基于位移实时监测的季节冰冻区土质边坡稳定性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国民经济基础设施建设中,如高速公路建设、隧道和地铁施工、基坑开挖等,形成了各种各样的土质边坡。土质边坡尤其是季节冰冻区土质边坡,在降雨和冻融循环作用下,由于边坡土体的抗剪强度受到损伤而导致滑坡。滑坡灾害的产生是一个逐渐发展的过程,如果能通过监测手段及时掌握土质边坡变形和稳定性的变化规律,是有时间对土质边坡进行加固处理和及时提出预警措施,这样就能有效地防止滑坡的发生和降低滑坡带来的危害。
     边坡安全监测主要是通过一定的监测手段获得边坡的位移值、应力应变和地下水位等参数,通过设定警戒值的方式来对边坡的安全状态进行分析。当监测值小于警戒值时,认为边坡处于安全状态;当监测值超过警戒值时,则认为边坡处于危险状态。这种通过设定警戒值的方式来判断边坡的稳定程度具有很大的经验性,往往由于警戒值设定的不合理,使得对边坡稳定性出现错误的判断。
     随着边坡稳定性分析方法的发展,目前经常使用的稳定性分析方法包括极限平衡法和强度折减法等。这些计算方法能够准确地计算出边坡的稳定安全系数。但是,边坡土体力学参数的获取,是目前进行边坡稳定性分析的难点所在。毫无疑问,实验室测试和现场试验是解决这一问题的有效方法,但是这两种方法各有其局限性。由于用于室内试验的土样往往都是扰动土,与原状土的力学性质具有很大的区别,并且现场采取的土样具有较大的随意性,代表性差。这就使得通过室内试验获得的土的力学参数与实际的土的力学参数具有较大的偏差;而局部的有限的原位测试获得的少数几个测试结果,并不能代表整个边坡的土体的力学性能,并且原位测试的费用往往是相当昂贵的,因此原位测试技术也不能有效的获得边坡土体的力学参数。因此,要直接通过测试技术获得边坡土体的力学参数而进行边坡稳定性分析,存在很大的困难。
     参数反演方法能够根据边坡安全监测结果得到边坡土体的力学参数,进而对边坡的稳定性进行分析。因此,参数反演方法能够有效地将边坡安全监测和稳定分析结合起来,克服了岩土工程中边坡监测和稳定性分析独立发展的缺陷。随着监测技术的发展,边坡位移的实时远程监测已经成为可能,能够实时的掌握边坡变形状态。通过位移参数反演计算能够得到边坡土体力学参数,从而能够计算边坡的稳定性。因此,对边坡位移监测、参数反演算法和边坡稳定性的研究具有重大的理论与现实意义。
     为了建立起季节冰冻区边坡变形和稳定性之间的关系,通过边坡位移监测实现对边坡稳定性的分析,本文结合国家高新技术研究发展项目(863项目)“季节冰冻区大范围道路灾害参数监测与辨识预警系统研究”(2009AA11Z104)开展了以下几方面工作:
     1、介绍了边坡表面和深部位移监测的主要方法及基本原理,并对各监测方法的适用条件和优缺点进行了总结。对课题组研制的边坡位移远程监测系统进行了介绍,此系统成功应用于长春西客站深基坑的位移监测,取得了良好的效果。
     2、根据极限平衡法和强度折减法,得出了边坡的几何因素(边坡高度,边坡角度和坡面形态)和边坡土体的抗剪强度参数(粘聚力和内摩擦角)是边坡稳定性的主要影响因素。针对数值算例,采用有限差分强度折减法计算了各影响因素取不同值时的边坡稳定安全系数,并且介绍了采用强度折减法计算边坡安全系数时,边坡滑动面位置的确定方法。最后采用单因素敏感性分析法,计算了各影响因素对安全系数的敏感性因子。
     3、考虑影响土质边坡稳定性的主要外界环境因素为降雨和冻融循环。介绍了土体抗剪强度的基本理论及影响因素,对长春西客站深基坑不同深度的四种土样进行室内试验。研究不同含水量和冻融循环次数对边坡土体抗剪强度参数(粘聚力和内摩擦角)的影响规律,为分析外界环境因素对长春西客站深基坑稳定性影响提供依据。
     4、基于强度折减法的基本概念,根据土体的Mohr-Coulomb本构关系,将强度折减系数代入本构矩阵,采用有限元方法计算边坡位移。得出了边坡处于不同稳定状态时的位移值。由于边坡位移是最容易精确获取的参数,采用神经网络算法拟合强度折减系数与边坡位移之间的函数关系。通过实测边坡位移值就能得到边坡稳定性的折减程度,从而得到边坡的稳定程度,并通过一数值算例对此计算过程进行了说明。
     5、为了根据边坡位移获得土体力学参数的变化规律,本文采用遗传神经网络对边坡土体的力学参数进行反演计算。采用遗传算法对神经网络的初始权重和偏置值进行优化,得到最优的神经网络拓扑结构。采用此神经网络建立起边坡位移和土体力学参数之间的关系,并通过一数值算例具体介绍了遗传算法优化神经网络拓扑结构的过程,以及Mohr-Coulomb模型参数反演的计算方法。
     6、本文采用有限元方法计算了在外荷载作用下长春西客站深基坑支护结构的变形,并得到了冠梁的作用荷载和内力分布。在外荷载增大,冠梁达到极限承载力时,提出采用碳纤维对冠梁进行加固,并采用ANSYS软件模拟计算了碳纤维加固冠梁的承载力和变形特征。
     7、本文对长春西客站深基坑的安全监测方法和监测结果进行了介绍,同时将本文提出的方法运用于基坑土坡的稳定性评价,根据实测位移数据即能实时掌握边坡的稳定状态,从而保障了基坑施工的安全性,为基坑安全监测与稳定性分析提供了实践参考。
In the construction of national economy infrastructure, just like highway, tunnel andsubway construction and excavation, etc, a variety of soil slopes were formed. Soil slopeespecially in seasonal frozen area, the role of rain and freeze-thaw cycles leads to shear strengthof soil damage and slide. If we can master the characteristic of slope deformation and stabilitythrough monitoring, the landslide can be prevented effectively by taking correspondingmeasures and landslide disaster lowered by early warning.
