碘化N-正丁基氟哌啶醇对缺氧血管平滑肌细胞增殖的影响及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碘化N-正丁基氟哌啶醇(F2)是本实验室设计合成的一种新型的氟哌啶醇季铵盐衍生物,实验表明它对心肌缺血再灌注损伤以及心肌细胞、内皮细胞缺氧复氧损伤具有保护作用,这种作用与抑制早期生长反应基因-1(egr-1)mRNA及蛋白水平的过度表达有关。缺氧可以导致血管平滑肌细胞的过度增殖,进而导致一系列血管增生性疾病。本实验以体外培养的血管平滑肌细胞(VSMCs)为研究对象,观察F2对缺氧诱导的平滑肌细胞过度增殖的作用及其与Egr-1的关系。
     目的
     研究碘化N-正丁基氟哌啶醇(F2 )对缺氧导致的血管平滑肌细胞增殖的影响,并探讨其作用机制是否与抑制egr-1高表达有关。
     方法
     1 Sprague-Dawley大鼠胸主动脉平滑肌细胞体外培养:采用组织块贴壁法。
     2 Sprague-Dawley大鼠胸主动脉平滑肌细胞鉴定:采用免疫组化法加以鉴定。
     3 Egr-1反义寡核苷酸在大鼠VSMCs中的转染。
     4实验分组:取3~5代VSMCs随机分为8组:对照组;缺氧组;F2组(1×10 - 6 mol/L);聚乙二醇组(1×10 - 6 mol/L);反义寡核苷酸组;正义寡核苷酸组;错义寡核苷酸组;脂质体组。除对照组外,其余各组均作缺氧模型。
     5取第3~5代培养的大鼠胸主动脉平滑肌细胞制作缺氧模型,应用噻唑蓝比色法(MTT)检测细胞增殖情况,流式细胞仪(FCM)观察分析VSMCs细胞周期分布特征的改变,蛋白印迹杂交方法(Western-blot方法)检测Egr-1及血小板衍生生长因子A(PDGF-A )蛋白表达情况。
     结果
     1原代培养4~7天左右可见组织块周围有细胞长出,2~3周达亚融合,传代后细胞“峰、谷”状生长明显。
     2α- SM actin免疫组化染色阳性。
     3 FITC标记的反义寡核苷酸在488nm的激发光源下呈现绿色,荧光显微镜下可见细胞核及细胞浆中有绿色荧光,发出绿色荧光的位置与同一视野下细胞所在位置相一致,说明反义寡核苷酸成功转入平滑肌细胞。
     4缺氧诱导的血管平滑肌细胞中Egr-1蛋白的表达在缺氧1 h后明显升高,2 h达高峰,此后逐渐下降,直到20 h仍然高于相应的对照组。
     5与Control组相比,缺氧组、正义组、错义组、聚乙二醇组以及脂质体组的比色吸光度A值、细胞周期S+ G2 /M期比例、Egr-1及PDGF-A蛋白表达水平均明显增高,G0/ G1期比例明显下降;与缺氧组比较, F2组及反义组比色吸光度A值、细胞周期S+ G2 /M期比例、Egr-1及PDGF-A蛋白表达水平均明显降低,G0/ G1期比例明显升高。
     结论
     F2可通过抑制Egr-1蛋白高表达来抑制缺氧导致的VSMCs的过度增殖。
N-n-butyl haloperidol iodide (F2) is a new quaternary ammonium salt derivative of Haloperidol, which was synthesized by our laboratory.Our previous studies have shown its protective effects on myocardial ischemia/reperfusion (I/R) injury and hypoxia/reoxygenation(H/R) injury of cardiocytes and endotheliocytes,which is associated with inhibiting egr-1 mRNA transcription and protein overexpression .Hypoxia can induce overproliferation of vascular smooth muscle cells(VSMCs),which further induces a series of vascular proliferous diseases. The purpose of this experiment is to investigate effects of F2 on hypoxia induced proliferation of vascular smooth muscle cells and to explore its relationship with Egr-1.
     Objective
     To investigate the effect and mechanism of F2 on hypoxia-induced proliferation of rat thoracic aortic smooth muscle cells in vitro and show the relationship between the effect of F2 and the overexpression of early growth response gene-1(egr-1) .
