大鼠颅内外动脉血管平滑肌细胞的体外培养与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的:动脉粥样硬化(atherosclerosis)是缺血性脑卒中的重要病因,但是近年的研究显示颅内、外动脉粥样硬化(intra- and extracranial atherosclerosis)可能具有不同的危险因素和发病机制。血管平滑肌细胞(vascular smooth muscle cells,VSMCs)是血管中膜的主要细胞成分,当血管损伤后,VSMCs可发生表型转化(phenotypic modulation),即从静息态的收缩表型(contractile phenotype)转变为增生态的合成表型(synthetic phenotype),重新获得向内膜迁移并增殖的能力。VSMCs的表型转化引发的细胞增殖、迁移、黏附等细胞功能的变化是动脉粥样硬化、血管成形术后再狭窄等血管增生性疾病共同的病理学特征。因此,VSMCs的体外培养技术为研究其生物学行为以及相关疾病的发病机制及防治策略提供了一条重要途径。目前颅外动脉VSMCs的培养已经得到广泛应用,但有关颅内脑动脉VSMCs培养的报道少见,且多取材于牛、猪、犬、兔等动物较粗大的脑血管。以往报道的酶解离法培养VSMCs因操作繁琐,而限制了其应用。本研究旨在对原有的酶消化法进行改良,建立大鼠颅内、外脑动脉VSMCs的体外培养方法,为颅内、外动脉粥样硬化等脑血管疾病机制及治疗的研究提供一个良好的体外实验模型。
     方法:1、VSMCs的原代培养:(1)大鼠脑基底动脉VSMCs:取2只健康雄性Sprague-Dawley(SD)大鼠(体重250~300 g) ,断颈处死后以75%酒精全身湿润消毒。无菌条件下分离大鼠脑基底动脉,去除血管外膜后剪成约0.2 mm的小段, 37℃分别用0.1%Ⅰ型胶原酶消化5 h,0.125%胰蛋白酶消化10 min。将消化后得到的细胞用含20%胎牛血清的DMEM/F12培养基进行培养。(2)大鼠颈动脉VSMCs:1只SD大鼠取仰卧位固定,于颈部正中切一2 cm长切口。无菌条件下暴露左侧颈总动脉,切取长约1.5 cm的血管段。将其去除血管外膜及内膜后剪成约0.2 mm的小段,然后按照前述方法行酶消化和培养。2、VSMCs的传代培养:当细胞生长达80% ~90%汇合时,采用0.25%胰蛋白酶消化和传代培养。3、细胞纯化:采用人工刮除法及差速贴壁法纯化细胞。4、VSMCs鉴定:平滑肌细胞通过观察其形态学及生长方式来鉴定。α-平滑肌肌动蛋白是分化型VSMCs的特异性标志物,因此同时采用α-平滑肌肌动蛋白免疫细胞化学方法鉴定。一抗为小鼠抗大鼠α-平滑肌肌动蛋白抗体(1:300),二抗为生物素化山羊抗小鼠IgG,然后采用SABC试剂盒说明行免疫组化染色。5、细胞存活率测定:取第5代细胞,采用血球计数器和台盼蓝排斥实验来计算细胞存活率。
     结果:原代培养3 d后,来自大鼠基底动脉或颈总动脉的细胞开始贴壁,2周后细胞呈梭形,汇合后具有平滑肌细胞典型的“峰-谷”样生长特点。传代培养的细胞保持上述特征,第5代细胞经α-平滑肌肌动蛋白表达鉴定,基底动脉VSMCs和颈总动脉VSMCs的纯度分别达97%和98%以上。台盼蓝排斥实验检测大鼠基底动脉VSMCs或颈总动脉VSMCs存活率达95%或96%以上。
     结论:这种方法操作简单、结果可靠、成本低廉,可为颅内、外动脉粥样硬化、再狭窄等脑血管疾病机制和治疗的研究提供适宜的体外培养细胞模型。
Background and Objective: Atherosclerosis is one of the major causes of the ischemic stroke, but the risk factors and the mechanisms seem to be different between intra- and extracranial atherosclerosis. Vascular smooth muscle cells (VSMCs) are the major cellular component of the tunica media. After vascular injury, VSMCs characteristically exhibit phenotypic modulation, change from the quiescent "contractile" phenotype to the active "synthetic" phenotype, that can migrate and proliferate from media to the intima, thereby contribute to the progression of many vascular diseases such as atherosclerosis and restenosis. Therefore, primary culture of VSMCs in vitro can provide an important way to study the biological behavior of VSMCs and the pathogenesis and prevention strategy of the related vascular diseases. At present, the culture of extracranial arterial VSMCs has been widely used. In contrast, the culture of intracranial arterial VSMCs has rarely been reported, most of which are obtained from the bovines, pigs, dogs, rabbits with the relatively large diameter cerebral arteries. Moreover, the use of traditional enzymatic dispersion methods is limited because of their complex operations. The aim of the present study was to culture VSMCs derived from rat intracranial and extracranial arteries by using a modified enzymatic dispersion method of, providing a good in vivo model system for studying the molecular mechanisms and treatment of cerebrovascular diseases including intracranial and extracranial atherosclerosis.