     Due to the generation of landslide disaster is a gradual process of development, if we canmaster the change rule of soil slope deformation and stability in time, there is enough time toreinforce soil slope or provide early warning measures, it can prevent occurrence of landslideand reduce the landslide hazards effectively.
     At present, safety monitoring of the slope contains monitoring of slope displacement,stress-strain and underground water level and other parameters, and analysis slope safety stateby setting the alarm value approach. If the monitoring value is less than the warning value, theslope is in a safe state. If the monitoring value exceeds the warning value, the slope is in adangerous state. It has great experience to set a threshold value to judge the slope stability state,usually making error judgment of slope stability due to alert value setting unreasonable.
     And for the analysis of slope stability, along with the development of slope stabilityanalysis method, current regular use of stability analysis method such as the slice method andstrength reduction method, can accurately calculate the slope stability safety factor. However,the acquisition of slope soil mechanic parameters is the current difficulties in slope stabilityanalysis. Because of the soil is not uniform, and the internal distribution is discrete andasymmetry. The soil mechanical parameters for calculation are generally obtained by laboratorysoil test, and the soil samples are coming from the field. The soil samples for laboratory test areoften disturbed, and the soil properties are quite different. If using in situ testing for soil slopemechanical parameters, the test results can not represent the entire slope soil mechanicalproperties due to in situ test, obtaining only a few points of soil sample test results, and the insitu test cost is often quite expensive. Due to the difficulty of obtaining the mechanicsparameters of soil slope, there are difficulties in slope stability calculating, so that we usuallycannot analysis slope stability in real-time.
     Parameter inversion method can obtain slope soil mechanical parameters according to theslope safety monitoring results, and analysis the slope stability. So, this method can combineslope safety monitoring and stability analysis effectively, which has overcome detects of slopemonitoring and stability independent development in the geotechnical engineering. Along withthe development of monitoring techniques, slope safety real time remote monitoring hasbecome possible, which can obtain slope deformation state in real-time. Slope soil mechanicalparameters can be obtained by parameter inversion calculation, which can be used to calculatethe slope stability. Therefore, the research of slope displacement monitoring, parameterinversion algorithm and slope stability analysis has great theoretical and practical significance.
     In this paper, combined with national high technology research and development plan (863project) named ‘Research of large range road disaster parameter monitoring and identificationand early warning system in seasonal frozen region’, several aspects of research work havebeen carried out as follows:
     1. The main method and basic principle of slope surface and deep displacement monitoringwas introduced, the suitable conditions, advantages and disadvantages of these monitoringmethods are summarized. The slope displacement remote monitoring system developed by thestudying team was introduced, this system was successfully applied in Changchun west railwaystation deep foundation pit displacement monitoring, and achieved good results, which canprovide reference for slope displacement monitoring.
     2. According to the calculation method of slope stability, limit equilibrium method andstrength reduction method, the effect of slope geometry factors (slope height, slope angle andslope morphology) and slope soil shear strength parameters (cohesion and friction angle) onslope stability have studied. The sensitivity of the influencing factors on the slope stabilitysafety factor has calculated through a numerical example. The method for determining theposition of slope sliding surface has adopted strength reduction method.
     3. Due to changes in the external environment such as rainfall and the effect of freeze-thawon soil slope effect, this paper argues that affects the stability of soil slope is affected mainly bychanging the soil shear strength parameters (cohesion and friction angle) value. The effect ofdifferent water content and freeze-thaw cycles on the slope soil shear strength parameters(cohesion and friction angle) has studied by laboratory test.
     4. Because we can not establish the relationship between the deformation and the stabilityof slope, according to the basic concept of strength reduction method, the function relationshipbetween slope displacement and strength reduction coefficient is obtained, combined with the finite element method to get the function relationship between slope displacement and strengthreduction coefficient. In order to get the safety coefficient of slope stability by monitoring, theneural network algorithm is used to simulate the function relationship between strengthreduction coefficient and slope displacement, through measuring the slope displacement valuescan get the reduction of slope stability, and also obtain the slope stability state.
     5. In order to better grasp the slope stability, this paper adopts the displacement parameterinversion method to calculate mechanic parameters of soil slope by intelligent inversion. Thegenetic algorithm has been used to optimize the initial weights and bias values of neuralnetwork, thus the optimal topology structure of neural network is established, which can satisfythe precision requirement of inversion calculation.
     6. In order to guarantee the safety foundation pit support structure, the finite elementmethod was used to calculate the deformation of supporting structure under loads, and the loadand internal force distribution of the top beam was obtained. When external loads reach thevalue, top beam reaches the ultimate bearing capacity. The CFRP is used to reinforce the topbeam. And ANSYS was used to calculate the bearing capacity and deformation characteristic oftop beam reinforced by CFRP.
     7. The safety monitoring method and the monitoring results of Changchun west railwaystation deep foundation pit have been introduced, and the method proposed in this paper areused to evaluate the stability of foundation pit, so that slop stability state can be obtainedaccording to the measured displacement data. So, the safety of foundation pit construction hasprotected, and can provide practical reference for foundation pit safety monitoring.
