模式识别的重要工具,本文分别采用BP神经网络、径
    
    向基函数(RBF)神经网络、自组织特征映射神经网络对SAR图像面目标
    进行了分析,选用灰度值、均值、小波纹理特征等不同的特征作为输入矢量,
    得到了高的分类精度。本文首次将过完全小波分解提取的新的纹理特征
     (O认找rF特征)矢量与BP、RBF神经网络相结合对目标进行分类识别,
    分类结果表明,OWAI下特征矢量与RBF神经网络相结合处理结果更好。
     传统K均值算法、模糊C一均值聚类算法及自组织特征映射神经网络
    等图像分类方法,在自动分类过程中以像素灰度为分析对象,这是运用这些
    方法分类运算速度慢的根本原因。本文将直方图作为一个重要因素引入到算
    汀、中,使迭代对象从每个像素的灰值变为图像存在的灰度级,运算量降至原
    算法的幻(M只N),由于所占内存量相应变小,运算速度进一步提高,可在
    很短}}寸间内完成对图像的分割。
     本文针对三彩色SAR图像或胶片扫描SAR图像,采用了基于饱和度经
    验距离的K均值分类算法进行分析,并与针对图像灰值进行分析的结果加
    以比较。通过比较发现,采用基于饱和度经验距离的K均值算法分类的结
    果体现了各个区域同类目标间的一致性,视觉效果更好。
     在图像目标识别中,基于统计的和基于人工智能的模式识别方法都无法
    适]fl」二日标识别的各个方面。对于强噪声背景下的机场SAR图像目标识别
    问题,木文分别利用二值和灰值形态梯度方法进行分析,该方法在保持目标
    形状和突出强噪声背景下重要目标信J息、方面优于常规算法。本文将形态统讨-
    滤波器一与方向小波分解结合起来提取SA尺图像弱边缘,在图像中很好地分割
    出「!标与背景,为海岸线提取提供了有效途径。
     本文首次采用累积概率分布及K一S距离对海域SAR图像目标进行检
    测,少夯提出综合分析整幅图像及目标区域图像确定闭值的方法,利用此法对
    图像进行二值化的效果优于常规方法,为海域目标的分类研究做好了准备。
Radar target recognition systems are very important in modern wars. The adaptation of targets classing algorithms to variable environment, the intelligent standards of the systems, are of critical in the field of radar target recognition, even in the field of auto target recognition (ATR). With the development of SAR (synthetic aperture radar) technology, a large amount of images are made by space-borne and airborne SAR, it's important to use ATR technology in SAR images analysis and advance the level of target recognition of high-resolution radar.
    With the theory of wavelet analysis, the decomposition of the signal is localized. The characteristic of the signal can be analyzed in different levels, conforming to the basic methods of human brains' work style. Wavelet analysis is becoming a useful tool in radar signal processing now.
    Speckle in SAR images will affect the precision of recognition, should be removed before classing. While traditional filtering algorithms are not efficient to filter the speckle, combining wavelet analysis with other algorithms have the priority in keeping the edge of the objections.
    Though there are many methods in the field of speckle filtering, it lacks deep study of methods selection with different images and in different ATR missions. In this paper, both speckles filtering in space and wavelet based methods is used to reduce the speckle. Analysis is done to compare the result of filtering. The paper uses enhanced Lee filter, unbiased GMAP algorithm, shrinking of wavelet coefficients algorithm, wavelet analysis with Wiener filter, wavelet analysis with space filter to filter the speckle in four different SAR images, and gives a suggestion for the choice of right filter in different situation. With experimental threshold coefficient and approximate scale relation between sub-images of wavelet detail coefficients, an improved algorithm is used to get a faster speed with more precise threshold.