     Methods:1. Primary culture of VSMCs: (1) Rat basilar artery VSMCs:Two healthy male Sprague-Dawley (SD) rats (250~300g) were sacrificed by cervical dislocation and decontaminated with 75% ethanol thoroughly. The basilar arteries were surgically isolated from the rat brain under sterile conditions. After removal of the adventitia, they were cut into approximately 0.2 mm rings and then digested with 0.1% typeⅠcollagenase for 5 hours and with 0.125% trypsin for another 10 minutes at 37℃, respectively. After digestion, cells were cultured in DMEM/F12 supplemented with 20% fetal calf serum. (2) Rat carotid artery VSMCs:A SD rat was placed in dorsal recumbency and a 2-cm longitudinal midline incision was made in the neck. The left common carotid artery was exposed and then excised (about 1.5 cm long) under sterile conditions quickly. After removal of both the adventitia and the intima, it was cut into approximately 0.2 mm rings and then digested and cultured according to the methods as mentioned above. 2. Subculture of VSMCs:When cultures reached 80-90% confluence, cells were subcultured using 0.25% trypsin for dissociation. 3. Purification of cells:The cells were purified by using a combination of manual scraping and differential attachment techniques. 4. Identification of VSMCs:VSMCs were identified by the morphological feature and growth pattern. In addition, since smooth muscleα-actin is considered as a specific and well-known differentiation marker of VSMCs, immunocytochemical staining of smooth muscleα-actin was also performed. A mouse monoclonal antibody against smooth muscleα-actin (1:300) was applied as the primary antibody to identify VSMCs in the culture. A goat anti-mouse biotinylated immunoglobulin conjugated with avidin-biotinylated horseradish peroxidase was used as the secondary antibody, followed by streptavidin biotin peroxidase complex (SABC) staining according to the manufacturer’s instructions. 5. Cell viability:At passage 5, the number and viability of cultured cells were determined using a hemocytometer and the trypan blue (0.4%) dye exclusion assay.
     Results:After 3 days of incubation, primary cultures of cells isolated from the basilar artery or from the common carotid artery began to attach to the wall of the incubation dishes. After 2 weeks, cells were exhibited a spindle-shaped morphology with a classic“hill-and-valley”growth pattern at confluence. These features remained unchanged through five passages. The purity of fifth passaged VSMCs from the basilar artery or from the common carotid artery was greater than 97% to 98% as confirmed by their expression of smooth muscleα-actin. The viability of fifth passaged VSMCs from the basilar artery or the common carotid artery, measured by trypan blue dye exclusion, was more than 95% to 96%.
     Conclusion:The method described here is a relatively simple, reliable and inexpensive for establishing an in vitro cell culture model, which is suitable for studying the mechanism and treatment of cerebrovascular diseases such as intra- and extracranial atherosclerosis, and restenosis.
引文
1. Carrillo-Sepúlveda MA, Barreto-Chaves ML. Phenotypic modulation of cultured vascular smooth muscle cells: a functional analysis focusing on MLC and ERK1/2 phosphorylation. Mol Cell Biochem, 2010; 341(1-2):279-289.
    2. Albinsson S, Hellstrand P. Integration of signal pathways for stretch-dependent growth and differentiation in vascular smooth muscle. Am J Physiol Cell Physiol, 2007; 293(2): C772-C782.
    3. Hayashi K, Takahashi M, Nishida W, Yoshida K, Ohkawa Y, Kitabatake A, Aoki J, Arai H, Sobue K. Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ Res, 2001; 89(3):251-258.
    4. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 2004; 84(3):767-801.
