高寒山区岩体冻融力学行为及崩塌机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过现场深入调查,系统收集了具有强震高寒山区典型代表性的天山公路全线537Km边坡地质灾害及环境地质信息;再通过“普查”、重点研究等多种手段,对沿线86个典型边坡崩塌灾害进行了细致的分析与评价;同时,引进并自主研发仪器设备与试验方案,得出了冻融-大温差耦合循环作用下的岩石宏观-微观特征演变关联规律,探索性定义了高寒山区冻融-大温差耦合系数,并量化界定了不同种类岩石的相关系数与取值范围;在此基础上,精选若干典型崩塌灾害点作为原型,充分考虑强震和冻融-大温差耦合作用条件,采用动、静态联合数值模拟技术等,从多角度、多手段系统分析研究了天山公路边坡崩塌的成灾机制、失稳破坏模式及动态演化发展规律,据此针对性地制定了关键防治技术对策;提出了强震高寒山区崩塌工程防治技术方案,并通过工程实例进行了验证。
     论文主要成果如下:
     (1)研究查明了具有强震环境下大陆性冰川高寒山区典型代表性的天山公路边坡地质灾害的分布发育规律。天山公路北段地层原生建造序列受后期活跃的构造破坏而强烈解体,且海拔2800m以上强寒冻风化路段数量众多;公路南段地层为中新生代陆相建造,其构造活动作用相对较弱,同时,海拔2800m以上强寒冻风化路段数量明显少于北段。因此,从整体上看北段地质灾害数量多于南段。
     (2)研究发现天山公路边坡灾害的关键诱发因素如下:①地震动力响应效应诱发岩体剪切位移或拉张位移,导致应力释放、岩体破裂面高度发育、密度降低、透水性增强,为寒冻山区强烈寒冻风化作用的侵蚀奠定了基础条件;②本地区一年中最大温差高达近80℃,昼夜最大温差也可达40-50℃左右。尤其在年循环大温差(-30℃~+50℃)营造的胀缩应力作用下,岩体内外悬殊的大温差及岩石内部不同矿物之间差异的热膨胀系数均会导致边坡岩体进一步崩解、开裂,为水分入渗侵蚀及结冰后的强烈冰劈力侵蚀提供了物质基础条件。
     天山公路边坡地质灾害活动性明显受控于季节变化,夏季(5~9月)是水源补给高峰期,也是灾害高发期。另外,随着高寒山区公路建设的快速发展,高边坡的人工开挖及爆破等破坏了原有山坡坡体的平衡状态,导致相关边坡地质灾害进一步演变加剧。
     (3)崩塌是天山公路沿线数量最多、频率高发,且综合危害程度最大的灾害,分析沿线典型56处中小型崩塌、28处中偏大型崩塌、2处大型崩塌后发现,其多发育在11m~30m边坡坡高、70°以上直陡边坡条件下;统计表明,沿线沉积岩崩塌37处、喷出岩崩塌16处,侵入岩崩塌10处,变质岩崩塌23处。节理裂隙发育、不利的结构面组合与陡峻的地形是崩塌产生的基础,地震、冻融-大温差耦合作用、冰川消融与暴雨的水分补给、工程建设中的边坡人工开挖及爆破则是直接诱因;其中,尤其以地震对岩体内部损伤的动力作用、冻融-大温差耦合作用对崩塌的影响最为强烈,这也构成了强震环境下高寒山区边坡崩塌演变发展的独有特征。
     (4)按照岩体变形的力学机制,把天山公路沿线崩塌分为卸荷-拉裂、滑移-拉裂、弯曲-拉裂-倾倒、弯曲-溃曲等4类。根据崩塌形式则可分为滑移式、倾倒式和坠落式3类。天山公路边坡典型崩塌总方量近300万m~3,滑移式、坠落式、倾倒式分别占到了总量的46%、30%、24%;稳定、基本稳定、不稳定型分别占到了3%、30%、67%;滑移式崩塌在高寒山区公路路堑边坡中最为普遍,坠落式崩塌、倾倒式崩塌数量基本相近。
     (5)采用冻融-大温差耦合循环来模拟高寒山区环境下不同寒冻风化循环作用年限(15年、30年、50年),通过试验研究取得了高寒山区硬质岩、中硬岩和软质岩随强寒冻风化年限变化的物理力学性能衰变特征规律。定义了高寒山区“冻融-大温差耦合系数”参数,量化得到各代表性岩石在50年寒冻风化循环周期下的相关冻融-大温差耦合系数,这为后续相关岩质边坡崩塌致灾机制及动态演变规律研究提供了量化的基础参数。
     (6)结合高寒山区强寒冻风化条件,开展了岩石SEM微观扫描实验分析,得出了具有典型高寒山区硬质岩代表性的花岗岩及中硬岩代表性的砂岩随寒冻风化作用下的微观裂隙-宏观物理力学特征演变量化规律方程:即花岗岩、砂岩微观裂隙演变与宏观单轴抗压强度衰减趋势方程、花岗岩、砂岩微观裂隙演变与宏观孔隙率增加趋势方程、花岗岩、砂岩微观裂隙演变与宏观吸水率增加趋势方程等。这些量化关系规律为今后此类地区岩石断裂力学机理的深入研究奠定了一定的技术基础。
     (7)针对强震环境下高寒山区边坡“寒、震、高、陡、切”的5个典型诱发因素,结合现场调研及室内试验成果,针对高寒山区典型的滑移式、倾倒式和坠落式等3大类型公路边坡崩塌,结合卸荷-拉裂、滑移-拉裂、弯曲-拉裂-倾倒、弯曲-溃曲等4种岩体变形的力学机制、破坏机理及力学计算模型,紧密围绕其典型强震及强烈“冻融-大温差耦合作用”寒冻风化条件,引入“冻融-大温差耦合系数”,并考虑地震动载工况,将非连续变形分析技术(DDA)用于相关边坡岩质崩塌稳定性及动态演变规律特征研究;并辅助采用有限元数值分析崩塌灾害体失稳启动与边坡应力、应变间的深层次规律联系。构建出了一套强震环境下高寒山区公路边坡崩塌灾害的理论分析技术体系,并研究得出了相关公路岩质边坡崩塌致灾机制及动态演变规律。在此基础上,选取典型滑移式崩塌工点为具体研究实例,在充分考虑强震环境下的高寒山区冻融-大温差耦合循环作用、强震作用等不利因素的基础上,重点针对自重+冻融+地震工况,深入进行了相应边坡崩塌危岩体稳定性计算分析及关键防治技术研究,并采用数值模拟分析手段进行了关联验证分析。