    With 2D-wavelet transform, the characters of image objects can be found in different resolution, texture features can be extracted form detail and approximate images of wavelet transformation. It's very useful in SAR images analysis. Dyadic wavelet transform is not shift-invariant, which is always requested in pattern recognition, so new 2D-wavelet transform method is needed. The paper compared the difference of ordinary 2D-wavelet transform and over-complete 2D-wavelet analysis, also studied the difference in characteristic extraction of ordinary, over-complete wavelet transform and 'a trous' method. In this article,
    
    
    
    vectors are composed of mean gray level of image and texture features in detail images of 2D-wavelet transform without down-sampling. Distances between each two objects' vectors are much larger than that of Seisuke Fukuda's. In the process of comparison, it is found that the new vector used by this paper is suited to be taken as statistic feature of SAR area objects.
    Artificial neural network (ANN) is always used in image classing. This thesis used BP network, RBF network and SOFM network to analyze SAR area objects, with gray level, average and wavelet analysis based features as the inputs. The precision of the result is high. In both BP and RBF network, the inputs are made up by OWATF (Over-complete wavelet analysis based texture feature) vectors, with small training samples, the result of the later one is much better than that of the previous one.
    In image classing process, the speed of the algorithms is an important factor. K-means algorithm, FCM, SOFM network, all deal image pixels as the object, which is the main reason of long working time. By introducing histogram to the algorithms, the computing quantity of the new algorithms is about K/(M X N) to the originals'. Accordingly, the amount of needed memory is also reduced. The classing procedure is sped up, and the result can be got in very short time. In the paper, saturation based experienced distance is used in K-Mean algorithm. With this method, color SAR images and scanned film SAR images are analyzed.
引文
1.安建平,张润宁等.应用于SAR的一种波形及多普勒效应补偿技术.系统工程与电子技术,2000,Vol.22,No.1,59~62
    2.白平.小波变换及其在星载SAR中的应用研究.中科院电子所博士论文.1996.9
    3.曹福祥,袁建平等.聚束照射合成孔径雷达方位分辨率研究.现代雷达,1998,Vol.20,No.6,6~16
    4.常文革.超宽带合成孔径雷达.系统工程与电子技术,2000,Vol.22,No.1,55~58
    5.陈伯孝,张守宏.稀布阵综合脉冲孔径雷达一种新的测距方法.电子学报,1997,Vol.25,No.12,116~118
    6.陈逢时.子波变换理论及其在信号处理中的应用.国防工业出版社,1998.3
    7.陈建文,王永良.空时自适应处理典型方法综合性能评估.系统工程与电子技术,2000,Vol.22,No.1,42~46
    8.陈隽永,徐继麒.小波理论在超宽带雷达信号数据采集中的应用.系统工程与电子技术,2000,Vol.22,No.5,49~50
    9.程玉平.PFA算法与RMA算法成像机理的比较.现代雷达,1999,Vol.21,No.2,57~61
    10.崔屹编著.图象处理与分析—数学形态学方法及应用.科学出版社.2000.4
    11.戴青云,余英林.一种基于小波与形态学的车牌图象分割方法.中国图象图形学报,2000,Vol.5,No.4,284~287
    12.戴征坚,邹焕新等.集成广义模糊函数在雷达多目标分辨中的应用.国防科大学报,1999,Vol.21,No.6,48~50
    13.邓炜,赵荣椿.基于小波变换的SAR图像相干斑噪声消除方法研究.信号处理,2001.2,Vol.17,No.1,86-90
    14.丁庆海,庄志洪.混沌、分形和小波理论在被动声信号特征提取中的应用.声学学报,1999,Vol.24,No.2,197-203
    15.董加勤,周思永等.8mm战场侦察雷达信号处理系统的实现.火控雷达技术,2000,Vol.29,No.2,31~34
    16.杜亚娟、潘泉等,雷达目标识别方法概述.火控雷达技术.Vol.27,1998.12,p1~5.
    17.垄坚,李立源,陈维南.基于二维灰度直方图Fisher线性分割的图像分割方法,模式识别与人工智能.1997年3月,11(1),p1-8.
