三维地震数据断层检测与建模方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前三维地震勘探已成为寻找油气资源的主要方法,而三维地震勘探数据是人工地震波对地下层位界面的反射信号。解释人员可以根据地下层位的起伏形态来推测地质结构,所以层位追踪是地震数据解释的重要基础工作。地下的层位在构造应力作用下破裂、错位,形成了断层。断层既是油气田的边界,也是油气运移、聚集的通道。因此断层的识别和建模是油气勘探开发中最重要的工作。目前断层识别是地震数据解释中最难的部分。识别断层的一种有效方法是三维相干技术,三维相干数据反映了原始地震数据的不连续属性,原始三维地震数据上不易发现的断层可以在三维地震相干切片上得到清晰的显示。
     本文对三维地震数据断层检测及建模的有关方法进行了研究,主要内容如下:
     1.现在常用的三维地震数据相干算法都是针对原始地震振幅数据的,计算量大,稳定性低。本文提出了一种基于梯度方向一致性的三维地震数据相干算法。该方法先估计体数据的方向场,然后根据体数据中各点的方向一致性计算地震数据的相干属性。该相干算法对数据局部区域的方向差异很敏感,可以作为断层检测的可靠依据。本文还进一步把该算法的结果应用到层位自动追踪及断层自动解释中。
     2.对于层位散点数据的曲面重构问题,本文提出了一种基于核回归的曲面拟合算法。该算法能较好地利用层位数据的特点,重构的计算量较小,重构曲面的面片数较少,还可以通过调整滤波参数兼顾曲面的平滑度和拟合精度。实验表明该方法的效率比传统的重构算法有较大提高,重构出的曲面无需后续平滑等处理,效果也能满足层位显示的需求。
     3.针对被复杂断层错裂的层位面重构问题,本文提出了一种重构破裂层位面的方法。该方法使用了迭代细分和能量逼近的方法,构造出一个逼近散点数据的连续曲面,再通过删除断层区域的网格面片来处理曲面上非连续的区域。该方法可以较好地重构含复杂断层的不连续层位面,较好的表现了层位的断裂特征。实验表明其重构精度较高,层位上的破裂部位显示效果较好。
     4.研究了由多层截面上的断层散点轮廓线重构三维断层面的问题,提出了一种基于最短连通路径的多层轮廓线拟合方法。该方法与人工拼接三维断层面的机理是相似的,即先在单独的一个截面上进行处理,通过二维平面上的散点构造最短路径轮廓,再进一步由多层轮廓线重构断层的曲面。实验表明该方法可以拟合出反映断层细节特征的光顺曲面。
3D seismic survey is now the primary method in oil and gas exploration. The signal collected from the survey is the reflection of artificial seismic waves. The interpreters speculate the geological structures by the rolling shapes of the underground horizons, so the horizon picking is the foundation of seismic data interpretation. The fault identification is the difficulty in the seismic interpretation work. The fault is the breaking and misplacement of horizon underground, so it is the boundary of the oilfields and it is also the channel for oil to transport and gather. The fault identification is the most important work in oil exploration. The most effective method to detect faults is 3D coherence technique. The 3D coherence cube is the discontinuity attribute of the seismic data cube. The faults can not be found in the seismic data will display in the slices of coherence cube clearly.
     This thesis studies some problems about the 3D seismic data the fault detection and modeling. The main results obtained in the thesis are as follows:
     1. The current seismic coherence cube is for the seismic amplitude data, so the computational cost is high, and the stability is poor. This thesis proposed a coherence cube algorithm based on gradient orientation. This algorithm estimates the orientation field first, defines the coherence value by the local difference of the orientation vectors. It is sensitive to the local discontinuity of the seismic data. The result can be used to assist fault detection. This thesis uses this algorithm for horizon tracking and automatic interpretation of the faults.
     2. Attention goes to the reconstruction of scattered points from horizon picking. This thesis proposed a surface fitting algorithm based on kernel regression. This algorithm utilizes the characteristics of horizon points. The computational cost is low, and the result number of the reconstruction surface is small. The user can set the filter parameters to control smoothing degree and fitting precision. The experiments show that the method has far less complexity than traditional reconstruction algorithm, and the result surface can satisfy the horizon rendering requirement.
