基于泡沫金属材料的新型填充式防护结构撞击特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天事业的迅速发展,给人类带来了巨大的经济效益。同时,也产生了大量的空间碎片。这些空间碎片严重威胁着在轨航天器的安全运行。毫米级的空间碎片由于体积太小并且数量太多,只能采取被动的防护手段。研究轻质、高效且具有优良防护性能的航天器防护结构越来越受到人们的重视。
     通过超高速撞击试验研究比较了泡沫铝填充结构和夹层结构的防护性能,同时研究比较了纯铝基泡沫与铝硅合金基泡沫结构的防护性能,实验结果表明在速度范围2.6-6.3km/s内填充结构的防护效果优于夹层结构,在速度范围3.0-5.0km/s内,整体上面密度相当的铝硅合金基泡沫结构的防护能力要稍强于纯铝基泡沫结构。通过撞击试验和数值仿真研究了影响泡沫铝填充结构防护性能的因素——防护结构布局、泡沫铝孔隙率、平均孔径。选择3种孔隙率的泡沫铝——50%、60%、70%,通过改变泡沫金属的厚度使其具有相同面密度,建立了3种泡沫铝填充结构和2种填充实心铝板结构,使这些结构的防护结构面密度都约为0.55 g cm 2。超高速撞击试验的速度约为2.0km/s和4.0km/s。实验结果表明泡沫铝填充结构的防护效果优于填充实心铝板结构,并得到了防护效果好的结构;实验结果表明在速度为2.0km/s时3种孔隙率的泡沫铝填充式结构的防护效果相当,速度为4.0km/s孔隙率为70%的泡沫铝填充式结构的防护效果稍好。泡沫铝的平均孔径选择了0.5mm、1.0mm、2.5mm三种,仿真了低速(2.0km/s)、高速(6.0km/s)的工况,泡沫铝平均孔径为0.5mm的填充结构的后板损伤最小,防护效果最好。
     对铝硅合金基、AL 7075-T651基、钛基3种不同基体材料的泡沫金属进行了数值仿真研究,在低速(2.0km/s)时,AL 7075-T651基泡沫填充式结构优于钛基泡沫填充式结构的防护效果,且二者均优于铝硅合金基泡沫填充式结构;在4.0km/s时,钛基泡沫填充式结构防护效果稍好;在高速(6.0-8.0km/s)时铝硅合金基泡沫填充式结构的防护效果好于另外两种。对镍基泡沫填充式结构与铝硅合金基泡沫填充式结构进行超高速撞击试验研究,结果表明在速度2.7km/s左右时填充铝硅合金基泡沫防护结构的防护效果优于填充镍基泡沫防护结构。
The rapid development of space industry, it brought huge economic benefits to human beings. At the same time, there are also a large amount of space debris. These space debris are a serious threat to the safe operation of spacecraft in orbit. Spacecraft that can only be protected by means of passive protection because mm-class space debris are too small and the number are too much. Study of light, efficient and has an excellent protective properties of the structure of spacecraft protection is receiving increasing attention.
     the Al-foam stuffed structure and the sandwich structure as well as Al-foam and Al-Si alloy foam was studied by impact test, The experimental result indicated that in speed range 2.6-6.3km/s the Al-foam stuffed structure is better than the sandwich structure. in speed range 3.0-5.0km/s, in the whole areal density, the Al-Si alloy foam structure is better than the Al-foam structure. Studied the influence factor of Al-foam stuffed shield by impact test and value simulation——shield configuration, porosity and average aperture of metal foam. Chooses Al-foam with three kind of porosities—50%, 60%, 70% , enables it to have the same areal recording density through change thickness of Al-foam, has established 3 kind of Al-foam stuffed structure and 2 kind of solid Al-plate stuffed structure, these structures’areal density approximately is 0.55 g cm 2. The hypervelocity impact experiment's speed approximately is 2.0km/s and 4.0km/s. The experimental result indicated that the Al-foam stuffed structure is better than solid Al-plate stuffed structure, the structure has good protection effect is obtained. The experimaental result indicated when the speed is 2.0km/s metal foam with 3 kind of porosities structure's protection effect quite good, the speed is the 4.0km/s metal foam with porosity 70% stuffed structure protection effect is fairly good. The average aperture of Al-foam has chosen 0.5mm, 1.0mm and 2.5mm, when the average aperture of metal foam is the 0.5mm, backwall’s damage of stuffed structure is smallest, the protection effect is best at 2.0km/s and 6.0km/s by value simulation.