    18.郭华东等著.雷达对地观测理论与应用.科学出版社.2000.12
    
    
    19.郭英凯,黄欣,杨杰.用C++实现飞航导弹末段攻击仿真.计算机应用研究,2000(6),111-114
    20.胡昌华,张军波等.基于MATLAB的系统分析与设计——小波分析.西安电子科技大学出版社,1999.12
    21.胡广书.数字信号处理—理论、算法与实现.清华大学出版社,1997
    22.胡守仁、沈清等编著.神经网络应用技术.国防科技大学出版社,1993
    23.黄凤岗等,柔性形态学在图象边缘检测中的应用,中国图象图形学报,Vol.5,NO.4,2000.2,pp284—287.
    24.贾永红.人工神经网络在多源遥感影像分类中的应用.测绘通报,2000(7),7-8
    25.姜骊黎,史册等.遥感图像中水上桥梁的识别.模式识别与人工智能.Vol.13,No.2,2000.6,pp214-217.
    26.姜卫东,庄钊文等.基于一维距离像的目标识别方法.现代雷达,1999,Vol.21,No.1,19~27
    27.焦李成,保铮.子波理论与应用:进展与展望.电子学报,99.7,Vol.21,No.7,91~96
    28.焦李成.神经网络的应用与实现.西安电子科技大学出版社,1993.6
    29.金亚秋.军事技术中的微波遥感信息技术.微波学报.Vol.16,No.5,2000.12,579~588.
    30.李春升,燕英等.高分辨率星载SAR单视图像斑点噪声抑制实现方法.电子学报,2000,Vol.28,No.3,13~16
    31.李宏贵,罗正发等.一种基于小波特征的红外图像识别方法.模式识别与人工智能,2000.3,Vol.13,No.1,106~110
    32.李华.子波分析与特征信息融合在目标识别中的应用.西北工业大学硕士论文,1997
    33.李建平主编.小波分析与信号处理—理论、应用及软件实现.重庆出版社,1997
    34.李京华.子波神经网络在直升机目标识别中的应用.西北工业大学硕士论文,1997
    35.李楠.小波变换—一种新的雷达信号处理方法.现代雷达,1998,Vol.20,No.2,40~42
    36.李强,王正志.基于小波分析的噪声抑制和数据压缩综合技术—SAR图像的噪声抑制与数据压缩,系统工程与电子技术,1998.12,p15~17.
    37.李玺,刘国岁等.舰船的SAR-ISAR混合成像研究.现代雷达,1998,Vol.20,No.4,18~25
    38.李跃华,李兴国.子波变换在频率步进毫米波雷达目标识别中的应用.现代雷达,1999,Vol.21,No.2,7~11
    39.卢官明,李姝虹,多尺度形态梯度算法及其在图像分割中的应用,信号处理,Vol.17,No.1,2001.2,pp37-41.
    40.刘俊义,王润生.一种快速检测纹理斑块的方法,国防科技大学学报,
    
    200 1.2,23(2),p90—93
    41.刘永坦等著.雷达成像技术.哈尔滨工业大学出版社.1999.10
    42.陆军,王润生.基于多尺度空间理论的多门限化技术
    43.路志英,王长桥,王萍等.用小波分析提取云图纹理梯度特征.模式识别与人工智能,2000(4),434~438
    44.鹿国春.雷达距离维成像技术.火控雷达技术,2000,Vol.29,No.2,12~16
    45.罗法,章毓晋,高永英.基于分析的图像有意义区域提取.计算机学报,2000.12,Vol.23,No.12,1~7
    46.马云潜,张学工.支持向量机函数拟合在分形插值中的应用.清华大学学报,2000(3),76-78,103
    47.潘明海,刘永坦等.基于小波变换的多目标模糊分辨.系统工程与电子技术,2000,Vol.22,No.4,26~27
    48.钱峻,邵惠鹤.一种小波神经网络的在线建模和校正算法.模式识别与人工智能,2000,Vol.13,No.1,16~21
    49.秦前清,杨宗凯.实用小波分析.西安电子科技大学出版社,1994.1
    50.权太范,李健巍.高频雷达抗瞬时干扰研究.现代雷达,1999,Vol.21,No.2,1~6
    51.沈定刚.目标识别与神经网络.上海交通大学博士论文,94.6
    52.沈兰荪.图像编码与异步传输.人民邮电出版社,1998.5
    53.斯图尔特著,徐柏德、沙兴伟译.空间海洋学.海洋出版社,1991年
    54.粟毅,匡纲要等.反向投影成像算法的理论分析及目标特征恢复.系统工程与电子技术,2000,Vol.22,No.2,70~72
    55.唐白玉.小波理论及其在雷达信号处理和目标识别中的应用.北京理工大学博士论文,97.3
    56.汤志伟,赵志钦等.SAR原始数据的模拟研究.电子科技大学学报,2000,Vol.29,No.1,17~19
    57.汤子跃,蒋兴舟等.机载预警雷达对海上悬停直升机的探测.海军工程大学学报,2000,No.1,8~13
    58.陶然,周开利,王越等.基于神经网络数据融合的目标识别方法研究.系统工程与电子技术,2000,Vol.22,No.11,42~45
    59.万朋、王建国等,一种SAR图像目标识别方法.系统工程与电子技术.Vol.22,2000.11,p42~45
    60.万朋,王建国,黄顺吉.抑制SAR图像相干斑噪声方法研究,系统工程与电子技术,2000.8,p15~17.