     Methods
     1 Culture of rat thoracic aortic smooth muscle cells in vitro: cultured by the method of adhesion to wall and observed under the microscope.
     2 Detection of rat thoracic aortic smooth muscle cells in vitro:detected by the immunohistochemistryα-SM-actin antibody.
     3 Transfection of egr-1 antisense oligodeoxynucleotides to cultured VSMCs in rat.
     4 Groups:Passage 3~5 of cultured VSMCs were randomly divided into one of eight groups:control group,hypoxia group, F2 group(1×10 - 6 mol/L), PEG group (1×10 - 6 mol/L),AS-ODN group,S-ODN group,Sc-ODN group and LIP group.
     5 Passages 3 to 5 of cultured rat thoracic aortic SMCs were used to establish hypoxia models. The viability of cultured VSMCs was detected by MTT assay. The cell cycle of cultured VSMCs was analyzed by flow cytometry(FCM). The expression levels of Egr-1 and PDGF-A proteins were examined by Western blot.
     Results
     1 A few of cells grew out of tissue-block about 4 to 7 days late and approached confluence approximately 2 to 3 weeks.A typical“hill-valley”growth pattern was displayed after cells were passaged.
     2 98% of the cultured smooth muscle cells were positive forα- SM actin.
     3 FITC labeled antisense oligodeoxynucleotides emited green fluorescence. The location of fluorescence is coincidented with the area of cells under the inverted phasecontrast microscope, which indicated that antisense oligodeoxynucleotides had transfected VSMCs successfully.
     4 Hypoxia injured VSMCs caused a time-dependent induction of Egr-1 protein, being evident at 1 h, peaking at 2 h, and declining thereafter.
     5 Compared with the control group, the absorption value,proliferation index and the levels of Egr-1 and PDGF-A of hypoxia group, PEG group,S-ODN group,Sc-ODN group and LIP group were all increased.Compared with the hypoxia group,all these above items of antisense oligodeoxynucleotide group and F2 group were all decreased.
     Conclusions
     F2 inhibts hypoxia-induced proliferation of VSMCs in vitro,which is mediated by Egr-1.
引文
[1] Zhang YM ,Shi GG,Zheng JH et al. The protective effects of N-n-butyl haloperidol iodide on myocardial ischemia-reperfusion injury in rats by inhibiting Egr-1 overexpression[J]. Cell Physiol Biochem, 2007,20(5):639-648.
    [2]郭福晓,石刚刚,张艳美等。碘化N-正丁基氟哌啶醇对心肌细胞缺氧复氧损伤保护作用机制的研究[J]。汕头大学医学院学报, 2006 , 19(4) : 207–210。
    [3]贾强用,石刚刚,吕艳秋等。碘化N-正丁基氟哌啶醇减轻大鼠心肌缺血再灌注损伤作用的机制研究[J]。汕头大学医学院学报, 2006 , 19(4) : 197–200。
    [4]周燕琼,石刚刚,高分飞等。碘化正丁基氟哌啶醇对大鼠心肌缺血再灌注损伤血流动力学的影响[J]。中国药理学通报, 2004 , 20(4) : 449–452。
    [5] Gao FF,Shi GG,Zheng JH et al. Protective effects of N-nbutylhaloperidol iodide on myocardial ischemia- reperfusion injury in rabbits[J] . Chin J Physiol , 2004 , 47(2) : 61 - 66.
    [6]唐昭,石刚刚,张艳美等。碘化N-正丁基氟哌啶醇对Egr-1转录及表达的影响[J]。中国临床药理学与治疗学, 2004 , 12(4) : 1 343 - 1 348。
    [7]石刚刚,郑锦鸿,李长潮等。氟哌啶醇季铵盐衍生物对冠状动脉作用的研究[J]。中国药学杂志, 1998, 33(9): 529-31。
    [8]庄学煊,陈少刚,黄展勤等。氟哌啶醇季铵盐衍生物对大鼠急性心肌缺血的保护作用[J].汕头大学医学院学报, 2001, 14(3):172-74。
    [9]韦日升,石刚刚,张映娜。氟哌啶醇季铵盐衍生物对血管平滑肌细胞钙离子的影响[J]。中国药理学通报, 2001, 17(1): 54-6。
    [10] Huang ZQ, Shi GG, Chen CY, et al. Protective effect of quaternary ammonium salt derivative(F2) of haloperidol on iodide on rat myocardial ischemia and reperfusion injury and L-type calcium current[J]. Acta-Pharmacol-Sin, 2003, 24(8):757-63.