     3. The problem of reconstructing horizons which were torn by faults is addressed. This thesis proposed a iterative subdivision and approximation method to construct a continuous surface to fit the scattered points, then delete the fault area triangles. This method handles the broken horizons well, and the experiments show that the reconstruction result is precise and the rendering result of fault area is good.
     4. The fault surface reconstruction by multi-slice contours is studied. We proposed a algorithm based on the shortest contours on multi-slices. The method is like the process of artificial splicing, which processes a single slice first. The method gets the shortest path on every slice, constructs a fitting surface by multi-slice contours. The experiments show that the algorithm can get a smooth surface with the fault details.
引文
[1]陆基孟.地震勘探原理.山东:石油大学出版社,1993.
    [2]马在田.三维地震勘探方法.北京:石油工业出版社,1989.
    [3]何樵登.地震勘探原理和方法.北京:地质出版社,1986.
    [4]M. Bacon, R.Simm, T.Redshaw.3-D Seismic Interpretation. London:Cambridge University Press, illustrated edition edition,2007.
    [5]Biondo L. Biondi.3D Seismic Imaging. Michigan:Society of Exploration Geophysicists, 2006
    [6]Bahorich M S, Bridges S R. The seismic sequence attribute map. Expanded Abstracts of the 62nd Annual Internat SEG Meeting,1992:227-230
    [7]Bahorich M S, Farmer S L.3-D seismic coherency for faults and stratigraphic features:the coherence cube. The Leading Edge,1995,14(10):1053-1058
    [8]Bahorich M S,l.opez J A, Haskell N L, et al. Stratigraphic and structural interpretation with 3-D coherence. Expanded Abstracts of the 65th Annual Internat SEG Meeting, 1995:97-100
    [9]Haskell N, et al.3-D seismic coherency and the imaging of sedimentological features. Expanded Abstracts of the 65th Annual Internat SEG Meeting,1995:1532-1534
    [10]Chopra S. Coherence cube and beyond.First Break,2002,31(7):71-73
    [11]Lu W, Li Y, Xiao H, et al. Higherorder statistics based coherency estimation algorithm. Expanded Abstracts of the 73rd Annual Internat SEG Meeting,2003:1732-1735
    [12]Cohen I, Coifman R R. Local discontinuity measures for 3-D seismic data. Geophysics, 2002,67(6):1933-1945
    [13]Marfurt K J, Kirlin R, Farmer S H, et al.3-D seismic attributes using a running window semblance-based algorithm. Geophysics,1998,63(4):1150-1165
    [14]Marfurt K J, Sudhakar V, Gersztenkorn A, et al. Coherency calculations in the presence of structural dip. Geophysics,1999,64 (1):104-111
    [15]AI-Dossary S, Simon Y, Marfurt K J. Inter-azimuth coherence attribute for fracture detection. Expanded Abstracts of the 74th Annual Internal SEG Meeting,2004:183-186
    [16]Gersztenkorn A, Marfurt K J. Eigenstructure based coherence computations. Expanded Abstracts of the 66th Annual Internat SEG Meeting,1996,328-331
    [17]Gersztenkorn A, Marfurt K J. Eigenstructure based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics,1999,64(5):1468-1479
    [18]J. Schlaf, T. Randen and L. Sonneland (2004) Introduction to seismic texture. From: Mathematical methods and modelling in hydrocarbon exploration and production. Berlin:springer,2004.
    [19]Trygve Randen, L. Sonneland. Atlas of 3D Seismic Attributes. From:Mathematical methods and modelling in hydrocarbon exploration and production. Berlin:springer,2004.
    [20]Maria Faraklioti,Maria Petrou. The use of structure Tensors in the analysis of seismic data. From:Mathematical methods and modelling in hydrocarbon exploration and production. Berlin:springer,2004.
    [21]Hilde G. Borgos, Thorleif Skov, Lars Sonneland. Automated structural Interpretation through classsification of seismic horizons. From:Mathematical methods and modelling in hydrocarbon exploration and production. Berlin:springer,2004.