    61.王俊,张守宏.一种基于子空间匹配投影的暂态信号检测方法.系统工程与电子技术,2000,Vol.22,No.1,22~24
    62.王润生编著.图像理解.国防科技大学出版社.1995.10.
    63.王盛利,朱力.运动目标的变抽样率处理.现代雷达,1999,Vol.21,No.3,44~49
    
    
    64.王一丁,李兴国.一种高分辨频谱特征提取方法的研究.系统工程与电子技术,1998,Vol.20,N0.1,29~33
    65.王运锋,汤志伟等.SAR图像中桥梁的识别方法研究.系统工程与电子技术,2001.6,Vol.23,No.6,76~78
    66.王蕴红,刘国岁.基于短时傅里叶变换及奇异值特征提取的目标识别方法.信号处理,1998,Vol.14,No.2,123~127
    67.吴小培,冯焕清等.多抽样率小波信号分解.计算机工程与应用,2000.6,31~32
    68.吴怡岚,杨润亭.面向对象的程序设计在机载雷达模拟器中的应用.现代雷达,1999,Vol.21,No.3,50~56
    69.席学强。王润生.采用面向对象技术开发图像目标识别系统.模式识别与人工智能,2001.3,Vol.14,No.1,114~118
    70.向敬成、张明友编著.雷达系统,电子工业出版社.2001.5
    71.肖化铸.小波分析中信号的时频特性.电子科技大学学报,1998,Vol.24,No.3,328~332
    72.解梅,马争等.小波在有噪图像边缘检测中的应用.系统工程与电子技术,2000,Vol.22,No.1,25~27
    73.邢小春,谷晓巍等.基于小波变换的多分类器融合分类系统.模式识别与人工智能,2000,Vol.13,No.1,22~27
    74.许录平,张小淼.多分辨率多模型目标跟踪方法的三处理机并行实现.现代雷达,1999,Vol.21,No.6,55~59
    75.徐新,廖明生,卜方玲,一种基于相对标准差的SAR图像Speckle滤波方法.遥感学报.Vol.4,No.3,2000.8,214-218
    76.杨福生.小波变换的工程分析与应用.科学出版社,1999.2
    77.杨劲松,周长宝,黄韦艮等,合成孔径雷达图像内波参数提取方法研究.遥感技术与应用.Vol.15,No.1,2000,6-9
    78.叶秀清,顾伟康,肖强.快速模糊分割算法.模式识别与人工智能,1996,9(1):66-70
    79.袁晓,虞厥邦.流式Mallat塔式分解与事件检测.信号处理,1998(2),161-165
    80.曾芳玲,邵良峰等.小波谱,它的建立及与Fourier谱的关系.中国人民解放军电子工程学院学报,2000,Vol.19,No.1,17~19
    81.张静远,蒋兴舟.基于小波变换的宽带模糊函数估计器.海军工程大学学报,2000,No.1,1~7
    82.张俊.合成孔径雷达(SAR)图像处理与子波分析研究.98.6
    83.张锡祥.对新体制雷达干扰压制系数取值的概念分析.电子对抗技术,2000,Vol.15,No.2,1~6
    84.张贤达,保铮.非平稳信号分析与处理.国防工业出版社,1998.9
    85.张晓涪.神经网络在SAR图象目标分类中的应用与研究
    86.张永生.遥感图象信息系统.科学出版社,2000.4
    
    
    87.张直中.发展中的三维成像合成孔径雷达.现代雷达,1999,Vol.21,No.5,6~13
    88.张直中.合成孔径雷达遥感技术及其应用.火控雷达技术,2000,Vol.29,No.3,1~7
    89.张茁生,刘贵忠,刘峰.基于自适应投影学习算法的径向基函数网络设计及应用.电子学报,2000(9),120-122
    90.章毓晋著.图象分割.科学出版社.2001.2
    91.赵瑾,吴先良等.正交小波基在SAR的多普勒参数求取中的应用.系统工程与电子技术,2000,Vol.22,No.4,23~25
    92.赵知劲.离散Gabor展开及其关系.现代雷达,1999,Vol.21,No.4,26~31
    93.赵志钦.合成孔径雷达成像处理及运动目标检测和成像研究.电子科技大学博士学位论文,1995.12
    94.郑南宁.计算机视觉与模式识别.国防工业出版社,1998.3
    95.周蓉蓉,陈刚,王正志.一种基于小波变换的SAR图像边缘检测方法.遥感信息,2000.1,17-19.
    96.周德全,张富良等.基于ASOM神经网络的高分辨雷达目标识别.现代雷达,1999,Vol.21,No.3,34~37