     通过研究,形成如下创新点:
     (1)针对高寒山区代表性硬质岩、中硬岩、软质岩,设计“冻融-大温差耦合作用”下高寒山区寒冻风化模拟试验,得到了岩石物理力学性质随不同寒冻风化年限(15年、30年、50年)衰变规律,构建了相关物理力学指标线性与非线性方程;初步定义了高寒山区岩石“冻融-大温差耦合系数”,并量化界定了不同种类岩石相关系数与取值范围。为后续相关岩质边坡崩塌致灾机制及动态演变规律研究提供了量化的基础参数。
     (2)紧密围绕高寒山区“冻融-大温差耦合作用”循环次数与岩石微观结构变化之间的相关性,深入分析岩体对应的宏观物理力学指标变化特征,构建了高寒山区典型岩石宏-微观特性本构方程。
     (3)以强震环境下高寒山区的典型强震及“冻融-大温差耦合作用”为基础,结合现场调查与室内外试验,引入“冻融-大温差耦合系数”,并考虑地震动载工况,将非连续变形分析技术(DDA)用于相关边坡崩塌稳定性及动态演变规律特征研究;同时,采用限元分析崩塌灾害体失稳启动与边坡应力、应变间的联系。系统构建了一套强震环境下高寒山区公路边坡崩塌灾害的理论分析技术体系,研究得出了高寒山区公路边坡崩塌致灾机制及动态演变规律。
     (4)系统集成开发了强震环境下高寒山区公路岩质边坡崩塌灾害防治关键技术,并针对崩塌灾害体系统构建了一套“理论计算+经验公式评判+数值模拟应力、应变分析评估”的综合防治决策理论体系,并在具体灾害防治实例中得到了应用验证。
Through further investigation, I collected the geological diseases andenvironmental geological formations of537Km slope along the tianshan road locatedin alpine and strong earthquake regions; then I made detailed analysis and evaluationto86typical slope collapses disasters along highway by “general survey”、keyresearch and some kinds of means. At the same time, we introduced andindependently research equipment and test plan, obtaining the feature evolutionassociation laws of rock mass’ macro and micro level under the freezing-thawing andlarge temperature coupling circulation. Thus, I exploratorily defined the coefficient offreezing-thawing and large temperature coupling circulation in alpine region, andquantitatively defined the related coefficient and rock value range of different kinds ofrock mass; Based on it, I selected some typical collapse disasters as the prototype,systematically analyzed the disaster mechanism, instability failure modes anddynamic evolution development law of slope collapses along Tianshan highway frommultiple perspectives and dynamic-static joint numerical simulation technology underfreezing-thawing and large temperature coupling circulation. And also, I put forwardkey prevention technology countermeasures and prevention technologies of collapsein alpine and strong earthquake regions, which was verified by engineering example.