    [11] Khachigian LM, Lindner V, Williams AJ, Collins T. Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science 1996;271(5254):1427–31.
    [12] Kim S, Kawamura M, Wanibuchi H, Ohta K, Hamaguchi A,Omura T, et al. Angiotensin II type 1 receptor blockade inhibits the expression of immediate-early genes and fibronectin in rat injured artery. Circulation 1995;92(1):88–95.
    [13] Khachigian LM, Williams AJ, Collins T. Interplay of Sp1 and Egr-1 in the proximal platelet-derived growth factor A-chain promoter in cultured vascular endothelial cells.J Biol Chem 1995;270(46):27679–86.
    [14] Silverman ES, Khachigian LM, Lindner V, Williams AJ,Collins T. Inducible PDGF A-chain transcription in smooth muscle cells is mediated by Egr-1 displacement of Sp1 andSp3. Am J Physiol 1997;273(3 Pt 2):H1415–26.
    [15] Yan YX, Nakagawa H, Lee MH, Rustgi AK. Transforming growth factor-alpha enhances cyclin D1 transcription through the binding of early growth response protein to a cis-regulatory element in the cyclin D1 promoter. J Biol Chem 1997;272(52):33181–90.
    [16] Guillemot L, Levy A, Raymondjean M, Rothhut B.Angiotensin II-induced transcriptional activation of the cyclin D1 gene is mediated by Egr-1 in CHO-AT(1A) cells.J Biol Chem 2001;276(42):39394–403.
    [17] Kae-Woei Liang , Chih-Tai Ting , Sui-Chu Yin, et al. Berberine suppresses MEK/ERK-dependent Egr-1 signaling pathway and inhibits vascular smooth muscle cell regrowth after in vitro mechanical injury[J] . Biochemical pharmacology, 2006 , 7 1: 806– 817.
    [18] Fahmy RG, Khachigian LM. Antisense Egr-1 RNA Driven by the CMV Promoter is an Inhibitor of Vascular Smooth Muscle Cell Proliferation and Regrowth After Injury[J] . Journal of Cellular Biochemistry, 2002 , 84: 575-582.
    [19] Khachigian LM. Catalytic oligonucleotides targeting EGR-1 as potential inhibitors of in-stent restenosis [J] . Ann N Y Acad Sci , 2001 , 947 : 412 - 415.
    [20] Santiago FS , Atkins DG, Khachigian LM. Vascular smooth muscle cell proliferation and regrowth after mechanical injury in vitro are Egr-1/NGFI-A-dependent [J] . Am J Pathol ,1999 , 155(3) : 897 - 905.
    [21] Day FL , Rafty LA , Chesterman CN , et al. Angiotensin II(ATII)-inducible platelet-derived growth factor A-chain gene expression is p42/44 extracellular signal-regulated kinase-1/2 and Egr-1-dependent and mediated via the ATII type 1 but not type 2 receptor. Induction by ATII antagonized by nitric oxide [J] . J Biol Chem , 1999 , 274 (34) : 23 726– 23 733.
    [22]杜先华,向虎,龚应霞等。缺氧对大鼠主动脉平滑肌细胞增殖的实验研究[J]。中国老年学杂志,2004,11(24):1051-1052。
    [23] Cooper AL ,Beaslery D1 Hypoxia stimulates proliferation and interleukin-l alpha production in human vascular smooth muscle cells〔J〕1 Am J Physiol , 1999 ;277 :13262371
    [24]刘健,罗德成,王培勇等。缺氧对体外培养的肺动脉平滑肌细胞形态及增殖的影响[J]。中国应用生理学杂志1997; 13(2) : 110—113。
    [25] Santiago FS, Lowe HC, Kavurma MM, Chesterman CN,Baker A, Atkins DG, et al. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nat Med 1999;5(11):1264–9.