    [22]S.I. Pedersen, T. Skov, T. Randen,et al. Automatic fault extraction using artificial ants. From:Mathematical methods and modelling in hydrocarbon exploration and production. Berlin:springer,2004.
    [23]D. Gibson, J. Turner, M. Spann, and T. Wright.Automated interpretation of geological fault surface imaged in 3D seismic data. Petroleum Geology of Northwest Europe and Global Perspectives 6th Conf. Geological Society of London,2004.
    [24]Bakker P. Image structure analysis for seismic interpretation,PhD Dissertation. Netherlands:Pattern Recognition Group, Faculty of Applied Physics, Delft University,2003.
    [25]P. Bakker, L.J. van Vliet, and P.W. Verbeek. Confidence and curvature of curvilinear structures in 3D. Proceedings of the Eighth IEEE International,2001.
    [26]Simon Y. Interazimuth coherence.PhD Dissertation.Houston: University of Houston,2005
    [27]J. Bigun, G.H. Granlund, and J. Wiklund. Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence 1991:13(8),775-790.
    [28]Melanie Aurnhammer and Rafael Mayoral. Improving Seismic Horizon Matching by Ordinal Measures, Pattern Recognition,2004,11(6):1-17.
    [29]T Randen, Monsen E, Signer C, et al.Three-dimensional texture attributes for seismic data analysis.Expanded Abstracts of the 70th Annual Internal SEG Meeting,2000,668-671
    [30]T. Randen,et al. Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal, and Machine Intell.1999:21(4),291-310.
    [31]T. Randen, B. Reymond, H.I. Sjulstad, and L. Sonneland. New seismic attributes for automated stratigraphic facies boundary detection. Expanded Abstr., Int. Mtg., Soc. Exploration Geophys,1998.3.2,628-631.
    [32]H.G. Borgos, T. Skov, T. Randen,et al. Automated geometry extraction from 3D seismic data. Expanded Abstr., Int. Mtg., Soc.Exploration Geophys.2003,1541-1544.
    [33]G. C. Fehmers and C. F. W. Hocker. Fast structural interpretation with structure-oriented filtering.Geophysics, vol.68, no.4,2003,68(4).1286-1293.
    [34]SM O'Malley. Towards Robust Structure-Based Enhancement and Horizon Picking in 3-D Seismic Data, proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition:1100-1121
    [35]T. Randen, S.I. Pedersen, et al. Automatic extraction of fault surfaces from three-dimensional seismic data. Expanded Abstr., Int.Mtg., Soc. Exploration Geophys.2001, 551-554.
    [36]T. Randen. Preconditioning for optimal 3d stratigraphical and structural inversion. Extended Abstr., Eur. Assoc. Expl. Geophys.2003
    [37]T. Skov, S.I. Pedersen, T.S. Valen, et al. Fault system analysis using a new interpretation paradigm. Extended Abstr., Eur. Assoc.Expl. Geophys.2003
    [38]David Gibson, Michael Spann, Jonathan Turner, and Timothy Wright. Fault Surface Detection in 3-D Seismic Data. IEEE Transactions on geoscience and remote sensing,vol.43,no.9,2005,43(9):2049-2102
    [39]J. A. Lees. Constructing faults from seed picks by voxel tracking.Leading Edge, vol.18, no.3,2003:338-340.
    [40]C. Harris and M. Stephens A combined corner and edge detector. Proc.4th Alvey Vision Conf.1988,189-192.
    [41]H Spies,et al. A general framework for image sequence analysis.Fachtagung Informationstechnik, Magdeburg, Germany, March 2001,125-132.