引文
[1]汤国强.大地测量法数据处理系统在三峡高边坡监测工程的应用[J].测绘通报,1998,11:12-14.
    [2]柳志云.TCA2003全站仪在小湾水电站高边坡监测中的应用[J].云南水力发电,2006,22(3):15-18.
    [3]姜晨光,贺勇,蔡伟,姜文波.GPS-RTK露天矿边坡监测系统的研究[J].仪器仪表学报,2003,24(4):227-228.
    [4]曹闽.GPS技术在边坡监测中的应用及其分析[J].江西测绘,2008:30-32.
    [5]徐万才,欧阳振华,刘志强.GPS技术在水厂铁矿边坡监测中的应用[J].露天采矿技术,2005,1:12-15
    [6]许斌,何秀凤,桑文刚,肖胜昌,王冲.GPS一机多天线技术在小湾电站边坡监测中的应用[J].水电自动化与大坝监测,2005,29(3):64-67.
    [7] Josep A.Gili,Jordi Corominas,Joan Rius. Using Global Positioning System techniques inlandslide monitoring[J]. Engineering Geology,2000,55:167-192.
    [8]殷建华,丁晓利,杨育文,刘志强,黄丁发,陈永奇.常规仪器与全球定位仪相结合的全自动化遥控边坡监测系统[J].岩石力学与工程学报,2004,23(3):357-364.
    [9]王利.公路边坡监测理论与GPS一机多天线系统研究[D].西安:长安大学,2006.
    [10]欧阳祖熙,张宗润,丁凯,师洁珊,陈明金,毛兴明.基于3S技术和地面变形观测的山峡库区典型地段滑坡监测系统[J].岩石力学与工程学报,2005,24(18):3203-3210.
    [11]桑文刚,何秀凤,许斌,肖胜昌,王冲.基于GPS多天线技术的远程自动化高边坡监测系统[J].水利水电科技进展,2006,26(1):63-65.
    [12]殷建华,丁晓利,杨育文.全球定位系统和常规仪器远距离边坡监测及预报系统的应用[J].防灾减灾工程学报,2003,23(2):14-21.
    [13]沈强.山区高速公路层状岩质边坡稳定性监测与预测方法研究[D].武汉:中国科学院武汉岩土力学研究所,2007.
    [14]丁勇,施斌,崔何亮,索文斌,刘杰.光纤传感网络在边坡稳定监测中的应用研究[J].岩土工程学报,2005,27(3):338-342.
    [15]隋海波,施斌,张丹,王宝军,魏广庆,朴春德.边坡工程分布式光纤监测技术研究[J].岩石力学与工程学报,2008,27(增2):3725-3731.
    [16]隋海波,施斌,张丹,王宝军,魏广庆,朴春德.地质和岩土工程光纤传感监测技术综述[J].工程地质学报,2008,16(1):135-143.
    [17] Bao-jun Wang. Ke Li. Bin Shi. Guang-qing Wei. Test on application of distributed fiberoptic sensing technique into soil slope monitoring[J]. Landslides,2009,6:61-68.
    [18]陈池,柯贤金,蔡顺德,刘海博.分布式光纤技术在锦屏一级水电站地质平硐边坡监测中的应用研究[J].水利水电技术,2009,40(3):27-29.
    [19]李焕强,孙红月,刘永莉,孙新民,尚岳全.光纤传感技术在边坡模型试验中的应用[J].岩石力学与工程学报,2008,27(8):1703-1708.
    [20]唐天国,朱以文,蔡德所,刘浩吾,蔡元奇.光纤岩层滑动传感监测原理及试验研究[J].岩石力学与工程学报,2006,25(2):340-344.
    [21]刘晓溅.基于OTDR的分布式光纤裂缝传感器特性研究[D].大连:大连理工大学,2005.
    [22]蒋小珍,雷明堂,陈渊,葛捷.岩溶塌陷的光纤传感监测试验研究[J].水文地质工程地质,2006,6:75-79.
    [23]柴敬.岩体变形与破坏光纤传感测试基础研究[D].西安:西安科技大学,2003.
    [24]刘永莉.分布式光纤传感技术在边坡工程监测中的应用研究[D].浙江:浙江大学,2011.
    [25] G.Furuya,K.Sassa,H.Hiura,H.Fukuoka,Mechanism of creep movement caused bylandslide activity and underground erosion in crystalline schist, Shikoku Island, southwesternJapan[J], Engineering Geology53(1999)311-325.
    [26]黄秋香,汪家林.某水利枢纽工程泄洪排砂洞进口边坡稳定性监测分析[J].防灾减灾工程学报,2005,25(4):401-405.
    [27]薛桂玉,李民,何金平.三峡工程中高边坡测斜仪的施工埋设与监测[J].大坝观测与土工测试,1999,23(1):5-7.
    [28]陈强.山区高速公路边坡监测与信息化施工设计[D].成都:成都理工大学硕士论文,2006.
    [29]马全珍,张宝华.钻孔测斜仪在边坡监测中的应用[J].常州工学院学报,2005,18(增):85-89.
    [30]张丽芬,姚运生,曾夏生,廖武林.钻孔测斜仪在高台滑坡深部位移监测中的应用[J].地质灾害与环境保护,2007,18(4):91-94.
    [31]廖仕林.钻孔测斜仪在边坡监测中的应用[J].路基工程,1999,6:70-72.
    [32]朱红五,徐春敏,付冰清.钻孔测斜仪在三峡永久船闸监控中的应用[J].武汉水利水电大学(宜昌)学报,2000,22(2):105-108.