    [26] Khachigian LM, Lindner V, Williams AJ, Collins T. Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science 1996;271(5254):1427–31.
    [27] Ross R. The pathogenesis of atherosclerosis: a perspective for the. Nature 1993;362(6423):801–9.
    [28] Khachigian LM, Williams AJ, Collins T. Interplay of Sp1 and Egr-1 in the proximal platelet-derived growth factor A-chain promoter in cultured vascularendothelial cells.J Biol Chem 1995;270(46):27679–86.
    [29] Silverman ES, Khachigian LM, Lindner V, Williams AJ,Collins T. Inducible PDGF A-chain transcription in smooth muscle cells is mediated by Egr-1 displacement of Sp1 and Sp3. Am J Physiol 1997;273(3 Pt 2):H1415–26.
    [30] Yan YX, Nakagawa H, Lee MH, Rustgi AK. Transforming growth factor-alpha enhances cyclin D1 transcription through the binding of early growth response protein to a cis-regulatory element in the cyclin D1 promoter. J Biol Chem 1997;272(52):33181–90.
    [31] Guillemot L, Levy A, Raymondjean M, Rothhut B.Angiotensin II-induced transcriptional activation of the cyclin D1 gene is mediated by Egr-1 in CHO-AT(1A) cells.J Biol Chem 2001;276(42):39394–403.
    [32] Uchida K, Sasahara M, Morigami N, Hazama F, Kinoshita M.Expression of platelet-derived growth factor B-chain in neointimal smooth muscle cells of balloon injured rabbit femoral arteries. Atherosclerosis 1996;124(1):9–23.
    [33] Bornfeldt KE, Raines EW, Nakano T, Graves LM, Krebs EG,Ross R. Insulin-like growth factor-I and platelet-derived growth factor-BB induce directed migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation. J Clin Invest 1994;93(3):1266–74.
    [1]Campbell JH, Campbell GR1Culture techniques and their applications to studies of vascular smooth muscle1Clin Sci11993, 85: 501~5131.
    [2]司徒镇强,吴军正等,细胞培养第1版,西安:世界图书出版西安公司,2004:71~771。
    [3]唐槐静,段胜仲等,胎儿动脉平滑肌细胞培养方法的研究。湖北医科大学学报,1999,20(2):89。
    [4] Tabata Y. Recent progress in tissue engineering. Drug Discovery Today, 2001,6(1):482.
    [5]程光存,严中亚。组织工程化血管的种子细胞在体外培养扩增方法的实验性研究。安徽医科大学学报,2004,39(3):192。[ 6 ]谢舜峰,许建衡等。人胚胎平滑肌细胞的三维培养观察。广东医学,2002,23(11):1146。
    [7]贾敏,刘丽宏等。大鼠胃底平滑肌细胞的培养。第四军医大学学报,2002,23(4):380。
    [8] Thyberg J, Palmberg L,Nilsson J, et al1Phenotype modulation in primary cultures of arterial smooth muscle cells1On the role of platelet-derived growth factor1Differentiation11983, 25 (2) : 156~1671
    [9] Chamley2Campbell JH, Campbell GR1What controls smooth muscle phenotype? Atherosclerosis11981 Nov2Dec, 40 (3~4) : 347~3571
    [10]高平进,朱鼎良,陈玉英等。蛋白激酶Cα与血管平滑肌细胞表型转化。中华心血管病杂志, 1999, 6: 52~54, 741。
    [11]鄂征,徐新来,李吉友等。组织培养和分子细胞学技术[M]。第二版,北京:北京出版社,1997. 54 - 56 ,82 - 83 ,96 - 98 ,112 -113。
    [12]徐叔云,卞如濂,徐修等。药理实验方法学。第二版。北京:人民卫生出版社,1991。535~538。
    [13]张静波,蔡有余,张世馥等。细胞生物学实验方法与技术。第二版。北京:北京医科大学中国协和医科大学联合出版社,1995。15~19。
    [14]吴绍华,胡礼振,郭勇等。兔主动脉平滑肌细胞培养及形态学组织化学的初步观察。泸州医学院学报,1991,14(4):275。