     The main results of this thesis are as follows:
     (1) The research finds out the distribution and development law of the geologicaldisaster along tianshan highway which is located in continental glacial alpine regionwith strong earthquake environment. Overall, geological disasters in north section ofthe tianshan highway are more serious. There are two possible factors contributed tothis phenomenon. Firstly, the north section of the tianshan highway primary buildingsequence stratigraphic confronted strong disintegration damaged by late activestructural destruction, while the southern highway belongs to mesozoic-cenozoicstrata continental building, the construction activity effect is relatively weak.Moreover,the length of north section located in strong cold aspic weatheringsections(above2800m) is obviously longer than south section.
     (2) There are four key factors to trigger geological disasters along tianshan highway:①the frequent seismic effect induced the slope rock mass sheardisplacement or tensile displacement, leading to stress release, fracture surface’sfrequent development, lower density and permeability enhancement. It is theprecondition of strong chilling weathering erosion in cold frozen mountain areas.②the biggest temperature difference is almost80℃within one year in this area, and thedifference of the day and night can reach40-50℃. Especially under the expansion andcontraction stress caused by cycle big difference of(-30℃~+50℃), not only the bigtemperature difference inside and outside of the rocks but also the different coefficientof thermal expansion in different mineral of internal rocks will lead to furtherdisintegration, cracking, which were the material foundation of water infiltrationerosion and splitting force of strong ice water.
     Geological disaster activities were controlled by seasonal changes obviously.Summer(May-Sep) is not only the rush hour of water supplies but also the rush hourof geologic hazard. In addition, the increasing of human activities destructed theoriginal slope balance, which make related engineering geological diseases willbecome more and more serious.
     (3) Collapse is the most common and serious engineering geological disasters inalpine and strong earthquake regions. There are86collapses developed along tianshanhighway,including59small,28medium-sized and2large collapses. Collapsesmainly developed in slope above70°,and the slope height is between11m~30m.Sedimentary sections collapses happened in37places, extrusive rocks are distributedin16places, intrusive rocks are distributed in10places, and metamorphic rockcollapse in23places. Joint fissures development, adverse structure surfacecombination and steep terrain are the foundation of collapses. Earthquake,freeze-thaw-the large temperature difference coupling (freeze-thaw split, frozen largetemperature difference of stress produced by contraction), melting ice snow water,heavy rain and slope excavation are the inducing factors; Among them, the dynamicaleffect of internal damage caused by earthquake and the Frost weathering effect causedby the coupled of freeze-thaw-the large temperature difference influence the collapsemost. All of them construct the unique characteristic of collapse developmentevolution in strong earthquake and alpine geological environment.
     (4) In accordance with the mechanical system of the rock mass deformation,collapse can be classified to four types:compression cracking,sliding and fracturing,bending-fracturing-toppling and bending-bursting. According to collapse forms, itcan be divided into sliding, dumping and falling. The total volume of typical collapseis nearly3million cubic meters. Sliding type, falling type, dumping type occupied46%,30%and24%respectively. From stable degree analysis, stable, basic stable andunstable respectively to3%,30%,67%. We also found that sliding type collapse is themost common type and the number of falling and dumping type collapses is close to each other.
     (5) Using freezing-thawing and a large temperature difference coupling cycle tosimulate different frost weathering cycle life in alpine mountain areas(15years,30years, and50years), the author got the decay law of physical and mechanicalproperties changed with strong frost weathering of hard rock, medium-hard rock andsoft rock in alpine mountain areas by experimental study. Thus, we could define thefreezing-thawing and large temperature difference coupling coefficient parameters inalpine mountain areas which successfully qualified the freezing-thawing and largetemperature difference coupling coefficient of various representative rocks under frostweathering cycle in50years. This provided qualified basic parameters for latesubsequent collapse mechanism of rock slope and dynamic evolution law.
     (6) Combined with strong frost weathering conditions in alpine mountain areas,the author carried out the micro-scanning experiment SEM of rocks and achievedquantization law equation of micro cracks-macroscopic physical and mechanicalcharacteristics under the action of frost weathering of granite which typicallyrepresented the hardest rocks and sandstone which typically represented themedium-hard rocks in alpine mountain areas: that is, the equation between granite,sandstone micro-cracks evolution and macroscopic uniaxial compressive strengthattenuation trend, the equation of granite, sandstone micro-cracks evolution andmacro-porosity increasing trend, and the equation of granite, sandstone micro-cracksevolution and macro water absorption increasing trend. These qualification laws laidthe technical foundation for future in-depth study of rock fracture mechanics in suchareas.