    [42]Miles Leggett, William A S, and Tariq S D. Automated 3-d horizon tracking and seismic classification using artificail neural networks. From:Geophysical applications of artificial neural networks and fuzzy logic. Netherlands:Kluwer academic public,2003
    [43]Kou-Yuan Huang. Seismic horizon picking using a hopfield network. From:Geophysical applications of artificial neural networks and fuzzy logic. Netherlands:Kluwer academic public,2003
    [44]Kou-Yuan Huang. Seismic Principal components analysis using neural networks. From: Geophysical applications of artificial neural networks and fuzzy logic. Netherlands:Kluwer academic public,2003
    [45]苑书金.地震相干体技术研究综述.勘探地球物理进展Vol.30,No.1,2007(2):1-15
    [46]陈风云.方差体技术在地震勘探中的应用.中国煤田地质Vol.17,No.2,2005(4):51-53
    [47]朱成宏,黄国骞,秦瞳.断裂系统精细分析技术.石油物探Vo1.41,No.1.2002(3):42-48
    [48]佘德平,曹辉,郭全士.断裂系统解释与储层预测中的三维相干体技术.石油与天然气Vol.28, No.1,2007(2):100-105
    [49]佘德平,曹辉,王咸彬.相干数据体及其在三维地震解释中的应用.石油物探Vol.37,No.4.1998(12):75-79
    [50]马仁安.基于微机的三维地震数据可视化技术研究.南京理工大学博士论文,2004。
    [51]马仁安,张二华,杨静宇,赵春霞.不规则地质体的分割与体绘制方法研究.计算机研究与发展,2005,42(5):883-887
    [52]A C Greetlings, A J Berkhout.结合线性判别分析技术的启发式同相轴分割。见:石油
    勘探中的人工智能与专家系统。北京:石油工业出版社,1996
    [53]C Revol, M Jourlin. A new minimum variance region growing algorithm for image segmentation. Pattern Recognition Letters,1997,18 (6):249~258
    [54]C Revol, F Peyrin, et al. Automated 3D region growing algorithm based on an assessment functionl Pattern Recognition Letters,2002,23:137~150
    [55]Roar Heggland, et al. The chimney cube:An example of semi-automated detection of seismic objects by directive attributes and neural networks. The 69th SEG Conference, Houston, Texas,United States,1999
    [56]胡事民,杨永亮等.数字几何处理研究进展.计算机学报Vol.32 No.8.2009, 32(8):1451-1469
    [57]Boissonnat J-D. Geometric structures for three-dimensional shape representation. ACM Transactions on Graphics,1984,3(4):266-286
    [58]Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Surface reconstruction from unorganized points. Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'92). Chicago, Illinois,USA,1992:71-78
    [59]Dey T K, Sun J. An adaptive mls surface for reconstruction with guarantees. Proceedings of the 3rd Eurographics Symposium on Geometry Processing (SGP'05), Eurographics Association. Vienna, Austria,2005:43
    [60]Field D A. Laplacian smoothing and delaunay triangulations.Communications in Applied Numerical Methods, Wiley,1988,4 (6):709-712
    [61]R Cappelli, A Lumini, D Maio, et al. Fingerprint classification by directional image partitioning. IEEE Trans on Pattern Analysis and Machine Intelligence,1999,21 (5):402-421
    [62]Marius Tico, Pauli Kuosmanen. Fingerprint matching using an orientation based minutia descriptor. IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25 (8):1009-1014
    [63]L Hong, Y Wan. A Jain Fingerprint image enhancement: Algorithm and performance evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(6):450-465
    [64]AK Jain, L Hong. On-line fingerprint verification. IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19 (4):302-314
    [65]A Jain, S Prabhakar, L Hong. A multichannel approach to fingerprint classification. IEEE Trans on Pattern Analysis and Machine Intelligence,1999,21 (4):348-359
    [66]L. O'Gorman, J.V. Nickerson. An Approach to Fingerprint Filter Design. Pattern Recognition,1989,22(1):29-38
    [67]Yi Wang, Jiankun Hu, Heiko Schroder. A gradient based weighted averaging method for estimation of fingerprint orientation fields. Digital Imaging Computing:Techniques and Applications, Queensland,2005,29 (4):388-399
    [68]祝恩,殷建平,张国敏.基于多参考节点的指纹匹配方法.计算机研究与发展,2005,42(10):1733-1739.