    5. Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones, 2007; 39(2):86-93.
    6.李琦,温进坤,郑斌.血管平滑肌细胞表型调节机制的研究进展.生理科学研究进展, 2003; 34(1): 27-31.
    7.王生兰,苏娟,徐一洲,谢静,王树人.大鼠血管平滑肌细胞体外培养的表型转换及其鉴定.中国动脉硬化杂志, 2008; 16(4): 268-272.
    8. Stegemann JP, Hong H, Nerem RM. Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. J Appl Physiol, 2005; 98(?): 2321-2327.
    9. Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol, 2008; 28(5): 812-819.
    10. Orr AW, Hastings NE, Blackman BR, Wamhoff BR, Wamhoff BR. Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res, 2010; 47(2):168-180.
    11. Weiss S, Frischknecht K, Greutert H, Payeli S, Steffel J, Lüscher TF, Carrel TP, Tanner FC. Different migration of vascular smooth muscle cells from human coronary artery bypass vessels. Role of Rho/ROCK pathway. J Vasc Res, 2007; 44(2):149-156.
    12.叶丽虹,赵铁军,张晓东,李胜. d-尼古丁对血管平滑肌细胞迁移的影响.细胞生物学杂志, 2005; 27(4):459-463.
    13. Li S, Tanaka H, Wang HH, Yoshiyama S, Kumagai H, Nakamura A, Brown DL, Thatcher SE, Wright GL, Kohama K. Intracellular signal transduction for migration and actin remodeling in vascular smooth muscle cells after sphingosylphosphorylcholine stimulation. Am J Physiol Heart Circ Physiol, 2006; 291(3): H1262-H1272.
    14.李胜,高颖,雷阳,齐中华,王莹,崔颖.肌球蛋白轻链激酶和Rho激酶在兔脑血管平滑肌细胞迁移中的作用.中国卒中杂志, 2008; 3(8): 566-571.
    15. Pauly RR, Bilato C, Sollott SJ, et al. Role of calcium/calmodulin-dependent protein kinase II in the regulation of vascular smooth muscle cell migration. Circulation, 1995; 91(4): 1107-1115.
    16. Churchman AT, Siow RC. Isolation, culture and characterisation of vascular smooth muscle cells. Methods Mol Biol, 2009; 467:127-138.
    17. Campbell JH,Campbell GR. Culture techniques and their applications to studies of vascular smooth muscle. Clin Sci (Lond), 1993; 85(5):50l-513.
    18. Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol, 1971; 50 (1): 172-186.
    19.方正旭,王伶,刘东.关于动脉平滑肌细胞培养的几个问题.江西医学院学报, 2002; 42(5): 157-158.
    20.吕平,申海涛,张浩,王永利.消化法培养大鼠脑血管平滑肌细胞.中国药理学通报, 2007; 23(2):272-274.
    21. Oishi K, Takatoh Y, Bao J, Uchida MK. Contractile responses and myosin phosphorylation in reconstituted fibers of smooth muscle cells from the rat cerebral artery. Jpn J Pharmacol, 2002; 90(1):36-50.
    22. Simard JM, Li X, Tewari K. Increase in functional Ca2+ channels in cerebral smooth muscle with renal hypertension. Circ Res, 1998; 82(12):1330-1337.
    23.高晶,郭玉璞,赵庆杰,任海涛,赵燕环.颅内动脉粥样硬化的分布及炎性因素探讨.中华神经科杂志, 2006; 39(7):459-462.
    24. Liu ZZ, Lv H, Gao F, Liu G, Zheng HG, Zhou YL, Wang YJ, Kang XX. Polymorphism in the human C-reactive protein (CRP) gene, serum concentrations of CRP, and the difference between intracranial and extracranial atherosclerosis. Clin Chim Acta, 2008; 389 (1-2):40-44.
    25. Park JH, Kwon HM, Roh JK. Metabolic syndrome is more associated with intracranial atherosclerosis than extracranial atherosclerosis. Eur J Neurol, 2007; 14(4):379-386.
    26. Bang OY. Intracranial atherosclerotic stroke: specific focus on the metabolic syndrome and inflammation. Curr Atheroscler Rep, 2006; 8 (4):330-336.
    27. Ebersole BJ, Diglio CA, Kaufman DW, Berg KA. 5-Hydroxytryptamine1-like receptors linked to increases in intracellular calcium concentration and inhibition of cyclic AMP accumulation in cultured vascular smooth muscle cells derived from bovine basilar artery. J Pharmacol Exp Ther, 1993; 266(2): 692-699.