    97.周红建,周宗潭等.一种从ERS-1 SAR海洋图像中检测船舶航迹的算法.遥感学报,Vol.4,No.1,Feburay,2000,55~59.
    98.朱述龙、张占睦编著.遥感图象获取与分析.科学出版社.2000.4
    99. Ainl Jian and Douglas Zongker. Feature selection: evaluation, application, and small sample performance.. IEEE Trans. on Pattern Anal. and Machine Intelligence.Vol. 19,No.2,1997.2,153-158
    100. A.J. Hoffman, C. J. A. Tollig. The application of classification wavelet networks to the recognition of transient signal. SPIE Ⅵ, 1999.4,208~214
    101. Andrew Laine and Jian Fan. Frame representations for texture segment. IEEE Trans. On Image processing. Vol.5, No.5.1996.5.771-780.
    102. A. Lopes, R. Touzi, E. Nerzy Adaptive speckle filters and scene heterogeneity, IEEE Trans. On Geosi.and Remote sensing. Vol.28. 1990.11,992-1000.
    103. Anne H. Schistad Solberg, Geir Storvik. Automatic detection of oil spills in ERS SAR images. IEEE Trans. On Geosi. and Remote sensing. Vol.37.No.4. July, 1999.
    104. Anne H. Schistad Solberg, Anil K. Jian. Texture fusion and feature selection applied to SAR imagery. IEEE Trans. On Geosic. and Remote sensing. Vol.35.No.2. July, 1997,475-479.
    105. Anthony C. Copeland, Gopalan Ravichandran, Mohan M.Trivedi. Localized Radon transform-based detection of ship wake in SAR images. IEEE Trans. On Geosi. and Remote sensing. Vol.33.No.1. January, 1995,35-45.
    106. Augsteijn Marjke. Performance evaluation of texture measures for ground cover identification in satellite image by means of a neural network classifier.
    
    IEEE Trans Geo. And RS.1995, Vol.33,No.3,pp615-616.
    107. Bao Z, Wang G Y, Luo L. Inverse synthetic aperture radar imaging of maneuvering targets. Opt. Eng., 1998,37(5) : 1582-1588
    108. Bruno Aiazzi, Luciano Alparone. Multi-resolution texture analysis of SAR images. SPIE, 1998. 9,Vol.3497,90-98
    109. Derin.H,Illiot.h. Modeling and segmentation of noisy and textured image using Gibbs random fields. IEEE. Trans. PAMI. Vol.9, No.1, 1987,pp39-55.