    [69]M. Kass, A. Witkin. Analyzing Oriented Patterns. Computer Vision, Graphics, and Image Processing,1987,37(3):362-385
    [70]梅园孙怀江夏德深.一种基于梯度的健壮的指纹方向场估计算法.计算机研究与发展.2007,44(6):1022-1031
    [71]Asker M, Bazen, Sabih H. Gerez. Systematic Methods for the Computation of the Directional Fields and Singular Points of Fingerprints. IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(7):1822-1831
    [72]Xiaoguang Feng, Peyman Milanfar. Multiscale Principal Components Analysis for Image Local Orientation Estimation. Proceedings of the 36th Asilomar Conference on Signals, Systems and Computers. LA,USA,2003:558-561.
    [73]吴春国梁艳春孙延风.关于SVD与PCA等价性的研究.计算机学报.32(5)2004:1037-1045.
    [74]Veltkamp RC. Boundaries through scattered points of unknown density. Graphical Models Imag Process 1995;57(6):441-452.
    [75]Kirkpatrick DG, Radke JD. A framework for computational morphology. Computer Geometry,3(3),1985;217-228.
    [76]Bernardini F, Mittleman J, Rushmeier H, Silva C, Taubin G. The ballpivoting algorithm for surface reconstruction. IEEE Trans Visualization Comput Graphics 1999,5(4):349-359.
    [77]Huang J, Menq CH. Combinatorial manifold mesh reconstruction and optimization from unorganized points with arbitrary topology. Comput-Aided Des,34(6),2002:149-165.
    [78]Petitjean S, Boyer E. Regular and non-regular point sets:properties and reconstruction. Comput Geometry.9(9),2001:101-126.
    [79]B.W.Silverman. Density Estimation for Statistics and Data Analysis, ser. Monographs on Statistics and Applied Probability. New York:Chapman & Hall,1986.
    [80]H. Takeda, S. Farsiu, and P. Milanfar. Kernel regression for image processing and reconstruction. IEEE Trans. Image Process,2007,16(2):349-366
    [81]梁华,师义民.纵向数据非参数混合效应模型的一个局部不变估计.系统科学与数学,2007,(01):102-112
    [82]W. Hardle, M. Muller, S. Sperlich, A. Werwatz. Nonparametric and Semiparametric Models, ser. Springer Series in Statistics. New York: Springer,2004.
    [83]E. A. Nadaraya. On estimating regression. Theory Probabil. Appl.1964,9(14):141-142.
    [84]Hugues Hoppe. Microsoft Research Smooth View-Dependent Level-of-Detail Control and Its Application to Terrain Rendering. IEEE The 9th Int. Conf.Visualization. Electrical and Electronics Engineering, NewYork,1998:35-42
    [85]Gavin S P Miller. The definition and rendering of terrain maps. International Conference on Computer Graphics and nteractive Techniques, Addison-Wesley Pub, NJ,USA 1986: 39-48
    [86]Dominique Attali. Complexity of the delaunay triangulation of points on surfaces the smooth case. Annual Proceedings of the nineteenth annual symposium on Computational geometry. Addison-Wesley Pub, NJ,USA,2003:201-210
    [87]朱延娟,周来水,张丽艳.散乱点云数据配准算法.计算机辅助设计与图形学学报2006,18(12):475-481
    [88]X. Feng and P. Milanfar. Multiscale principal components analysis for image local orientation estimation. The 36th Asilomar Conf. Signals, Systems and Computers, Piscataway NJ,2002:478-482
    [89]R. Mester and M. Hotter. Robust displacement vector estimation including a statistical error analysis. The 5th Int. Conf. Image Processing and its Applications, Addison-Wesley Pub, NJ, USA,1995:168-172,
    [90]R. Mester and M. Muhlich. Improving motion and orientation estimation using an equilibrated total least squares approach. IEEE Int. Conf. Image Processing,2(8) 2001: 929-932.