    28. Tao H, Zhang LM, Castresana MR, Newman WH, Shillcutt SD. Response of cultured cerebral artery smooth muscle cells to the nitric oxide vasodilators, nitroglycerin and sodium nitroprusside.J Neurosurg Anesthesiol, 1997; 9(1): 58-64.
    29. Nikitina E, Zhang ZD, Kawashima A, Jahromi BS, Bouryi VA, Takahashi M, Xie A, Macdonald RL. Voltage-dependent calcium channels of dog basilar artery. J Physiol, 2007; 580(Pt 2):523-541.
    30. Vollrath BA, Weir BK, Macdonald RL, Cook DA. Intracellular mechanisms involved in the responses of cerebrovascular smooth-muscle cells to hemoglobin. J Neurosurg, 1994; 80(2):261-268.
    31.牛朝诗,罗其中,徐纪文,卞留贯,邱永明,王勇.脑血管平滑肌细胞分离培养与鉴定.中国临床神经科学, 2000; 8(3):228-230.
    32.马丽,刘苏健,邓勇志,孙宗全,栗一帆.大鼠胸主动脉平滑肌细胞的培养与鉴定.中国心血管病研究杂志, 2007; 5(5):363-365.
    33.刘幸平,刘清,郑燕珊,黄晨勤.大鼠血管平滑肌细胞的培养与鉴定.汕头大学医学院学报, 2008; 21 (3):137-139.
    34. Goldschmidt-Clermont PJ, Creager MA, Losordo DW, Lam GK, Wassef M, Dzau VJ. Atherosclerosis 2005: recent discoveries and novel hypotheses. Circulation, 2005; 112(21): 3348-3353.
    35.马占龙,滕皋军.动脉粥样硬化分子成像的研究进展.中华放射学杂志, 2007; 41(4): 427-430.
    36. Adams HP Jr. Secondary prevention of atherothrombotic events after ischemic stroke. Mayo Clin Proc, 2009; 84(1):43-51.
    37. Arenillas JF. Intracranial atherosclerosis: current concepts. Stroke, 2011; 42(1 Suppl): S20-S23.
    38. Tan TY, Kuo YL, Lin WC, Chen TY. Effect of lipid-lowering therapy on the progression of intracranial arterial stenosis. J Neurol, 2009; 256(2):187-193.
    39. Waddy SP, Cotsonis G, Lynn MJ, Frankel MR, Chaturvedi S, Williams JE, Chimowitz M. Racial differences in vascular risk factors and outcomes of patients with intracranial atherosclerotic arterial stenosis. Stroke, 2009; 40(3):719 -725.
    40. Rincon F, Sacco RL, Kranwinkel G, Xu Q, Paik MC, Boden-Albala B, Elkind MS. Incidence and risk factors of intracranial atherosclerotic stroke: the Northern Manhattan Stroke Study. Cerebrovasc Dis, 2009; 28(1):65-71.
    41. Jeng JS, Tang SC, Liu HM. Epidemiology, diagnosis and management of intracranial atherosclerotic disease. Expert Rev Cardiovasc Ther, 2010; 8(10):1423-1432.
    42. Qureshi AI, Taylor RA. Research priorities for intracranial atherosclerotic diseases. J Neuroimaging, 2009; 19 (Suppl 1):39S-42S.
    43. Kumar MS, Owens GK. Combinatorial control of smooth muscle-specific gene expression.Arterioscler Thromb Vasc Biol, 2003; 23(5):737-747.
    44.丘钦英,周家国,刘玉洁,关永源.大鼠脑基底动脉平滑肌细胞培养及功能鉴定.中国药理学通报, 2007; 23(11):1531-1533.
    45. McHugh D, Beech DJ. Protein kinase C requirement of Ca2+ channel stimulation by intracellular ATP in guinea-pig basilar artery smooth muscle cells. J Physio, 1997; 500 (Pt2): 311-317.
    46. Faraci FM, Mayhan WG, Heistad DD. Responses of rat basilar artery to acetylcholine and platelet products in vivo. Stroke, 1991; 22(1):56-60.
    47. Koc K, Anik I, Bozkurt SU, Ceylan S. Effect of smoking on rat basilar artery: correlation with inducible nitric oxide synthase and endothelin converting enzyme-1. Turk Neurosurg, 2009; 19(4):393-399.