     (7) Considering the five typical predisposing factors “cold, shock, high, steep,cut” under strong earthquake environment and three typical highway slopes collapsesof sliding tilting and falling types in alpine mountain areas, combined with fieldinvestigation and laboratory test results and four kinds of stress mechanism, failuremechanism, mechanical calculation model of rock deformation includingunloading-crack, slipping-crack, bending-cracking-dumping and bending-collapse, theauthor introduced the idea of freezing-thawing and large temperature differencecoupling coefficient and applied the discontinuous deformation analysis techniques(DDA) to rock stability and dynamic evolution law of related rock collapse, whichwas closely related to typical strong earthquakes and frost weathering under conditionof freezing-thawing and large temperature difference coupling. Associated with finiteelement numerical analysis of deep-seated law correlation between slope stress andstrain and destabilization of collapsed rocks at the starting point of the disaster, theauthor built a set of theoretical analysis of the technical system of highway rock slopecollapse hazard in alpine mountain areas under strong earthquakes and obtained thecollapse hazard mechanism and dynamic evolution of highway rock slope. On thisbasis, the author selected the typical slipping type of rock collapse as the specific research example, and made in-depth corresponding stability calculation analysis ofdangerous rock slope and key prevention techniques focusing on weight,freezing-thaw and seismic conditions under unfavorable factors like freezing-thawingand large temperature difference coupling effect and strong earthquakes in alpinemountain areas. After it, the author applied the associated analysis by means ofnumerical simulation analysis.
     The main innovative points of this thesis specific are as follows:
     (1)Through the experiment study on the mechanical properties of hardest rock,hard rock and soft rock which situated in alpine region in different natural freeze-thawcycle times, we not only got decay laws related to the physical-mechanical propertiesunder the coupling action of different cycles (on behalf of the alpine region for15years,30years,50years of natural cold aspic weathering), but also establishedrelevant linear and nonlinear physical mechanics equation. On the base of these work,the author preliminarily defined the coupling coefficient of freeze-thaw and the largetemperature difference,distinguishing correlation coefficient and value range ofdifferent kinds of rocks. All of these provided a quantitative parameters basis for lateresearch of rock slope collapse forming mechanism and dynamic evolution law.
     (2)This paper focused on relationship between the cycle times of freeze thawing-large temperature difference and the rock microcosmic structure change, analyzedin-depth variation characteristics of corresponding macro physical and mechanicalindexes, and also constructed typical macro-microscopic characteristics constitutiveequation.
     (3) Combining with field investigation, indoor and outdoor tests, the authorapplied Discontinuous Deformation Analysis technology (DDA) to analyze the slopestability and collapse evolutionary rules considering the earthquake and couplingcoefficient of freeze-thaw and the large temperature difference. At the same time, thefinite element technique was employed to analyze the relation between collapse andthe stress and strain of slope. This thesis sets up a theoretical analysis system which issuitable for the slope collapses occurred in strong earthquake environment of alpineregions, thus obtaining the slope collapses forming mechanism and dynamic evolutionin alpine regions.
     (4) The paper developed key prevention technology for rocky slope collapsehazard along the highway located in strong earthquake and alpine regions, andconstructed a set of comprehensive prevention theory system with three approaches:theory calculation, experience formula evaluation and numerical simulation stressanalysis evaluation. This theory system has been verified in specific cases of hazardprevention.
引文
[1]杨三强.天山公路泥石流病害分类及形成机理研究[D].乌鲁木齐:新疆农业大学,2007
    [2]张新海.多源空间数据的存储管理与发布研究---以天山公路(独库段)空间数据库建设为例[D].成都:成都理工大学,2007
    [3]刘昌蓉,何政伟,黄爽兵.多元回归分析在地质灾害危险性评价中的应用——以天山公路G217沿线为例[J].环保科技,2008,(1):31-33
    [4]黄勇.天山公路沟谷泥石流运动机理和防治工程设计参数研究[D].乌鲁木齐:新疆农业大学,2007
    [5]许辉熙,何政伟,吴柏清等.基于地形三维阴影图的等高线数据库后处理的质量控制方法研究[J].测绘科学,2008,(3):22-24
    [6]张博.天山公路地质灾害发育分布特征及防治对策研究[D].成都:成都理工大学,2006
    [7]朱立平,Whalley W B,王家澄.寒冻条件下花岗岩小块体的风化模拟试验及其分析[J].冰川冻土,199719(4):312-320.
    [8]何国梁,张磊,吴刚.循环冻融条件下岩石物理特性的试验研究[J].岩土力学,200425(增2):52-56
    [9]刘成禹,何满潮,王树仁等.花岗岩低温冻融损伤特性的实验研究[J].湖南科技大学学报(自然科学版),2005,20(1):37-40
    [10]吴刚,何国梁,张磊等.大理岩循环冻融试验研究[J].岩石力学与工程学报,2006,25(增1):2930-2938
    [11]张继周,缪林昌,杨振峰.冻融条件下岩石损伤劣化机制和力学特性研究[J].岩石力学与工程学报,200827(8):1688—1694.
    [12]赖远明,吴紫汪,张淑娟等.寒区隧道保温效果的现场观察研究[J].铁道学报,2003,25(1):81-86.