    [91]Loop C. Smooth Subdivision Surfaces Based on Triangles. Department of Mathematics, University of Utah,1987
    [92]Dyn N, Levine D, Gregory JA. A Butterfly Subdivision Scheme for Surface Interpolation with Tension Control. ACM Transactions on Graphics,1990,9(2):160-169
    [93]Kobbelt L. (?)-subdivision. In Proceedings of ACM SIGGRAPH2000, New Orleans, Louisiana, USA,2000:250-260
    [94]Loop C. Triangle Mesh Subdivision with Bounded Curvature and the Convex Hull Property. The Visual Computer,2002,18(9):316-325
    [95]Amresh A, Farin G, Razdan A. Adaptive Subdivion Schemes for Trianglar Meshes. Hierarchical and geometrical methods in scientific. Springer,2003:319-330
    [96]Eck M, DeRose T, Duchamp T, et al. Multiresolution Analysis of Arbitrary Meshes. In:Proceedings of the 22nd annual conference on Computer graphics and interactive techniques table of contents, Vancouver, Canada,1995:173-182
    [97]Ying L, Zorin D. Nonmanifold Subdivision. In:Proceedings of the conference on Visualization, San Diego, California,2001:325-332
    [98]Suzuki H, Takeuchi S, Kimura S, et al. Subdivision surface fitting to a range of points. In:Seventh Pacific Conference on Computer Graphics and Applications,Tokyo, Japan,1999: 158-167
    [99]Stam J. Evaluation of Loop Subdivision surface. In:Proceedings of SIGGRAPH, Orlando, FL, USA,1998:150
    [100]周海,周来水,王占东等.散乱数据点的细分曲面重建算法及实现.计算机辅助设计与图形学学报2003 vol.10,No.15:1287-1295
    [101]刘胜兰,周儒荣,张丽艳.三角网格模型的特征线提取.计算机辅助设计与图形学学报2003,15(4):444-451
    [102]钟纲,杨勋年,汪国昭.平面无序点集曲线重建的跟踪算法.软件学报,2002,13(11):2188-2193
    [103]Lee, I.K. Curve reconstruction from unorganized points. Computer Aided Geometric Design,2000,17(2):161~177.
    [104]Pottmann.Rotational and helical surface approximation for reverse engineering. Computing,1998,60 (4):307~322
    [105]刘丽,伯彭波,张彩明.散乱数据点集曲线重构的最短路逼近算法.计算机学报,2006,29(12):2172-2180
    [106]Fang L. Multidimensional curve fitting to unorganized data points by nonlinear minimization. Computer Aided Design,1995,27 (1):48~58
    [107]Taubin G., Rondfard R. Implicit simplicial models for adaptive curve reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18 (3):321~325
    [108]唐泽圣.三维数据场可视化.北京:清华大学出版社,1999
    [109]E Keppel. Approximating complex surfaces by triangulation of contour lines. IBM Journal of Research and Development,1975.
    [110]H Fuchs, ZM Kedem. Optimal surface reconstruction from planar contours Communications of the ACM/V20,Oct1977.
    [111]HN Christiansen, TW Sederberg. Conversion of complex contour line definitions into polygonal element mosaics. Proceedings of the 5th annual conference on Computer graphics and interactive techniques 1982:187-192
    [112]Ganapathy S, Dennehy TG.A New General Triangulation Method for Planar Contours. Computer Graphics,1982,16(3),69-~5
    [113]JD Boissonnat. Shape reconstruction from planar cross sections. Computer Vision, Graphics, and Image Processing Volume 44, Issue 1.October 1988, Pages:1-29
    [114]Taubin G. A signal processing approach to fair surface design. Proceedings of the SIGGRAPH.1995:351-358
    [115]Desbrun M, Meyer M, Schroder P, Barr A H. Implicit fairing of irregular meshes using diffusion and curvature flow.Proceedings of the SIGGRAPH.1999:317-324
    [116]Liu X G. Constrained fairing for meshes. Computer Graphics Forum,2001,20 (2):115-123
    [117]Liu L G. Non-iterative approach for global mesh optimization. Computer-Aided Design, 2007,39 (9):772-782
    [118]胡事民.基于曲率流的四边形主导网格的光顺方法.计算机学报2008,31(9),1622-1630
    [119]Dyn N. A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics,1990,9(2):160-169
    [120]Loop C. Smooth Subdivision Surface Based on Triangles. Department of Mathematics, University of Utah, Salt Lake City, Utah, USA,1987.
    [121]Attene M, Falcidieno B, Spagnuolo M. Hierarchical mesh segmentation based on fitting primitives. The Visual Computer,2006,22 (3):181-193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700