    [15]赵三妹,夏人仪,王宗立等。动脉平滑肌细胞的培养方法及其应用。中华病理杂志,1987,16(4):260。
    [16]张映娜,石刚刚。关于动脉平滑肌培养的几个问题[J]。汕头大学医学院学报,1999 ,12 (1) :81– 82。
    [17]方正旭,王伶。关于动脉平滑肌培养的几个问题[J]。江西医学院报,2002 ,42 (5) :157 -158。
    [18]王双,雷小惠。尼群地平对猪主动脉平滑肌增殖的影响[J]。衡阳医学院学报,1999 ,27 (1) :31– 32。
    [19]吴宗贵,关战军,陈金明。增殖期间狭窄血管平滑肌中表皮生长因子受体的表达[J]。第二军医大学报,1996 ,17 (6) : 545 -547。
    [20]王关嵩,钱桂生,李淑平等。大鼠细小动脉平滑肌细胞分离培养的新方法[J]。中国临床解剖学杂志,2000 ,18 (3) :282– 283。
    [21]梁若斯,陈德。成人动脉平滑肌细胞体外培养模型的建立[J]。中国现代医学杂志, 2002 , 12 (10) : 31。
    [22]周昕,耿红全,吴湘如等。尿路平滑肌细胞的培养和鉴定[J]。中华泌尿外科杂志,2003 , 24 (5) :348。
    [1] Owens GK, Regulation of differentiation of smooth muscle cell. Physiol Rev.1995,75:487-517.
    [2] Lerman A,Edwards B, Hallett JW, et al. Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl J Med. 1991,325:997-1006.
    [3]Barrett Tb, Bendit EP. Platelet-derived growth factor gene expression in human atherosclerosis plaque and normal artery wall. Prol Natl Acad Sci U.S.A. 1988,850:2810-2823.
    [4]张英民,党红波,王克强等。ET-1促进人血管平滑肌细胞的表型变化和增殖。解剖学杂志,2003,26(3):215-218。
    [5] Paquet JL,Maryvone BL, Gillies B,et al.AngiotensinⅡinduced proliferation of myocyte in spontaneously hypertensive rat.Hypertens,1990,8:565-572.
    [6] Daemen MJ,Lombardi DM.AngiotensinⅡinduced smooth muscle cells proliferation in the normal and injured rat arterial wall.Cir Res.1991,68(2):450-456.
    [7]Zhang C. Yang J. Feng J,et al.Short-term administration of basic fibroblast growth factor enhances coronary collateral development without exacerbating atherosclerosis and balloon injury-induced vasoproliferation in atherosclerotic rabbits with acute myocardial infarction[J]. Journal of Laboratory & Clinical Medicine. 2002,140(2):119-125.
    [8]Schaeffer C, Vandroux, D, Thomassin L.et al. Calcitonin gene-related peptide partly protects cultured smooth muscle cells from apoptosis induced by an oxidative stress via activation of ERK1/2 MAPK. Biochimica et Biophysica Acta.2003,1643(1-3):65-73.
    [9]李晓艳,黄从新,孙有刚等。降钙素基因相关肽对人血管平滑肌细胞增殖的抑制作用[J]。中国病理生理学杂志, 2000,16(1):24-26。
    [10]Li Y, Fiscus RR, Wu J,et al .The antiproliferative effects of calcitonin gene-related peptide in different passages of cultured vascular smooth muscle cells[J].Neuropeptide,1997,31(5):503-509.
    [11]Wang X, Wang W,Li Y, et al. Mechanism of SNAP potentiating antiproliferative effect of calcitonin gene-related peptide in cultured vscular smooth muscle cells[J].J Nbl Cell Cardiol,1999,31(9):1 599-606.
    [12]Chattergoon NN,D'Souza FM,Deng W et al.Antiproliferative effects of calcitonin gene-related peptide in aortic and pulmonary artery smooth muscle cells. American Journal of Physiology - Lung Cellular & Molecular Physiology. 2005,288(1):202-211.
    [13]Oda A, Taniguchi T, Yokoyama M,leptin stimulates rat aortic smooth muscle cell proliferation and migration[J].Kobe J Med Sci,2001,47:141-150.