    110. Donoho D.L. De-nosing by soft-thresholding. IEEE Trans. On Information Theory, 1995,41(3) .
    111 .Donoho D.L, Johnstone I.M. Adapting to unknown smoothness via wavelet shrinking. J. Am. A. Stat. Assoc. 1995,pp 1200-1224.
    112. Don R. Hush and Bill G. Home. Progress in supervised neural networks-what's new since Lippman? IEEE Signal Processing Magazine, 1993. 1,8-39
    113. D.T. Kuan,A.A. Sawchuk,T. C. Strand and P.Chavel, Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Machine Intelli., Vol.7,1985. 3. p165-177
    114. E.Hervet. Comparison of wavelet-based and statistical speckle filters. SPIE Vol. 3497,pp43-54,1998.
    115. E.T. Rignot and R. Chellappa, Maximum a posterior classification of multi-frequency, multi-look, synthetic aperture radar intensity data. J. Opt. Soc. Amer. A. ,Vol.10,1993. 4,573-582.
    116. F. T. Ulaby, F. Kouyate,B. Brisc, and L. Willams, Textural information in SAR images, IEEE Trans. Geosci. Remote Sensing,Vol.GE-24,1986,235-245
    117. Goodman J W. Some fundamental properties of speckle. J. Opt. Soc. Am., Vol.66, No.11. 1976,1145-1150.
    118. Guangyi Chen, Tien D.Bui. Invariant Fourier-wavelet descriptor for pattern recognition. Pattern Recognition. Vol.3. No.7. 1999. p1083-1088.
    119. G.Van de Wouwer, P.Scheunders, and D.Van Dyck. Statistical texture characterization from discrete wavelet representations. IEEE Trans. On Image processing. Vol.8, No.4. 1999. 4.
    120. Harold H Szu, Jacqueline Le Moigne, Charles. C. Hsu. Landsat PNN classifier using PCA of wavelet texture edge feature. SPIE 1999,Vol.3723,141-153
    121. H. Guo, J.E. Odegaard,M.Lang. Wavelet-based speckle reduction with application to SAR based ATD/R. Proc.ICIP,pp.75-79,1994.
    122. Isabelle Couloigner and Thierry Ranchin. Extraction of urban network from high spatial resolution imagery using the multi-resolution analysis and the wavelet transform. SPIE.1998. Vol.3458,103-112
    123. J.Curlander and W. Kober. Rule based system for thematic classification in synthetic aperture radar imagery. IGARSS'92,pp854-856
    124. Jorge Nunez , Xavier Otazu. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. On Geosi. and Remote sensing. Vol.37. No.3. May, 1999,1201-1211.
    
    
    125. Josep A.Rodenas, Rene Garello. A new automatic internal wave detection and characterization method for SAR images. OECANS '98 Conference Proceedings, vol.2,No. 2,1998:613-618
    126. Josep A.Rodenas, Rene Garello. Wavelet analysis in SAR ocean image profiles for internal wave detection and wavelength estimation. IEEE Trans. On Geosi. and Remote sensing. Vol.35. No.4. July, 1997,933-945.
    127. J. Prewitt, Object enhancement and extraction, in B. Liplin and A Rosenfeld, eds., Picture Processing and psychologictorics, Academic Press, New York, 1970
    128. J. S. Lee, Digital image enhancement and noise filtering by use of local statistics, IEEE Trans. Pattern Anal. Machine Intell., Vol.2,1980. p165-168
    129. J. V.Soarse, C. D. Renno, A.R. Fomaggio. An investigation of the selection of texture features for crop discrimination using SAR imagery . Remote Sens. Environ. ,Vol. 59,1997. 2,234-247
    130. Khan,N;Soraghan, J.J;Voukelatos,S;Durrani,T. Wavelet transform based SAR processing and products distribution system. IEE Colloquium. Image Processing for Remote Sensing, 1996: 7/1-7/5
    131. Kh.Rosenbch, J.Schiller. Identification of aircraft on the basis 2-D radar images. IEEE International Radar Conference. 1995,405-409.