    [13]谢红强,何川,李永林.寒区隧道结构抗防冻试验研究及仿真分析[J].公路,2006,2:184-188.
    [14]赖金星,谢永利,李群善.青沙山隧道地温场测试与分析[J].中国铁道科学,2007,28(5):78-82.
    [15] Winkler E M. Frost damage to stone and concrete: geological considerations[J].Engineering Geology,1968,2(5):315-323.
    [16] Inada Y, Yokota K. Some studies of low rock strength[J]. International Journal of RockMechanics and Mining Science&GeomechanicsAbstracts,1984,21(3):145-153.
    [17]赖远明,吴紫汪.大坂山隧道围岩冻融损伤的CT分析[J].冰川冻土,2000,22(3):206-210.
    [18]杨更社,蒲毅彬.寒区冻融环境条件下岩石损伤扩展研究探讨[J].实验力学,2002,17(2):220-226.
    [19]张淑娟,赖远明,苏新民等.风火山隧道冻融循环条件下岩石损伤扩展室内模拟研究[J].岩石力学与工程学报,2004,23(24):4105-4111.
    [20]徐光苗,刘泉声,彭万巍等.低温作用下岩石基本力学性质试验研究[J].岩石力学与工程学报,2006,,25(12):2502-2508.
    [21]杨更社,奚家米,邵学敏.冻结条件下岩石强度特性的试验[J].西安科技大学学报,2010,30(1):14-18.
    [22]杨更社,奚家米,李慧军.三向受力条件下冻结岩石力学特性试验研究[J].岩石力学与工程学报,2010,29(3):459-464.
    [23]]Matsuoka N. Mechanisms of rock breakdown by frost action: an experimental approach[J].Cold Regions Science and Technology,1990,17:253-270.
    [24] Ruiz V G, Rey R A, Clorio C, et al. Characterization by computed X-ray tomography of theevolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests[J]. Phys.Chem. Earth,1999,7(24):633-637.
    [25] Nicholson D T, Nicholson F H. Physical deterioration of sedimentary rocks subjected toexperimental freeze-thaw weathering[J]. Earth Surface Processes and Landforms,2000,25(12):1295-1307.
    [26] Mutlutiik M,Altindag R,TilrK G. A decay function model for the integrity loss of rock whensubjected to recurrent cycles of freezing-thawing and heating-cooling[J]. InternationalJournal of Rock Mechanics and Mining Science200441(2):237-244.
    [27] Chen T C, Yeung M R, M N. Effect of watcr saturation action[J]. Cold Regions Science andTechnology,2004,38(2):127-136.
    [28]徐光苗,刘泉声.岩石冻融破坏机理分析及冻融力学试验研究[J].岩石力学与工程学报,2005,24(17):3076-3082.
    [29]楼志文.损伤力学基础[M].西安:西安交通大学出版社,1991.
    [30]余寿文,冯西桥等.损伤力学[M].北京:清华大学出版社,1997.
    [31]余寿文.断裂损伤与细观力学[J].力学与实践,1988,(6):12-19.
    [32]范卫锋.分形理论在岩石力学中的应用[D].武汉:武汉理工大学,2005
    [33] Dougill J W, Lau J C, Burt N J. Toward A Theoretical Model for Progressive Failure andsoftening in Rock[J].Concrete and Similar Materials,1976(11):335-355.
    [34]杨更社,谢定义,张长庆.岩石损伤特性的CT识别[J].岩石力学与工程学报,1996,(1):48-54.
    [35] Watanabe K. Amount of unfrozen water in frozen porous media saturated with solution[J].Cold Regions Science and Technology,2002,34(2):103-110.
    [36]杨更社,张全胜,任建喜等.冻结速度对铜川砂岩损伤CT数变化规律研究[[J].岩石力学与工程学报,2004,23(24):4099-4104.
    [37]马静嵘,杨更社,徐坤.软岩隧道冻胀损伤参量的确定[J].西安科技大学学报,2004,24(3):271-274.
    [38] GAP. DavidsonandJ. F. Nye. A photo elastic Study of Ice Pressure in Rock Cracks[J]. ColdRegions and Technology.1985(11):141~153.
    [39] Karl Terzaghi,Hon. Mascemic. E.Stability of Steep Slopes on HarDun weathered Rock[J].Geotechnique.1963:251-270.
    [40]陈天城,魏炳乾.冻结融解作用对岩石边坡稳定的影响[J].西北水利发电,2003,19(3):5-7
    [41]马富廷.冻土区露天矿边坡稳定性分析[J].露天采矿技术.2005(4):9-10.
    [42]杨艳霞,祝艳波,李才等.南方极端冰雪灾害条件下边坡崩塌机理初步研究[J].人民长江,2012,43(2):46-49.