     The stuffed shield of 3 kind of different matrix material's metal-foam—the the Al-Si alloy, the AL 7075-T651, the Titanium—were studied through the value simulation in this article, when at low speed (2.0km/s), the AL 7075-T651 foam stuffed structure is better than the Ti-foam which is better than the Al-Si alloy foam; When speed is at 4.0km/s protection performance of the Ti-foam stuffed structure is fairly good; When at high speed (6.0-8.0km/s) protection performance of Al-Si alloy foam stuffed structure is best among the three kinds. The Nickel foam stuffed structure and the Al-Si alloy foam stuffed structure by experiments, the results indicated that, when speed at 2.7km/s, the Al-Si alloy foam stuffed structure’s protection effect is better.
引文
1 IADC.Protection Manual.v3.2.12.09.2003
    2 F.L.Whipple. Meteorites and Space Travel.Astron.Journal. 1947,52:132-137
    3 W.P.Schonberg. Spacecraft Wall Design for Increased Protection against Penetrations by Space Debris Impact. AIAA 90-3663.1990
    4 T.D.Maclay. Topographically Modified Bumper Concepts for Spacecraft Shielding. Int.J.Impact Engineering.1993,14:479-489
    5 B.G.Cour-Palais,J.L.Crew. A Multi-Shock Concept for Spacecraft Shielding. Int.J.Impact Engineering. 1990,10:135-146
    6 G.D.Olsen,A.M.Nolen. Advanced Shield Design for Space Station Freedom. Int.J.Impact Engineering. 1993,14:541-550
    7 K.Shiraki,F.Terada. Space Station Jem Design Implementation and Testing for Orbital Debris Protection . Int.J.Impact Engineering. 1997,20:723-732
    8 E.L.Christiansen,J.H.Kerr. Mesh Double-Bumper Shield:A Low-Weight Alternative for Spacecraft Meteoroid and Orbital Debris Protection. Int.J.Impact Engineering.1993,14:169-180
    9 E.L.Christiansen. Enhanced Meteoroid and Orbital Debris Shielding. Int.J. Impact Engineering.1995,17:217-228
    10 E.L.Christiansen,J.L.Crew, J.H.Kerr. Hypervelocity Impact Testing above
    10km/s of Advanced Orbital Debris Shields. Shock Compression of Condensed Matter. 1995:1183-1186
    11 Lorna J.Gibson,Michael F.Ashby.多孔固体:结构与性能.刘培生.第2版.清华大学出版社.2003年:2-3
    12王祝堂.泡沫铝材:生产工艺、组织性能及应用市场(1).轻合金加工技术.1999,27(10):5-8
    13 J.Baumeister,J.Banhart,M.Weber.Aluminium Foams for Transport Industry. Mater.Des.1997,18(4-6):217-220
    14胡时胜,刘剑飞,王正道,宋博.低密度多孔介质的缓冲和减震.振动与冲击.1999,18(2):39-44
    15 J.L.Grenested,F.Bassinet.Influence of Cell Wall Thickness Variations on Elastic Stiffness of Closed-Cell Cellular Solids.Int.J.of Mech.Sci.2000,42:1327-1338
    16 A.Bastawros,A.G.Evans.Deformation Heterogeneity in Cellular Al Alloys. Adv.Eng.Mater.2000,2:210-214
    17 H.Bart-Smith,A.F.Bastawros,D.R.Mumm,A.G.Evans,D.J.Sypeck,H.N.G.Wadley.Compressive Deformation and Yielding Mechanisms in Cellular Al Alloys Determined Using X-Ray Tomography and Surface Strain Mapping.Acta Mater.1998,46(10):3583-3592