    [33]周武,李强,齐伟.钻孔倾斜仪在山峡左厂坝段岩体深部位移监测中的应用[J].岩石力学与工程学报,2001,20(增):1870-1873.
    [34]谭捍华,傅鹤林.TDR技术在公路边坡监测中的应用试验[J].岩土力学,2010,21(4):1331-1336.
    [35]谭捍华.基于综合监测信息的类土质边坡动态施工影响分析[J].公路交通科技,2011,28(6):40-46.
    [36]陈赟.边坡稳定性监测TDR技术的试验研究[D].浙江:浙江大学,2003.
    [37]陈云敏,陈赟,陈仁朋,梁志刚.滑坡监测TDR技术的试验研究[J].岩石力学与工程学报,2004,23(16):2748-2755.
    [38] J.Corominas,J.Moya,A.Lloret,J.A.Gili,M.G.Angeli,A.Pasuto. Measurement of landslidedisplacements using a wire extensometer[J]. Engineering Geology,2000,55:149-166.
    [39] Maceo-Giovanni Angel,Alessandro Pasuto,Sandro Silvano. A critical review of landslidemonitoring experiences[J]. Engineering Geology,2000,55:133-147.
    [40] Bishop, A.W. The Use of the Slip Circle in Stability Analysis of Slopes[J]. Geotechnique,1955,5(1):7-17.
    [41] Janbu, N. Stability analysis of slopes with dimensionless parameters[J]. Harvard SoilMechanics Series,1954,46:811-815.
    [42] Spencer, E. A Method for Analysis of the Stability of Embankments Asuming ParallelInterslice Forces[J]. Geotechnique,1967,17(1):11-26.
    [43] Spencer, E. The thrust-line criterion in embankment stability analysis[J]. Geotechnique,1973,3:85-101.
    [44] Morgenstern, N.R. and Price, V.E. The Analysis of the Stability of General Slip Surfaces[J].Geotechnique,1965,15(1):79-93.
    [45] Sarma, S.K. Stability Analysis of Embankments and Slopes[J]. Geotechnique,1973,23(3):423-433.
    [46] Gilson Gitiranna Jr,Delwyn G. Fredlund. Analysis of Transient Embankment StabilityUsing the Dynamic Programming Method[J].56THCanadian Geotechnical Conference,2003.
    [47] Ha T.V. Pham, Delwyn G. Fredlund. The application of dynamic programming to slopestability analysis[J]. Can. Geotech. J.,2003:40:830-847.
    [48]方建瑞.边坡稳定三维有限元直接搜索法及其在隧道施工中的应用[D].上海:同济大学,2007.
    [49] Aniruddha Sengupta, Anup Upadhyay. Locating the critical failure surface in a slopestability analysis by genetic algorithm[J]. Applied Soft Computing,2009:9:387-392.
    [50] Ali R. Zolfaghari, Andrew C. Heath, Paul F. McCombie. Simple genetic algorithm searchfor critical non-circular failure surface in slope stability analysis[J]. Computers andGeotechnics,2005,32:139-152.
    [51]张丽,陈剑平,肖云华,郭桢.基于遗传算法的边坡稳定性分析[J].煤田地质与勘探,2008,36(5):42-44.
    [52]周杨.遗传算法在边坡稳定性评价中的应用[D].西安:长安大学,2003.
    [53] K.S. Kahatadeniya, P. Nanakorn, K.M. Neaupan. Determination of the critical failuresurface for slope stability analysis using ant colony optimization[J]. Engineering Geology,2009,108:133-141.
    [54]李育超.基于实际应力状态的土质边坡稳定性分析研究[D].浙江:浙江大学,2006.
    [55] Ga Zhang, Jian-Min Zhang. Simplified method of stability evaluation for strain-softeningslopes.Mechanics Research Communications,(2007),34:444-45.
    [56] D. Leynaud,J. Mienert, F. Nadim. Slope stability assessment of the HellandHansen area offshore the mid-Norwegian margin[J]. Marine Geology,2004,213:457-480.
    [57] HUANG Runqiu, WU Lizhou. Stability Analysis of Unsaturated Expansive SoilSlope[J]. Earth Science Frontiers,2007,14(6):129-133.
    [58] Awad A. Al-Karni, Mosleh A. Al-Shamrani. Study of the e.ect of soil anisotropyon slope stability using method of slices[J]. Computers and Geotechnics,2000,26:83-103.
    [59] Zuyu Chen, Jian Wang, Yujie Wang, Jian-Hua Yin, Chris Haberfield. Athree-dimensi onal slope stability analysis method using the upper bound theorem Part II:numerical approaches, applications and extensions[J]. International Journal of RockMechanics&Mining Sciences,2001,38:379-397.
    [60] Janson Robert Stianson. A Three-Dimensional Slope Stability Method Based on FiniteElement Stress Analysis and Dynamic Programming[D]. Canada:University of Alberta,2008.
    [61] Paul F. McCombie. Displacement based multiple wedge slope stability analysis[J].Computers and Geotechnics,2009,36:332-341.
    [62] JEA AN HWANG. Experimental and Numerical Investigation of Three-DimensionalStability of Slopes[D]. USA:Sung Kyun Kwan University,2000.
    [63] CHEN JIAN. Slope Stability Analysis Using Rigid Element[D]. Hong Kong:Hong KongPolytechnic University,2004.
    [64] W.B. Wei, Y.M. Cheng, L. Li. Three-dimensional slope failure analysis by the strengthreduction and limit equilibrium methods[J]. Computers and Geotechnics,2009,36:70-80.