    48. Katori E, Ohta T, Nakazato Y, Ito S. Vasopressin-induced contraction in the rat basilar artery in vitro. Eur J Pharmacol. 2001; 416(1-2):113-121.
    49. Chen G, Liu N, Zhou A, Tang C, Ma D, Tang J. The role of hypertension-related gene in aortic vascular smooth muscle cells from mice and rats. Chin Med J (Engl), 2001; 114(8):833-836.
    50.刘斌,焦磊,徐红涛,张艳林,王旻晨,杨亚安,陈尔齐,吴开云.去甲肾上腺素促进血管平滑肌增殖和表型转化.解剖学杂志, 2008; 31(4): 493-495.
    51. Campbell JH, Kocher O, Skalli O, Gabbiani G, Campbell GR. Cytodifferentiation and expression of alpha-smooth muscle actin mRNA and protein during primary culture of aortic smooth muscle cells. Correlation with cell density and proliferative state. Arteriosclerosis, 1989; 9(5):633-643.
    52. Regan CP, Adam PJ, Madsen CS, Owens GK. Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. J Clin Invest, 2000; 106(9):1139-1147.
    1. Carrillo-Sepúlveda MA, Barreto-Chaves ML. Phenotypic modulation of cultured vascular smooth muscle cells: a functional analysis focusing on MLC and ERK1/2 phosphorylation. Mol Cell Biochem, 2010; 341(1-2):279-289.
    2. Albinsson S, Hellstrand P. Integration of signal pathways for stretch-dependent growth and differentiation in vascular smooth muscle. Am J Physiol Cell Physiol, 2007; 293(2): C772-C782.
    3. Hayashi K, Takahashi M, Nishida W, Yoshida K, Ohkawa Y, Kitabatake A, Aoki J, Arai H, Sobue K. Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ Res, 2001; 89(3):251-258.
    4. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 2004; 84(3):767-801.
    5. Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones, 2007; 39(2):86-93.
    6.叶丽虹,赵铁军,张晓东,李胜. d-尼古丁对血管平滑肌细胞迁移的影响.细胞生物学杂志, 2005; 27(4):459-463.
    7. Li S, Tanaka H, Wang HH, Yoshiyama S, Kumagai H, Nakamura A, Brown DL, Thatcher SE, Wright GL, Kohama K. Intracellular signal transduction for migration and actin remodeling in vascular smooth muscle cells after sphingosylphosphorylcholine stimulation. Am J Physiol Heart Circ Physiol, 2006; 291(3): H1262-H1272.
    8.李胜,高颖,雷阳,齐中华,王莹,崔颖.肌球蛋白轻链激酶和Rho激酶在兔脑血管平滑肌细胞迁移中的作用.中国卒中杂志, 2008; 3(8): 566-571.
    9.高晶,郭玉璞,赵庆杰,任海涛,赵燕环.颅内动脉粥样硬化的分布及炎性因素探讨.中华神经科杂志, 2006; 39(7):459-462.
    10. Liu ZZ, Lv H, Gao F, Liu G, Zheng HG, Zhou YL, Wang YJ, Kang XX. Polymorphism in the human C-reactive protein (CRP) gene, serum concentrations of CRP, and the difference between intracranial and extracranial atherosclerosis. Clin Chim Acta, 2008; 389 (1-2):40-44.
    11. Park JH, Kwon HM, Roh JK. Metabolic syndrome is more associated with intracranial atherosclerosis than extracranial atherosclerosis. Eur J Neurol, 2007; 14(4):379-386.
    12. Bang OY. Intracranial atherosclerotic stroke: specific focus on the metabolic syndrome and inflammation. Curr Atheroscler Rep, 2006; 8 (4):330-336.
    13. Churchman AT, Siow RC. Isolation, culture and characterisation of vascular smooth muscle cells. Methods Mol Biol, 2009; 467:127-138.
    14. Subramanian SV, Kelm RJ, Polikandriotis JA, Orosz CG, Strauch AR. Reprogramming ofvascular smooth muscle alpha-actin gene expression as an early indicator of dysfunctional remodeling following heart transplant. Cardiovase Res, 2002; 54(3):539-548.