    132. LD.Roberts,Machine perception of three-dimensional solids, in J.T. Tippett.ed., Optical and Electro-Optical Information Processing, 159-197. MIT Press,Cambridge,MA, 1965
    133. L.Gagnon and F. D. Smaili. Speckle noise reduction of airborne SAR images with symmetric Daubechies wavelets. Proc. Signal and Data Processing of Small Targets. SPIE 1759,0rlando,1996.
    134. Lin-Cheng Wang and Sandor Z. Der. Automatic target recognition using a feature-decomposition and data-decomposition modular neural network. IEEE Trans. On Image processing. Vol.7. No.8. 1998. 8. p1113-1121
    135. Li.S.Z. Markov random field modeling in computer vision.Springer,1995.
    136. Lorenzo Bruzzone, Diego Fernandez. A neural-statistical approach to multitemporal and multisource remote-sensing image classification. IEEE Trans. On Geosi.and Remote sensing. Vol.37. No.3. May, 1999,1350-1359.
    137. L.S.Davis, A survey of edge detection technieque,CGIP,4:248-270,1975
    138. Lu,Y.H.;Zhang,C.B;Yeo,T.S.;Ng,C.S.;Li,Y. A new method for ISAR motion compensation. IGARSS'98. 1998,Vol.2,No.2,657-659
    139. Maarten Jansen and Adhemar Bultheel. Multiple wavelet threshold estimation by generalized cross validation for images with correlated noise. IEEE Trans. On Image processing. Vol.8. No.7. 1999. 7. 947-953.
    140. Mahmoud I.Khalil and Mohamed M.Bayoumi. Invariant 2D object recognition using the wavelet and structured neural networks. SPIE Conference on Wavelet Application VI. Orlando, Florida. April, 1999. SPIE Vol.3273. 330-340.
    141. Majid Mirmehdi,Phil L. Palmer. Feedback control strategies for object
    
    recognition. IEEE Trans. On Image processing. Vol.8. No.8. 1999. 8. 1084-1101
    142. Mallat S G. A theory for multi-dimension signal decomposition: The wavelet representation. IEEE Trans. Pattern Analysis and Machine Intell., 1989,11:674-693.
    143. Mark J. Shensa. The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans. On Signal Processing. Vol.40. No.10. 1992,2464-2482
    144. M. Beauchemin, K.P.B. Thomson,and B. Edwards. Edge detection and speckle adaptive filtering for SAR images based on a second-order textural measure, Remote Sensing,Vol.17,No.9,1996,1751-1759
    145. M.Dobson,L.Pirerce and Ulaby. The role of frequency and polarization in terrain classification using SAR data. Proc.IGARSS'97. Vol.2, pp1621-1623.
    146. Melba M. Crawford,Shailesh Kumar. Fusion of airborne polarmetric and interferometric SAR for classification of coastal environments. IEEE Trans. On Geosi.and Remote sensing. Vol.37. No.3. May, 1999,1306-1315.
    147. Michael J. Vrabel . Neural network Based Segmentation. SIP'96, 1996. 11, 173-177
    148. Noaman Khan,John J. Soraghan. Wavelet transform based SAR processing and products distribution system.. IEE colloquium on Image Processing for Remote Sensing. 1996,7/1-7/5
    149. Paul C.Smits and Alessandro Annoni. Updating land-cover maps by using texture information from very high-resolution space-borne imagery. IEEE Trans. On Geosi.and Remote sensing. Vol.37. No.3. May, 1999,1244-1254.
    150. P. A. Kelly, H. Derin ,and K. D. Hartt, Adaptive segmentation of speckled images using a hierarchical random field model. IEEE .Trans. Acoustic, Speech, Signal Processing ,Vol. 36,1988. 10,1628-1641
    151. P. C. Smits and S. Dellepiane, Synthetic aperture radar image segmentation by a detail preserving Markov random field approach, IEEE Trans. On Geosi.and Remote sensing. Vol.35. 1997. 7,844-857.