    [65]袁恒,罗先启,张振华.边坡稳定分析三维极限平衡条柱间力的讨论[J].岩土力学,2011,32(8):2453-2458.
    [66]陈锋.基于矢量和法的边坡三维极限平衡稳定分析法及应用[D].浙江:浙江大学,2008.
    [67]孙小三.边坡稳定性的条分法与有限元耦合分析[D].浙江:浙江大学,2005.
    [68]陶福平.边坡稳定性极限平衡与有限单元分析方法的有关问题讨论[D].西安:长安大学,2010.
    [69]贾东远.岩质边坡稳定性有限元综合分析方法研究[D].重庆:重庆大学,2003.
    [70]王连捷,周春景,吴珍汉,廖怀军,孙东生,王薇.用有限元极限平衡法分析边坡的稳定性[J].中国地质,2008,35(5):1031-1036.
    [71] Zienkiewicz OC, Humpheson C, Lewis RW. Associated and non-associated visco-plasticityand plasticity in soil mechanics[J]. Geotechnique1975;25(4):671-89.
    [72] Qianjun Xu, Honglei Yin, Xianfeng Cao, Zhongkui Li. A temperature-driven strengthreduction method for slope stability analysis[J]. Mechanics Research Communications,2009,36:224-231.
    [73] X.Li. Finite element analysis of slope stability using a nonlinear failure criterion[J].Computers and Geotechnics,2007,34:127-136.
    [74] Wenxi Fu, Yi Liao. Non-linear shear strength reduction technique in slope stabilitycalculation[J]. Computers and Geotechnics,2010,37:288-298.
    [75] Maosong Huang, Cang-Qin Jia. Strength reduction FEM in stability analysis of soil slopessubjected to transient unsaturated seepage[J]. Computers and Geotechnics,2009,36:93-101.
    [76] W.B. Wei, Y.M. Cheng, L. Li. Three-dimensional slope failure analysis by the strengthreduction and limit equilibrium methods[J]. Computers and Geotechnics,2009,36:70-80.
    [77] Y.M. Cheng, T. Lansivaara b, W.B. Wei. Two-dimensional slope stability analysis by limitequilibrium and strength reduction methods[J]. Computers and Geotechnics,2007,34:137-150.
    [78]李宁,许建聪.基于场变量的边坡稳定分析有限元强度折减[J].岩土力学,2012,33(1):314-318.
    [79]邓华锋,李建林,王乐华,周济芳,邓成进.基于强度折减法的库岸滑坡三维有限元分析[J].岩土力学,2010,31(5):1064-1068.
    [80]程选生,郑颖人,田瑞瑞.隧道围岩结构地震动稳定性分析的动力有限元强度折减法[J].岩土力学,2011,32(4):1241-1248.
    [81]胡安峰,陈博浪,应宏伟.土体本构模型对强度折减法分析基坑整体稳定性的影响[J].岩土力学,2011,32(增2):592-603.
    [82]陈曦,刘春迎.有限元强度折减法中安全系数的搜索算法[J].岩土工程学报,2010,32(9):1443-1447.
    [83]李宁,许建聪.基于场变量的边坡稳定分析有限元强度折减[J].岩土力学,2012,33(1):314-318.
    [84]薛雷,孙强,秦四清,刘汉东,黄鑫.非均质边坡强度折减法折减范围研究[J].岩土工程学报,2011,33(2):275-280.
    [85]赵延林,吴启红,王卫军,万文,赵伏军.基于突变理论的采空区重叠顶板稳定性强度折减法及应用[J].岩石力学与工程学报,2010,29(7):1424-1434.
    [86]杨光华,钟志辉,张玉成,李德吉.用局部强度折减法进行边坡稳定性分析[J].岩土力学,2010,31(增2):53-58.
    [87]杨有成.强度折减法在斜坡稳定性分析中的适用性研究[D].北京:中国地质大学,2008.
    [88]吕擎峰.土坡稳定分析方法研究[D].南京:河海大学,2005.
    [89]裴利剑,屈本宁,钱闪光.有限元强度折减法边坡失稳判据的统一性[J].岩土力学,2010,31(10):3337-3341.
    [90]王成龙.强度折减法边坡稳定分析失稳判据研究及龙潭港岸坡稳定性计算[D].南京:河海大学,2007.
    [91]林航.基于线性与非线性破坏准则的边坡强度折减法研究[D].长沙:中南大学,2009.
    [92]关立军.基于强度折减的土坡稳定分析方法研究[D].大连:大连理工大学,2003.
    [93]郏建磊.基于强度折减法的均质土坡稳定性研究[D].重庆:重庆大学,2007.
    [94]黄火林.基于强度折减法的快速拉格朗日差分法在边坡工程中的应用[D].北京:中国地质大学,2007.
    [95]唐芬,郑颖人.基于双安全系数的边坡稳定性分析[J].公路交通科技,2008,25(11):39-44.
    [96] L.C. Li, C.A. Tang, W.C. Zhu, Z.Z. Liang. Numerical analysis of slope stability based onthe gravity increase method[J]. Computers and Geotechnics,2009,36:1246-1258.
    [97]刘杰,李建林,王乐华等.三种边坡安全系数计算方法对比研究[J].岩石力学与工程学报,2011,30(增1):2898-2903.
    [98]李宁,尹森菁.边坡安全监测的仿真反分析[J].岩石力学与工程学报,1996,15(1):9-18.
    [99]薛琳.圆形隧道围岩蠕变柔量的确定及粘弹性力学模型的识别[J].岩石力学与工程学报,1993,12(4):338-344.
    [100]杨海天,邬瑞锋,张群.非均质粘弹性介质的准静态位移反演[J].力学学报,1996,28(4):421-428.