    15. Takahashi M, Hayashi K, Yoshida K, Ohkawa Y, Komurasaki T, Kitabatake A, Ogawa A,Nishida W, Yano M, Monden M, Sobue K. Epiregulin as a major autocrine/paracrine factor released from ERK- and p38MAPK-activated vascular smooth muscle cells. Circulation, 2003; 108 (20):2524-2529.
    16.李琦,温进坤,郑斌.血管平滑肌细胞表型调节机制的研究进展.生理科学研究进展, 2003; 34(1): 27-31.
    17.王生兰,苏娟,徐一洲,谢静,王树人.大鼠血管平滑肌细胞体外培养的表型转换及其鉴定.中国动脉硬化杂志, 2008; 16(4): 268-272.
    18. Stegemann JP, Hong H, Nerem RM. Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. J Appl Physiol, 2005; 98(6): 2321-2327.
    19. Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol, 2008; 28(5): 812-819.
    20. Orr AW, Hastings NE, Blackman BR, Wamhoff BR, Wamhoff BR.Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res, 2010; 47(2):168-180.
    21. Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol, 1971; 50 (1): 172-186.
    22. Campbell JH, Campbell GR. Culture techniques and their applications to studies of vascular smooth muscle. Clin Sci, 1993; 85(5):501-513.
    23. Ebersole BJ, Diglio CA, Kaufman DW, Berg KA. 5-Hydroxytryptamine1-like receptors linked to increases in intracellular calcium concentration and inhibition of cyclic AMP accumulation in cultured vascular smooth muscle cells derived from bovine basilar artery. J Pharmacol Exp Ther, 1993; 266(2): 692-699.
    24. Tao H, Zhang LM, Castresana MR, Newman WH, Shillcutt SD. Response of cultured cerebral artery smooth muscle cells to the nitric oxide vasodilators, nitroglycerin and sodium nitroprusside. J Neurosurg Anesthesiol, 1997; 9(1): 58-64.
    25. Nikitina E, Zhang ZD, Kawashima A, Jahromi BS, Bouryi VA, Takahashi M, Xie A, Macdonald RL. Voltage-dependent calcium channels of dog basilar artery. J Physiol, 2007; 580(Pt 2):523-541.
    26. Vollrath BA, Weir BK, Macdonald RL, Cook DA. Intracellular mechanisms involved in the responses of cerebrovascular smooth-muscle cells to hemoglobin. J Neurosurg, 1994; 80(2):261-268.
    27.牛朝诗,罗其中,徐纪文,卞留贯,邱永明,王勇.脑血管平滑肌细胞分离培养与鉴定.中国临床神经科学, 2000; 8(3):228-230.
    28.方正旭,王伶,刘东.关于动脉平滑肌细胞培养的几个问题.江西医学院学报, 2002; 42(5): 157-158.
    29. Faraci FM, Mayhan WG, Heistad DD. Responses of rat basilar artery to acetylcholine and platelet products in vivo. Stroke, 1991; 22(1):56-60.
    30. Koc K, Anik I, Bozkurt SU, Ceylan S. Effect of smoking on rat basilar artery: correlation with inducible nitric oxide synthase and endothelin converting enzyme-1. Turk Neurosurg, 2009; 19(4):393-399.
    31. Katori E, Ohta T, Nakazato Y, Ito S. Vasopressin-induced contraction in the rat basilar artery in vitro. Eur J Pharmacol. 2001; 416(1-2):113-121.
    32.丘钦英,周家国,刘玉洁,关永源.大鼠脑基底动脉平滑肌细胞培养及功能鉴定.中国药理学通报, 2007; 23(11):1531-1533.
    33.吕平,申海涛,张浩,王永利.消化法培养大鼠脑血管平滑肌细胞.中国药理学通报, 2007; 23(2):272-274.
    34. Oishi K, Takatoh Y, Bao J, Uchida MK. Contractile responses and myosin phosphorylation in reconstituted fibers of smooth muscle cells from the rat cerebral artery. Jpn J Pharmacol, 2002; 90(1):36-50.
    35. Simard JM, Li X, Tewari K. Increase in functional Ca2+ channels in cerebral smooth muscle with renal hypertension. Circ Res, 1998; 82(12):1330-1337.
    36.郑辉,薛松,连锋,黄日太,胡振雷.兔血管平滑肌细胞体外培养及生长特性研究.上海交通大学学报医学版, 2010; 30(9)9:1095-1100.