    [14]梁若斯,刘建康,胡必利。神经肽Y影响人血管平滑肌细胞低密度脂蛋白受体表达,中国动脉硬化杂志,2003, 11(4):295-298。
    [15]Yu XJ, Li YJ, Xiong Y. Increase of an endogenous inhibitor of nitric oxide synthesis in serum of high cholesterol fed rabbits[J].Life Sci,1994,14:746-758.
    [16]晋军。血小板源生长因子在血管平滑肌细胞异常增殖中的作用[J]。国外医学生理、病理科学分册, 2001, 21(4) :286-288。
    [17]Hsieh JK,Kletsas D,Clunn G,et al. p53,p21(WAF1/CIP1) and MDM2 involvement in the proliferation and apoptosis in an in vitro model of conditionally immortalized human vascular smooth cells[J].Arterioscler Thromb Vasc Biol,2000,20(4):973-981.
    [18]Marta Ruiz-Ortega,Oscar Lorenzo,Monica Ruperez,et al .Angiotensin activates nuclear transcription factor KB through AT1 and AT2 in vascular smooth muscle cells[J]. Circ Res,2000,86:1266-1272.
    [19]Hayry P,Myllarniemi M,Aavik,et al.Stabile D-peptide analog of insulin-like growth factor-1 inhibits smooth muscle cell proliferation after corotid ballooning in the rat.FASEB J,1995,9:1336-1344.
    [20]Stanislaw JW,Minghao Z,Ying F,et al. Express of TGF-β1 and urokinase type plasminogen activator genes during arterial repair in the pig[J]. Cardiovascular Res,1996,31(1):28-33.
    [21]Skaleta-Rovowski A,Waltenberger J.Protein kinase C mediates basic fibroblast growth factor-induced proliferation through mitogen activated protein kinase in coronary smooth muscle cells[J].Arterioscler Thromb Vasc Biol, 1999,19(7):1608-1614.
    [22]Takahashi Y,Kitadai Y,Bucana CD ,et al . Expression of vascular endothelial growth factor and its receptor KDP ,correlates with vascularity ,metastasis ,and proliferation of human coloncancer. Cancer Res ,1995 ,55 :396423968.
    [23]Alessandra Cucina, Ph.D, Valeria Borrelli, Ph.D, et al. Vascular Endothelial Growth Factor Increase the Migration and Proliferation of Smooth Muscle Cells through the Mediation of Growth Factors Released by Endothelial Cells. Journal of Surgical Research, 2003, 109,16-23.
    [24]Schmitt JF,Keogh MC, Dennehy U, et al. Tissue-selective expression of dominant-negative proteins for the regulation of vascular smooth muscle cell proliferation[J] Gene Ther, 1999,6(6):184-191.
    [25]Martinez GJ, Vinals M, Vidal F,et al. Mevalonate deprivation impairs IGF-1/insulin signaling in human vascular smooth musclecells[J].Atherosclerosis,1997,135(2):213-223.
    [26]Kyriakis JM,Banerjec P,Nikolakaki E,et al.The stress-activated protein kinase subfamily of c-jun kinase[J].Nature,1994,369:156-160.
    [27]Kataoka S,Kume N,Miyamoto S.Oxidiazed LDL modulates Bax/Bcl-2 through the lectinlike ox-LDL receptor-1 in vascular smooth muscle cells[J].Arteroscler Thromb Vasc Biol,2001,21:1 104-117.
    [28]周玉杰,汪丽蕙,周爱儒等。反义N-ras-1基因对成纤维细胞生长因子诱导平滑肌细胞增殖的抑制作用[J].中华医学杂志, 1998,78(3):227-229。
    [29]Yonemitsu Y, Kaneda Y, Tanaka S, et al. Transfer of wild-type p53 gene effectively inhibits vascular smooth muscle cell proliferation in vitro and in vivo[J]. Circ Res,1998,82:147-156.
    [30]EI-Deiry WS, Haper J W, O‘Connor P M,et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis[J].Cancer Res,1994,54(1)169-170.
    [31]Hsieh JK,Kletsas D,Clunn G,et al. p53,p21(WAF1/CIP1) and MDM2 involvement in the proliferation and apoptosis in an in vitro model of conditionally immortalized human vascular smooth cells[J].Arterioscler Thromb Vasc Biol,2000,20(4):973-981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700