    [43]陈国平.绢云母石英片岩特性与隧道围岩稳定性研究[D].武汉:中国地质大学,2008
    [44]王思敬.坝基岩体工程地质力学分析[M].北京:科学出版社,1990.
    [45]刘毅,朱寿增,顾展飞.浅述水电类工程地下洞室围岩分类方法[J].科技信息,2011(7):89-90.
    [46]蒋耿民,李援农等.淤地坝坝系布设方案多层次模糊综合评判研究[J].人民黄河,2010(8):92-95.
    [47]梁青丽.分形理论数学模型在土壤学中的应用研究[J].山西水利,2011,(4):30-31.
    [48]张倬元,王兰生,王士天.工程地质分析原理(第二版)[M].北京:地质出版社,1994.
    [49] Harlan R L.Analysis of coupled heat-fluid transport in partially frozen soil[J].Water ResourceResearch,1973,9(5):1314-1322.
    [50] Taylor G S,Luthin J N.A model for coupled heat and moisture transfer during soilfreezing[J].Canadian Geotechnical Journal,1978,15:548-555.
    [51] Horiguchi K.An osmotic model for soil freezing[J].Cold Region Science andTechnology,1987,14:13-22.
    [52]王铁行,胡长顺.冻土路基水分数值模拟[J].中国公路学报,2001,14(4):5-8
    [53]陈飞熊,宋战平,李宁.基于吸附薄膜理论的正冻土水分驱动力模型探讨[J].水利与建筑工程学报,2006,4(3):1-4.
    [54] Miller R D.Freezing and heaving of saturated soiled [J].Highway Research Report,1972,393:1-11.
    [55] Gilpin R R.A model for the prediction of ice lens and frost heave in soil [J].Water ResourceResearch,1980,16(5):918-930.
    [56] O’Neil K,miller R D.Exploration of a rigid ice model of frost heave[J].Water ResourceResearch,1985,21(3):281-296.
    [57] Xu X Z Wang JC.Zhang Lixin,etal.Mechanism of frost heave by film water migration undertemperature gradient[J].Chinese Science Bulletin.1997,42(15):1290-1293.
    [58] Miao T D.Guo Ll.Niu Yonghong etal. Modeling on coupled heat and moisture transfer infreezing soil using mixture theory [J].Science in Chinese (seriesD).1999.42(SI):9-16.
    [59]]Konrad J M,Morgenstern N R.Effects of applied pressure on freezing soil [J].CanadianGeotechnical Journal,1982.19:494-505.
    [60] Takashi T.Yamamoto H.Effect of penetration rate freezing and confining stress on frostheave ration[C].Proc.3th Int.Conf.onpermafrost.Edmonton.Candad,1978:1479-1483.
    [61]谢和平.灾害环境下重大工程安全性的基础研究进展.第八次全国岩石力学与工程学术大会论文集[C].北京:科学出版社,2004:68-73
    [62] Guymon GLLuthin J N.Acoupled heat and miisure transport model for artic soils[J].WaterResource Research.1974,10(5):995-1003
    [63] Fukuda M Nakagawa S.Numerical analysis of frost heaving based upon the coupled heat andwater flow model[C].Proc.4th Int,Sym.on GroundFreezing,Rotterdam:Blakema,1985:109-117.
    [64] Nixon J F. Discriete ice Lens theory for frost heave in soils[J].Canadian GeotechnicalJournal,1991,28:843-859.
    [65] Hopke S W. A modal for frost heave including overburden [J].Cold Regions Sciences andTechnoloogy,1980,3(2):275-291.
    [66] Fremond M. Mikkoa M. Thermo-mechanical of freezing soil [C].Proc.6th Int. Sym. OnGround freezing. Rotterdam:Balkema.1991:17-24.
    [67]宋存牛,王选仓.季节冻土区风积沙土路基冻结过程中水热迁移数值分析[J].冰川冻土,2007,29(6):1997-1003
    [68]尚松浩,雷志栋,杨诗秀.冻结条件下土壤水热耦合迁移数值模拟的改进[J].清华大学学报,1997,37(2):62-64.
    [69] Newman G P. Wilson G W. Heat and mass transfer in unsaturated soils during feezing[J].Canadian Geotechnical Journal,1997,34:34-63.