    37. Ding Z, Fan Y, Deng X. Effect of LDL concentration polarization on the uptake of LDL by human endothelial cells and smooth muscle cells co-cultured. Acta Biochim Biophys Sin (Shanghai), 2009; 41(2):146-153.
    38. Niwa K, Kado T, Sakai J, Karino T. The effects of a shear flow on the uptake of LDL and acetylated LDL by an EC monoculture and an EC-SMC coculture. Ann Biomed Eng, 2004; 32(4):537-543.
    39. Vouyouka AG, Salib SS, Cala S, Marsh JD, Basson MD. Chronic high pressure potentiates the antiproliferative effect and abolishes contractile phenotypic changes caused by endothelial cells in cocultured smooth muscle cells. J Surg Res, 2003; 110(2):344-351.
    40. Diluozzo G, Bharqava J,Powell RJ. Vascular smooth muscle cell effect on endothelial cell endothelin-1 production. J Vasc Surg, 2000; 31(4):781-789.
    41. Crouchley CM, Barron V, Punchard M, O'Cearbhaill E, Smith T.Development of a co-culture system for tissue engineered vascular grafts. Biomed Mater Eng, 2008; 18(4-5):291-294.
    42. Wang T, Xu Z, Jiang W, Ma A.Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. Int J Cardiol, 2006; 109(1):74-81.
    43.王海燕,贾国良,张荣庆,王海昌,郭文怡.与人脐静脉内皮细胞共培养的人脐动脉平滑肌细胞生物学特性研究.中国临床康, 2004; 8(12):2258-2259.
    44.于学军,何作云,王晓燕,高凌云,牟娇,杨生平,董琼兰.血管内皮-平滑肌细胞双层联合培养模型的改进.第三军医大学学报, 2004; 26(6):554-556.
    45. Fillinger MF, O'Connor SE, Wagner RJ, Cronenwett JL. The effect of endothelial cell coculture on smooth muscle cell proliferation. J Vasc Surg, 1993; 17(6):1058-1067.
    46. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science, 1986; 231(4736):397-400.
    47. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R. Functional arteries grown in vitro. Science, 1999; 284(5431):489-493.
    48. Chen G, Liu N, Zhou A, Tang C, Ma D, Tang J. The role of hypertension-related gene in aortic vascular smooth muscle cells from mice and rats. Chin Med J (Engl), 2001; 114(8):833-836.
    49.刘斌,焦磊,徐红涛,张艳林,王旻晨,杨亚安,陈尔齐,吴开云.去甲肾上腺素促进血管平滑肌增殖和表型转化.解剖学杂志, 2008; 31(4): 493-495.
    50. Campbell JH, Kocher O, Skalli O, Gabbiani G, Campbell GR. Cytodifferentiation and expression of alpha-smooth muscle actin mRNA and protein during primary culture of aortic smooth muscle cells. Correlation with cell density and proliferative state. Arteriosclerosis, 1989; 9(5):633-643.
    51. Goldschmidt-Clermont PJ, Creager MA, Losordo DW, Lam GK, Wassef M, Dzau VJ. Atherosclerosis 2005: recent discoveries and novel hypotheses. Circulation, 2005; 112(21): 3348-3353.
    52.马占龙,滕皋军.动脉粥样硬化分子成像的研究进展.中华放射学杂志, 2007; 41(4): 427-430.
    53. Pauly RR, Bilato C, Sollott SJ, Monticone R, Kelly PT, Lakatta EG, Crow MT. Role of calcium/calmodulin-dependent protein kinase II in the regulation of vascular smooth muscle cell migration. Circulation, 1995; 91(4): 1107-1115.
    54. Nuqent HM, Edelman ER.Tissue engineering therapy for cardiovascular disease. Cire Res, 2003; 92(10):1068-1078.
    55. Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res, 1998; 41(3):422-430.
    56. Cirillo P, Golino P, Ragni M, Battaglia C, Pacifico F, Formisano S, Buono C,Condorelli M, Chiariello M. Activated platelets and leucocytes cooperatively stimulate smooth muscle cell proliferation and proto-oncogene expression via release of soluble growth factors. Cardiovasc Res, 1999; 43(1):210-218.
    57. Williams C, Wick TM. Endothelial cell-smooth muscle cell co-culture in a perfusion bioreactor system. Ann Biomed Eng, 2005; 33(7):920-928.
    58. L'Heureux N, Paquet S, LabbéR, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J, 1998; 12(1):47-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700