    [101]刘保国,孙钧.岩体粘弹性本构模型辨识的一种方法[J].工程力学,1999,16(1):18-25.
    [102]杨志法,王芝银.刘英等五强溪水电站船闸边坡的粘弹性位移反分析及变形预测[J].岩土工程学报,2000,22(1):66-71.
    [103] Yang Zhifa, C.F. Leeb, Wang Sijing. Three-dimensional back-analysis of displacementsin exploration adits-principles and application[J]. International Journal of Rock Mechanics andMining Sciences,2000,37:525-533.
    [104] Yang Zhifa, Wang Zhiyin, Zhang Luqing, Zhou Ruiguang, Xing Nianxing. Back-analysisof viscoelastic displacements in a soft rock road tunnel[J]. International Journal of RockMechanics&Mining Sciences,2001,38:331-341.
    [105]陈胜宏,陈尚法,杨启贵.三峡工程船闸边坡的反馈分析[J].岩石力学与工程学报,2001,20(5):619-626.
    [106]赵冰,盛国刚,李宁.位移反分析的有限元线法及其工程应用[J].岩石力学与工程学报[J],2004,23(7):1146-1149.
    [107] Michele Calvello,Richard J. Finno. Selecting parameters to optimize in model calibrationby inverse analysis[J]. Computers and Geotechnics,2004,31:411-425.
    [108] Y.J. Shang, J.G. Cai, W.D. Hao, X.Y. Wu, S.H. Li. Intelligent back analysis ofdisplacements using precedent type analysis for tunneling[J]. Tunnelling and UndergroundSpace Technology,2002,17:381-389.
    [109] Shihui Lia, Jie Yangb, Weidong Haoc, Yanjun Shang. Technical note:Intelligentback-analysis of displacements monitored in tunneling[J]. International Journal of RockMechanics&Mining Sciences,2006,43:1118-1127.
    [110] L.Q. Zhang, Z.Q. Yue, Z.F. Yang, J.X. Qi, F.C. Liu. A displacement-based back-analysismethod for rock mass modulus and horizontal in situ stress in tunneling–Illustrated with acase study[J]. Tunnelling and Underground Space Technology,2006,21:636-649.
    [111]石长.基于ANSYS的岩土参数反分析和边坡稳定性分析[D].南京:南京航天航空大学,2006.
    [112] Hirohito Kojima,Shigeyuki Obayashi. An inverse analysis of unobserved trigger factorfor slope stability evaluation[J]. Computers&Geosciences,2006,32:1069-1078.
    [113] M. Cai, H. Morioka, P.K. Kaiser, Y. Tasaka, H. Kurose, M. Minami, T. Maejima.Back-analysis of rock mass strength parameters using AE monitoring data[J]. InternationalJournal of Rock Mechanics&Mining Sciences,2007,44:538-549.
    [114] Leandro R. Alejano, Javier Taboada, Fernando García-Bastante, Pedro Rodriguez.Multi-approach back-analysis of a roof bed collapse in a mining room excavated in stratifiedrock[J]. International Journal of Rock Mechanics&Mining Sciences,2008,45:899-913.
    [115] Masoud Ghorbani, Mostafa Sharifzadeh. Long term stability assessment of Siah Bishehpowerhouse cavern based on displacement back analysis method[J]. Tunnelling andUnderground Space Technology,2009,24:574-583.
    [116]王芝银,袁鸿鹄,张琦伟,宫晓明.十三陵大坝弹性参数反演与稳定性评价[J].2010,31(5):1592-1596.
    [117]伍国军,陈卫忠,贾善坡.大型地下洞室围岩体蠕变参数位移反分析研究[J].岩石力学与工程学报,2010,29(增2):4043-4049.
    [118]石崇,张玉,孙怀昆.争岗滑坡堆积体滑面强度参数反演分析[J].岩石力学与工程与学报,2010,29(增2):3728-3734.
    [119]陈卫忠,曹俊杰,于洪丹等.强风化花岗岩弹塑性本构模型研究(Ⅰ):理论模型及参数反演[J].岩土力学,2011,32(11):3207-3211.
    [120]张强勇,陈芳,杨文东等.大岗山坝区岩体现场剪切蠕变试验及参数反演[J].岩土力学,2011,32(9):2584-2602.
    [121]王建,岑威钧,张煜.邓肯–张模型参数反演的不唯一性[J].岩土工程学报,2011,33(7):1054-1057.
    [122]姚显春,李宁,陈莉静等.拉西瓦水电站地下厂房洞室群分层开挖过程仿真反演分析[J].岩石力学与工程学报,2011,20(增1):3052-3059.
    [123]贾善坡,陈卫忠,于洪丹,李香玲.泥岩渗流-应力耦合蠕变损伤模型研究(Ⅱ):数值仿真和参数反演[J].岩土力学,2011,32(10):3163-3170.
    [124]孙道恒,胡俏,徐灏.力学反问题的神经网络分析法[J].计算结构力学及其应用,1996,13(3):308-312.
    [125]李立新,王建党,李造鼎.神经网络模型在非线性位移反分析中的应用[J].岩土力学,1997,18(2):62-66.
    [126]樊琨.刘宇敏,张艳华,基于人工神经网络的岩土工程力学参数反分析[J].河海大学学报,1998,26(4):98-102.
    [127] Y.C. Liang, D.P. Feng, G.R. Liu, X.W. Yang, X. Han. Neural identification of rockparameters using fuzzy adaptive learning parameters[J],Computers and Structures,2003,81:2373-2382.
    [128]王向刚.公路隧道位移反演及其稳定性分析[D].济南:山东大学,2005.