    [70]高大钊.岩土工程的回顾与前瞻[M].北京:人民交通出版社,2001
    [71]方晓阳.21世纪环境岩土工程展望[J].岩土工程学报,2000,22(1):1-11
    [72] H.Kumsar, O. Aydan, R.Ulusay. Dynamic and Static StabilityAssessment of Rock SlopesAgainst Wedge Failures.Rock Mech.Rock engineering[J].2000,33(1):31
    [73] TIMOTHYDS. HISHAMT. Performance of three-dimensional slope stability methodsinPractice. Journal of Geotechnical and Geoenvirnmentalengineering[J].998,124(11):1049-1060
    [74] Duncan, J. M. State of theart: limit equilibrium and finite element analysis of slope.Journalof Geotechnical Engineering,AS CE[J].1996,122(7):577-596
    [75]施斌.边坡大变形弹塑性有限元分析[J].水文地质工程地质,1999,(2):24-26
    [76]周幼吾,郭东信等.中国冻土[M].北京:科学出版社,2000
    [77] McRoberts EC&Morgenstern N. R. The stability of thawing slopes. Can. Geotech[J].1974,(11):447-469
    [78] Clark. MJ. Advance in Periglacial Geomorphology[J]. New York: John wiley&SonsLtd,1988,325-359
    [79]赵立冬.天山公路边坡岩体质量分级研究[D].成都:成都理工大学,2007
    [80]张晓光.天山公路南段环境工程地质研究[D].成都:成都理工大学,2008
    [81]陈红凯.新疆天山公路北段泥石流病害形成机制与治理[C].中国地质学会2007生态环境脆弱区工程地质学术论坛,2007
    [82]张兵.天山公路重点滑坡地质灾害形成机制与防治对策研究[D].成都:成都理工大学,2007
    [83]张元才.天山公路散粒体边坡形成机理及防治对策研究[D].成都:成都理工大学,2008
    [84]袁榴艳.新疆绿洲发生发展研究[D].杨凌:西北农林科技大学,2003
    [85]徐光苗,刘泉声.岩石冻融破坏机理分析及冻融力学试验研究[J].岩石力学与工程学报,2005(17):2076-3082.
    [86]陈国新.地学基础手册[M].北京:中国测绘出版社,1984.
    [87]冯文凯.库岸公路边坡稳定性风险分析—以三峡库区渝巴公路岸坡为例[D].成都:成都理工大学,2005
    [88]赵法锁.坡体平面旋转变形机理及稳定性研究[D].天津:天津大学,2005
    [89]王兴珍.非连续变形分析(DDA)方法在倾倒边坡稳定分析中的应用[D].北京:北京工业大学,2001
    [90]祥森.雅砻江锦屏一级水电站高位边坡危岩体成因机理及其稳定性研究[D].成都:成都理工大学,2006
    [91]杨中福,廖怀军,张元才等.非连续变形分析(DDA)方法在高海拔高烈度地区公路边坡稳定性分析中的应用[J].煤田地质与勘探,2009,(6):53-62
    [92]黄勇,陈晓光,刘涛,傅荣华,裴向军.天山公路边坡崩塌破坏模式及防治对策研究[J].公路交通科技,2008(09):271-275
    [93]张伟锋.危岩体危险性评价及防治对策研究—以雅砻江锦屏一级水电站为例[D].成都:成都理工大学,2007
    [94]申可立,司小良.故县水库边坡防护工程SNS防护网新技术应用[J].大坝与安全,2006,(1):50-52,68
    [95]贺永梅,彭伟,阳友奎.边坡柔性防护系统的典型工程应用[J].岩石力学与工程学报,2006,25(2):323-328.
    [96]安维东.冻土的温度水分应力及其相互作用[M].兰州:兰州大学出版社,1990.21-71
    [97]苗天德.正冻土中水热迁移问题的混合物理论模型[J].中国科学(D辑).1999(SI):8-14
    [98]何平.程国栋等.饱和正冻土中的水、热、力场祸合模型[J].冰川冻土,2000,22(2):135-138
    [99]陈飞熊.李宁.饱和冻土体的各向异性力学模型[J].冻土工程国家重点实验室年报,2001:43-50
    [100]陈飞熊.李宁.非饱和冻土的三场祸合理论框架[J].冻土工程国家重点实验室年报,2001:89-101
    [101]赖远明等.挡土墙温度场、渗流场和应力场祸合问题的非线性分析[J].土木工程学报.2003,36(6):88—95
    [102]赖远明等.寒区隧道温度场、渗流场和应力场祸合问题的非线性分析[J].岩土工程学报.1999,21(5):529-533
    [103]靳德武.青藏高原多年冻土区斜坡稳定性研究[D].西安:长安大学,2004
    [104]付小兵.都江堰拉法基水泥厂白依庵泥岩矿西侧边坡稳定性评价[D].成都:成都理工大学,2006
    [105]黄润秋等.工程地质学中的数值模拟与拟合[J].水文地质工程地质,1991,18(5):7
    [106]黄润秋.高边坡稳定性研究现状及发展展望[J].地球科学进展,1991,(1):26-31
    [107]黄润秋.大型工程蠕变岩体稳定性分析[M].第二届全国青年工程地质力学学术讨论会论文集,北京:中国地震出版社,1992
    [108]方建瑞等.三维边坡稳定弹塑性有限元分析与评价[J].岩土力学,2008(10):2667-2672.