    18 L.J.Gibson,M.F.Ashby.Celluar Solids:Structure and Properties.2nd ed.Pergamon Press,Oxford,1997.
    19 A.F.Bastawros,H.Bart-Smith,A.G.Evans.Experimental Analysis of Deformation Mechanisms in a Closed-Cell Aluminum Alloy Foam. J. Mech. Phys. Solids. 2000,48(2):301-322
    20 B.A.Gama,T.A.Bogetti,B.K.Fink,C.J.Yu,T.D.Claar,H.H.Eifert,J.W.Gillespie. Aluminum Foam Integral Armor:A New Dimension in Armor Design. Compos. Struct. 2001,52(3-4):381-395
    21 S.L.Loppatnikov,B.A.Gama,M.J.Haque,C.Krauthauser,M.Guden,J.W.Gillespie. Dynamics of Metal Foam Deformation During Taylor Cylinder-Hopkinson Bar Impact Experiment.Compos.Struct.2003,61:61-71
    22 S. L. Lopatnikov, B. A. Gama, M. J. Haque, C. Krauthauser, J. W. Gillespie. High-Velocity Plate Impact of Metal Foams. Int. J. Impact Engng. 2004, 30:421-445
    23 S. L. Lopatnikov, B. A. Gama, J. W. Gillespie. Modeling the Progressive Collapse Behavior of Metal Foams. Int. J. Impact Engng. 2007, 34:587-595
    24 D. Mulalo, W. Tomasz. Experimental Studies on the Yield Behavior of Ductile and Brittle Aluminum Foams. Int. J. Plast. 2003, 19(8):1195-1214
    25 H. J. Yu, Z. Q. Guo, B. Li, G. C. Yao, H. J. Luo, Y. H. Liu. Research into the Effect of Cell Diameter of Aluminum Foam on Its Compressive and Energy Absorption Properties. 2007, 454-455:542-546
    26 M. Wang, X. F. Hu, X. P. Wu. Internal Microstructure Evolution of Aluminum Foams under Compression. Mater. Res. Bull. 2006, 41:1949-1958
    27 B. Jiang, Z. J. Wang, N. Q. Zhao. Effect of Pore Size and Relative Density on the Mechanical Properties of Open Cell Aluminum Foams. Scr. Mater. 2007, 56:169-172
    28 K. A. Issen, T. P. Casey, D. M. Dixon, M. C. Richards, J. P. Ingraham. Characterization and Modeling of Localized Compaction in Aluminum Foam. Scr. Mater. 2005, 53:911-915
    29 A. Ableidinger. Micro-Macromechanical Investigations of the Strength and Structure Behavior of Metallic Foams. Vienna University of Technology PhD. 2000
    30 I. S. Grogoriev. Physical Values, Handbook. Energoatom Publishing, Moscow, 1991
    31 Y. F. Zhang, Y. Z. Tang, G. Zhou, J. N. Wei, F. S. Han. Dynamic Compression Properties of Porous Aluminum. Mater. Lett. 2002, 56:728-731
    32曹晓卿.泡沫铝材料动力学特性的实验研究与理论分析.太原理工大学博士研究生学位论文. 2005
    33田杰.泡沫铝的冲击波衰减和抗暴震特性研究.中国科学技术大学博士研究生学位论文. 2006
    34 T. Mukai, T. Miyoshi, S. Nakano, H. Somekawa, K. Higashi. Compressive Response of a Closed-Cell Aluminum Foam at High Strain Rate. Scr. Mater. 2006, 54:533-537
    35 V. Crupi, R. Montanini. Aluminium Foam Sandwiches Collapse Modes under Static and Dynamic Three-Point Bending. Int. J. Impact Engng. 2007, 34:509-521
    36 H. Zhao, I. Elnasri, Y. Girard. Perforation of Aluminium Foam Core Sandwich Panels under Impact Loading—an Experimental Study. Int. J. Impact Engng. 2007, 34:1246-1257
    37 S. Lee, F. Barthelat, N. Moldovan, H. D. Espinosa, H. N. G. Wadley. Deformation Rate Effects on Failure Modes of Open-Cell Al Foams and Textile Cellular Materials. Int. J. Solids Struct. 2006, 43:53-73
    38 R. Destefanis, F. Sch?fer, M.Lambert, M. Faraud, E. Schneider. Enhanced Space Debris Shields for Manned Spacecraft. Int. J. Impact Engineering. 2003, 29:215-226
    39 R. Destefanis, F. Sch?fer, M.Lambert, M. Faraud. Selecting Enhanced Space Debris Shields for Manned Spacecraft. Int. J. Impact Engineering. 2006, 33:219-230
    40 K. Thoma, F. Sch?fer, S. Hiermaier, E. Schneider, An approach to achieve progress in spacecraft shielding. Advances in Space Research 34 (2004) 1063–1075
    41 P. V. Lavrukhov, A. V. Plastinin, V. V. Silvestrov. Double-Layer High-Porous Copper/Duralumin Bumper. Int. J. Impact Engineering. 2003, 29:407-416
    42马志涛.光滑质点法与泡沫铝空间碎片防护结构研究.哈尔滨工业大学博士学位论文.2008:82-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700