    [129]张明,卢裕杰,毕忠伟等.利用神经网络的反馈分析方法及其在地下厂房中的应用[J].岩石力学与工程学报,2010,29(11):221-2220.
    [130]高玮,郑颖人.采用快速遗传算法进行岩土工程反分析[J].岩土工程学报,2001,23(1):120-122.
    [131]高玮,郑颖人.岩土力学反分析及其集成智能研究[J].岩土力学,2001,22(1):114-120.
    [132]高玮,冯夏庭,郑颖人.地下工程围岩参数反演的仿生算法及其工程应用研究[J].岩石力学与工程学报,2002,21(增2):2521-2526.
    [133]高玮,郑颖人.一种新的岩土工程进化反分析算法[J].岩石力学与工程学报,2003,22(2):192-196.
    [134]高玮,郑颖人.岩体参数的进化反演[J].水利学报,2008,8:1-5.
    [135]王登刚,刘迎曦,李守巨.岩土工程位移反分析的遗传算法[J].岩石力学与工程学报,2000,19(增):979-982.
    [136]朱合华,刘学增.基于遗传算法的混合优化反分析及比较研究[J].岩石力学与工程学报,2003,22(2):197-202.
    [137]韩华,章梓茂,魏培君.流体饱和多孔介质参数反演的遗传算法[J].岩石力学与工程学报,2003,22(9):1458-1462.
    [138]王媛,刘杰.重力坝坝基渗透系数进化反演分析[J].岩土工程学报,2003,25(5):552-556.
    [139]姚磊华,李竞生.综合改进的遗传算法反演三维地下水流模型参数[J].岩石力学与工程学报,2004,23(4):625-630.
    [140]张锋.改进遗传算法在岩体力学参数优化反分析中的应用研究[D].长春:吉林大学,2007.
    [141] C. Rechea, S. Levasseur, R. Finno. Inverse analysis techniques for parameteridentification in simulation of excavation support systems[J]. Computers and Geotechnics,2008,35:331-345.
    [142] S. Levasseur, Y. Malécot, M. Boulon, E. Flavigny. Soil parameter identification using agenetic algorithm[J]. Internationa Journal for Numerical and Analytical Methods inGeomechanics,2008,32:189-213.
    [143]朱晟,王永明,胡祥群.免疫遗传算法在土石坝筑坝粗粒料本构模型参数反演中的应用研究[J].岩土力学,2010,31(3):961-966.
    [144]王军祥,姜谙男.大连地铁隧道监测数据分析及参数智能反演[J].土木工程学报,2011,44(增):135-138.
    [145]刘开云,方昱,刘保国.基于进化高斯过程回归算法的隧道工程弹塑性模型参数反演[J].岩土工程学报,2011,33(6):883-889.
    [146]冯夏庭,张治强,杨成祥,林韵梅.位移反分析的进化神经网络方法研究[J].岩石力学与工程学报,1999,18(5):497-502.
    [147]邓建辉,李焯芬,葛修润,岩石边坡松动区与位移反分析[J],岩石力学与工程学报,2001,20(2):171-174.
    [148] J.H. Deng, C.F. Lee. Displacement back analysis for a steep slope at the Three GorgesProject site[J]. International Journal of Rock Mechanics&Mining Sciences,2001,38:259-268.
    [149]袁会娜.基于神经网络和演化算法的土石坝位移反演分析[D].北京:清华大学,2003.
    [150]周萍.基于神经网络和遗传算法的岩体参数反分析研究[D].南京:河海大学,2004.
    [151]杜太亮.岩质边坡智能化位移反分析及工程应用[D].重庆:重庆大学,2006.
    [152] Yuzhen Yu, Bingyin Zhang, Huina Yuan. An intelligent displacement back-analysismethod for earth-rockfill dams[J]. Computers and Geotechnics,2007,34:423-434.
    [153]魏进兵,邓建辉.高地应力条件下大型地下厂房松动区变化规律及参数反演[J].岩土力学,2010,31(增1):330-336.
    [154]王伟.改进粒子群优化算法在边坡工程力学参数反演中的应用[D].南京:河海大学,2007.
    [155]贾善坡,伍国军,陈卫忠.基于粒子群算法与混合罚函数法的有限元优化反演模型及应用[J].岩土力学,2011,32(增2):598-603.
    [156]刘维宁.岩土工程反分析方法的信息论研究[J].岩石力学与工程学报,1993,12(3):193-205.
    [157]袁勇,孙钧.岩体本构模型反演识别理论及其工程应用[J].岩石力学与工程学报,1993,12(3):232-239.
    [158]黄宏伟,孙钧.基于Bayesian广义参数反分析[J].岩石力学与工程学报,1994,13(3):219-228.
    [159]黄宏伟.岩土工程中位移量测的随机逆反分析[J].岩土工程学报,1995,17(2):36-41.
    [160]蒋树屏.扩张卡尔曼滤波器有限元法耦合算法及其隧道工程应用[J].岩土工程学报,1996,18(4):11-19.
    [161]孙钧,蒋树屏,袁勇,黄宏伟.岩土力学反演问题的随机理论与方法[M].汕头:汕头大学出版社,1996.
    [162]林育梁,樱井春辅.应用模糊有限元法的一种反分析形式[J].岩土工程学报,1995,17(5):48-56.
    [163]朱永全,景诗庭,张清.围岩参数Monte-Carlo有限元反分析[J].岩土力学,1995,16(3):29-34.
    [164]朱永全,景诗庭,张清.隧道支护结构荷载作用的随机反演[J].岩土力学,1996,17(2):57-63.
    [165]陈斌.岩土工程随机反演分析及工程应用[D].南京:河海大学,2001.