    [109]漆祖芳.大岗山水电站坝肩边坡开挖支护有限元模拟[J].岩土力学,2008(29):161-165.
    [110]佘成学等.长河坝水电站右岸导流隧洞进口高边坡稳定性有限元计算分析[J].岩石力学与工程学报,2009,(28):3686-3691.
    [111]许瑾,郑书英.边界元法分析边坡动态稳定性[J].西北建筑工程学院学报(自然科学版),2000,17(4):72-75.
    [112]邓琴等.基于边界元法的边坡矢量和稳定分析[J].岩土力学,2010,31(6):1971-1976
    [113]周先齐等.离散单元法研究进展及应用综述[J].岩土力学,2007,28(supp):408-416.
    [114]贺续文,刘忠,廖彪等.基于离散元法的节理岩体边坡稳定性分析[J].岩土力学,2011,32(7):2200-2204.
    [115]孟国涛等.岩质高边坡开挖变形的三维离散单元法分析[J].河海大学学报(自然科学版),2007,(4):393-397.
    [116]王勇等.基于离散单元法的裂隙岩体渗流应力耦合分析[J].水文地质工程地质,2009,(1):44-47.
    [117]朱永生.基于离散单元法的白鹤滩水电站复杂块体稳定性分析[J].岩石力学与工程学报,2011,30(10):2068-2075.
    [118]卢波,葛修润,孔祥礼.有限元法、无单元法及自然单元法之比较研究[J].岩石力学与工程学报,2005,24(5):780-786.
    [119]张鑫等.含孔岩体破裂过程的无单元法数值模拟[J].河海大学学报(自然科学版),2008,(5):722-726.
    [120]仲济刚,胡云进.岩体水力劈裂的无单元法模拟[J].水利水电技术,2010(1):22-25.
    [121]朱合华等.无网格自然单元法在弹塑性分析中的应用[J].岩土力学,2004(4):671-674.
    [122]褚衍标等.二维Biot固结方程的自然单元法求解[J].上海交通大学学报,2008,(11):1880-1883.
    [123]盖珊珊等.自然单元法在线弹性断裂力学中的应用研究[J].计算力学学报,2011,(3):483-487.
    [124]刘立鹏等.基于FLAC强度折减理论的边坡稳定性研究[J].岩土工程技术,2008,(1):6-10.
    [125]夏敏,任光明等.地震诱发滑坡复活机制的FLAC3D数值模拟分析[J].工程地质学报,2010,(3):305-311.
    [126]刘可定,贺续文.基于离散单元法密集节理岩体边坡稳定性分析[J].路基工程,2011(,2):56-59.
    [127] Cundall. P. A, Strack. O. D. L, A discrete numerical model for granularssemblies[J].Geotechnique,1979,29(1):47-65.
    [128]黄润秋,许强,陶连金等.地质灾害过程模拟和过程控制研究[M].北京:科学出版社,2002
    [129]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381~3388
    [130]林杭,曹平,赵延林等.强度折减法在Hoek-Brown准则中的应用[J]..中南大学学报(自然科学版),2007,38(6)::1219-1224.
    [131] Itasca Consulting Group. Theory and background[M].Minnesota:Itasca Consulting Group,2002.
    [132] Daws on E M,Roth W H,Drescher A. Slope stability analysis by strength reduction[J]. Geotechnique,1999,(6):835-840.
    [133] Gri ffiths D V,Lane P A. Slope stability analysis by finite elements[J].Geotechnique,1999,(3):387-403.
    [134] GRIFFITHS D V,LANE P A. Slope stability analysis by finite elements[J]. Geotechnique,1999,49(3):387–403.
    [135] Itasca.Consulting Group,Inc.FLAC (fast Lagrangian analysis of continua) user manuals(Version5.0)[R].Minneapolis,Minnesota:Itasca Consulting Group,Inc,2005.
    [136] OWEN D R J,HINTON E. Finite elements in plasticity,theory and practice[M]. Swansea:Pineridge Press Ltd.,1980.
    [137] SMITH I M,GRIFFITHS D V. Programming the Finite Element Method[M].3rd ed. NewYork:John Wiley and Sons,Inc.,1998.
    [138] BISHOP A W, GARGA V K. Drained tension tests on London clay[J]. Geotechnique,1969,19(2):309–313.
    [139] ARAI K,TAGYO K. Determination of noncircular slip surface giving the minimum factorof safety in slope stability analysis[J]. Soils and Foundations,1985,25(1):43–51.
    [140] ARAI K,TAGYO K. Determination of noncircular slip surface giving the minimum factorof safety in slope stability analysis[J]. Soils and Foundations,1985,25(1):43–51.
    [141] GRECO V R. Efficient Monte Carlo technique for locating critical slip surface[J]. ournal ofGeotechnical Engineering,1996,122(7):517–525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700