    152. Ren Xianyi,Zhang Guilin. Texture segmentation based on wavelet transform. SPIE, Vol.3545, pp432-435.
    153. Roberto Vaccaro, Paul C.Smits. . Exploiting spatial correlation features for SAR image analysis. IEEE Trans. On Geosi. and Remote sensing. Vol.38. No.3. 2000. 5. p1212-1223
    154. R. Touzi, A. Lopes, P. Bousquet. A statistical and geometrical edge detector for SAR images, IEEE Trans. On Geosi.and Remote sensing. Vol.26. 1988. 11,764-773.
    155. Saldju Tadjudin and David A. Landgerbe. Robust parameter estimation for mixture model. EEE Trans. On Geosi. and Remote sensing. Vol.38. No.1. 1999. 1. p439-445
    156. S. Chen, C.F.N Cowan, P. M. Grant. Orthogonal least squares learning algorithm for Basis Function networks,. IEEE Trans. On Neural Networks,
    
    Vol.2. No.2. 1991. 3,302-309.
    157. Seisuke Fukuda ,Haruto Hirosawa. A wavelet-based texture feature set applied to classification of multi-frequency polar-metric SAR images. IEEE Trans. On Geosi. and Remote sensing. Vol.37. No.5. 1999. 9. p2282-2286.
    158. Stephane Mallat , Wen Liang Hwang. Singularity detection and processing with wavelets. IEEE Trans. On Info. Theory. Vol.38. No.1. 1992. 617-643.
    159. Steven Noel, Harold Szu. Video compression with embedded wavelet coding and singularity maps. SPIE,1999. 4,373-381
    160. Susanna L. Kamon. Impact of lossy wavelet-based compression on ATR discrimination performance, SPIE,Vol.3371,p448-459,1998
    161. Tai-Chiu Hsung, Chan T.C.L, Lun D.P.K. Embedded singularity detection zerotree wavelet coding. Image Processing, 1999. ICIP 99. Vol 3,274-278
    162. Takeshi Yamakawa, Eiji Uchino and Takashi Samatsu. Wavelet neural networks employing over-complete number of compactly supported non-orthogonal wavelets. IEEE Conference on. Neural networks, 1994,vol 3, 1391-1396
    163. Takashi Kurosu, Seiho Uratsuka,Hideo Maeno and Toshiaki Kozu. Texture Statistics for Classification of land use with multi-temporal JERS-1 SAR single-look imagery. IEEE Trans. On Geosi. and Remote sensing. Vol.37. No.1. 1999. 1. p227-235.
    164. Teong Sek chuah, Swapan Chakrabarti. Neural network-based classification of scenes from SAR images using spectral information: an empirical study. Remote sensing reviews, Vol.17,207-220,1998.
    165. Tinku Acharya. A high speed re-configurable integrated architecture for DWT. GLOBECOM'97, IEEE. Vol.2,669-673
    166. Ursula C. Benz. Supervised fuzzy analysis of single-and multi-channel SAR data. IEEE, trans.on Geo. and RS. Vol.37,No.2,1999. 3, p1023-1037.
    167. Vetterli M, Herley C. Wavelet and filter banks: theory and design. IEEE Trans. Signal processing, vol. 40 ,No. 9,1992,9:2207-2233
    168. V. S. Forst, J. A. Stiles, K. S. Shanmugan, and J.C. Holzma, A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Machine Intell., Vol.4,1982. 3. p157-166
    169. Wencher D.R. .High resolution radar. Artech House, 1987
    170. Weiyang Zhou. Verification of the nonparametric characteristics of back-propagation neural networks for image classification. IEEE Trans. On Geosi. and Remote sensing. Vol.37. No.2. March, 1999. 771-779.
    171. Y. Dong,B.C. Forster. Speckle suppression using recursive wavelet transform. Int. Journal of Remote Sensing. 19(2) ,pp.317-330,1998.
    172. Youla D, Webb H. Image restoration by the method of convex projections. IEEE Trans. Medical imaging ,vol. 1, 1982,10:81-101
    173. Yueqin Zhou,Deren Li,and J.L.van Gendern. Wavelet transform for noise reduction of SAR interferograms. SPIE Ⅵ, 1999. 4,208-214

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700