    [166]杨杰,胡德秀,吴中如.基于最大嫡原理的贝叶斯不确定性反分析方法[J].浙江大学学报(工学版),2006,40(5):810-835.
    [167] Drahomír Novák, David Lehky. ANN inverse analysis based on stochastic small-sampletraining set simulation[J]. Engineering Applications of Artificial Intelligence,2006,19:731-740.
    [168] S. Levasseur, Y. Malecot, M. Boulon, E. Flavigny. Statistical inverse analysis based ongenetic algorithm and principal component analysis: Method and developments using syntheticdata[J],Internationa Journal for Numerical and Analytical Methods in Geomechanics,2009,33:1485-1511.
    [169] S. Levasseur, Y. Malecot, M. Boulon, E. Flavigny. Statistical inverse analysis based ongenetic algorithm and principal component analysis: Applications to excavation problems andpressuremeter tests[J]. Internationa Journal for Numerical and Analytical Methods inGeomechanics,2010,34:471-491.
    [170] J. Baroth, Y. Malecot. Probabilistic analysis of the inverse analysis of an excavationproblem[J]. Computers and Geotechnics,2010,37:391-398.
    [171]雷鹏,苏怀智,张贵金.基于RNN模型的坝体和岩基区间参数反演方法研究[J].岩土力学,2011,32(2):547-552.
    [172]章光,朱维申.参数敏感性分析与试验方案优化[J].岩土力学,14(1),1993:51-58.
    [173]赵志峰.基于位移监测信息的岩石高边坡安全评价理论和方法研究[D].南京:河海大学,2007.
    [174]程永春,葛琪,何锋.季冻区土质边坡滑动界面临界深度的试验研究[J].岩土力学,2010,31(4):1042~1046.
    [175]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1~7.
    [176]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性[J].岩土工程学报,2004,26(1):42-46.
    [177]刘金龙,栾茂田,赵少飞等.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学,2005,26(8):1345-1348.
    [178]林杭,曹平,宫凤强.位移突变判据中监测点的位置和位移方式分析[J].岩土工程学报,2007,29(9):1433~1438.
    [179] Mao-song Huang. Cang-Qin Jia, Strength reduction FEM in stability analysis of soilslopes subjected to transient unsaturated seepage[J]. Computers and Geotechnics,2009,36:93-101.
    [180] Wen-xi Fu, Yi Liao. Non-linear shear strength reduction technique in slope stabilitycalculation[J]. Computers and Geotechnics,2010,37:288-298.
    [181]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [182]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [183] Fredric M.Ham, Ivica Kostanic. Principles of Neurocomputing for Science&Engineering[M].北京:机械工业出版社,2003.
    [184] Norhisham Bakhary, Hong Hao, Andrew J. Deeks. Damage detection using artificialneural network with consideration of uncertainties[J]. Engineering Structures,2007,29:2806-2815.
    [185] M. Mehrjoo, N. Khaji, H. Moharrami, A. Bahreinineja. Damage detection of truss bridgejoints using Artificial Neural Networks[J]. Expert Systems with Applications,2008,35:1122-1131.
    [186]李国勇.神经模糊控制理论及应用[M].北京:电子工业出版社,2009.
    [187] K.M.Hornik,M.stinchcombe and H.White. Mutilayer feedforward networks are universalapproximators[J]. Neural Networks,1989,2(5):359-366,.
    [188]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [189]杨德林.岩土工程反演问题理论与工程实践[M].北京:科学出版社,1996.
    [190] Wang L J. Inversion of magnetometer array data by thin-sheet modeling[J]. Geophts. J.Int.,1999,137:128-138.
    [191] Nikolaos Plevris, Thanasis C. Triantafillou, and Danielle Veneziano. Reliability of RCmembers strengthened with CFRP laminates[J], Journal of Structural Engine-ering,1995(6),121(7):1037-1044.
    [192] Japanese Society of Civil Engineers. Recommendations for Upgrading of ConcreteStructures with Use of Continuous Fiber Sheets[C]. Japanese Society of Civil Engineers,2001.
    [193] Ng,S.C. Lee,S. A study of flexural behavior of reinforced concrete beam strengthenedwith carbon fiber-reinforced plastic (CFRP)[J]. Source: Journal of Reinforced Plastics andComposites,2002,21(10):919-938.
    [194] Kim, Sang Hun Aboutaha, Riyad S. Ductility of carbon fiber reinforced polymer(CFRP)strengthened reinforced concrete beams: Experimental investigation [J].Source: Steel andComposite Structures2004,4(5):333-353.
    [195] Nikolaos Plevris, Thanasis C.Triantafillou, Time-dependent behav-ior of RC membersstrengthened with FRP laminates[J], Journal of Structural Engineering,1994(3),120(3):1016-1041.
    [196] Deng,Y.(PBS and J), Toutanji,H. Fatigue performance of RC beams strengthened withinorganic carbon composites[J].Source: International SAMPE Technical Conference. SAMPLE.2004:2855-2869.
    [197] Ei-Hacha,Raafat Wight,R.Gordon,Green,Mark F. Prestressed carbon fiber reinforcedpolymer sheets for strengthening concrete beams at room and low temperatures[J]. Source:Journal of Composites for Construction,2004,8(1):3-13.
    [198]叶见曙.结构设计原理[M],北京:人民交通出版社,2005.
    [199]陈页开,徐日庆,任超等,基坑开挖的空间效应[J],建筑结构,2001,31(10):42-44.
    [200]许锡昌,陈善雄,徐海滨,悬臂排桩支护结够空间变形分析[J],岩土力学,2006,27(2):184-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700