养殖半滑舌鳎常见疾病的病理学观察与感染微生态分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半滑舌鳎(Cynoglossus semilaevis Günther)是原产我国近海的优良海水鱼类品种,也是继牙鲆和大菱鲆之后,其养殖形成产业规模的又一鲆鲽鱼类。本论文以养殖的半滑舌鳎为研究对象,采用现场调查、石蜡切片、细菌分离培养、PCR-DGGE和Roche454平台高通量测序等技术方法,分别进行了初步的流行病调查,代表性的疾病病理学和感染微生态的研究,以期充实和丰富鲆鲽鱼类疾病研究的资料,并为半滑舌鳎疾病高效防控技术体系的构建奠定工作基础。论文的主要研究结果如下:
     1.养殖半滑舌鳎主要的流行病类型
     论文流行病调查的范围集中于山东半岛,调查的方式以现场采样和来样送检为主。通过调查,发现在我国北方半滑舌鳎的主要养殖区,疾病逐渐成为养殖生产中经常面对的问题,对产业的平稳发展已经构成了威胁。调查同时发现,烂鳍烂尾症、皮肤溃疡症、皮下脓肿病、腹水病和肠炎病是半滑舌鳎养殖过程比较常见的几种疾病,这些疾病都具有非常明显的临床病变特征,在生产中比较容易识别。在所采集的半滑舌鳎疾病样品中,没有发现寄生虫性疾病和病毒性疾病。
     2.养殖半滑舌鳎代表性疾病的病理学研究
     选取皮肤溃疡症和腹水病这两种有代表性的疾病进行了组织病理学的观察。观察结果显示,感染皮肤溃疡的半滑舌鳎除体表出现明显病灶外,全身主要的组织器官都发生了不同程度的病理变化。如溃疡病灶处肌纤维发生了严重的固缩,并有局灶性溃烂;鳃小叶局部组织水肿,毛细血管扩张并充血;鳍组织表现了真皮层充血的病理变化;眼部视网膜的內颗粒层和外网状层发生剥离;肝胰脏和肾脏发生了严重的组织变性、坏死和溃烂等病理变化;脾脏血红细胞大量坏死和沉积;心脏出现了心肌组织的大面积坏死和血细胞、淋巴细胞浸润现象;消化道的粘膜层和粘膜固有层分离,并有局灶性的组织增生和溃烂现象。而感染腹水病的半滑舌鳎全身各个组织器官也出现了不同程度的病变,但整体病变程度相对皮肤溃疡症病鱼较轻。腹水病病鱼主要组织器官的病理表现为:皮肤真皮层出现大量点状淤血;鳃小叶上皮细胞水肿和柱状细胞组织增生;心肌组织局灶性断裂;肝胰脏也出现局灶性组织坏死和溃烂;肾小球与肾间质发生了组织融合;胆囊壁形成血栓,并发生明显的结缔组织增生;脑组织中可以发现空泡变性和颗粒变性的神经细胞;胃的粘膜固有层出现局灶性组织坏死,而肠道的组织病变和胃基本一样。病理学的分析结果说明,多器官的病变使器官功能衰竭,正常的生理代谢逐渐下降并消失,这可能是皮肤溃疡症和腹水病病鱼发生死亡的最终原因。
     3.池塘养殖半滑舌鳎的微生态研究
     从池塘养殖的健康半滑舌鳎中随机挑选了3条样本鱼,用微生物分离培养、PCR-DGGE和Roche454平台的高通量测序技术分别对它们体内各个组织中和环境中菌群的相关性进行了分析。研究结果发现,传统的微生物分离培养方法仅能从样品鱼的肠道、水样和底泥中分离出细菌,这些细菌都是弧菌属细菌。以这些细菌为依据,不能很好的解析各样品之间的菌群相关性。PCR-DGGE技术可以定性解析半滑舌鳎组织、水样和底泥中菌群的相关性,通过对电泳条带的切胶回收和测序,也能较好的体现各个样品的菌群多样性,但平行样之间的结果分析存在一定的的误差。通过对高通量测序数据的分析,证实池塘养殖的半滑舌鳎各个组织中菌群构成非常相似,并且与所投喂饵料中菌群结构存在一定的相关性,而几乎不受养殖水体和池塘底泥中菌群的影响。
     4.工厂化养殖半滑舌鳎疾病发生的感染微生态研究
     采用上述3种实验方法,同时对两家工厂化养殖厂感染皮肤溃疡症和腹水病的半滑舌鳎病鱼进行了感染微生态的分析。病鱼样品为皮肤溃疡症和腹水病病鱼各3条,同一养殖系统中未发病的正常鱼各1条。研究结果表明,传统的培养方法仅能从少部分病鱼的病灶和肠道中分离出细菌,这些细菌分别归属弧菌属、交替单胞菌属、假单胞菌属、希瓦氏菌属等不同菌属,因此仍无法解析各样品间菌群构成的相关性。PCR-DGGE实验结果证实皮肤溃疡症病鱼和腹水病病鱼体内不同组织中的优势菌群的构成具有一定的相似性,与正常鱼相比存在较为明显的差异性。PCR-DGGE的实验结果同时证实工厂化养殖半滑舌鳎肠道菌群的构成似乎与水体和饵料中的菌群构成不太相关。采用高通量测序技术对其中4条样本鱼及水样和饵料样本进行测序分析,结果表明样本鱼各个组织中优势菌株的种类构成非常相似,并且与水样和饵料中的菌群相关性不明显,但其丰度在发病前后发生了显著变化,即优势菌株的生态位在疾病发生的前后发生了转变。通过高通量测序获得的半滑舌鳎各组织中优势细菌的16S rRNA序列大部分在NCBI数据库中没有可供比对的已知菌种序列。
     通过以上研究,本论文引申了两点推测。一是在本论文的研究案例中,所有样本鱼组织中的优势菌种组成几乎是相同的,因此人工养殖的半滑舌鳎体内可能存在特异的共生菌群,这一菌群可能在苗种培育阶段就已定植半滑舌鳎体内,且不受养殖模式、养殖环境、鱼体健康状态的影响而发生改变,并对外源菌具有排他性。二是在工厂化养殖系统中,各个组织器官中这一菌群的优势菌株在鱼体全身微生态系统中发生了明显的生态位改变,这有可能是疾病发生的直接诱因之一。
Half-smooth tongue sole (Cynoglossus semilaevis Günther) is one marine fishspecies native to northern China offshore areas. And also, it is another flatfish whichits farming forming industrial scale after Japanese flounder (Paralichthys olivaceus)and turbot (Scophthalmus maximus) in China. In this paper, epizootic investigationhas been performed and typical disease samples are selected for histopathology andinfectious microecology research in cultured half-smooth tongue sole by usingon-site investigations, paraffin section technique, microorganism cultivating,PCR-DGGE and PTS-454(high-through sequencing technique based on Roche454platform) methods respectively. The results of these studies will enrich the data offlatfish diseases research, and provide the fundamental works for constructinghalf-smooth tongue sole disease control and prevention techniques system. All theresults of this paper are as follows:
     1. The common diseases in cultured half-smooth tongue sole
     All the diseased fishes for epizootic investigation in this paper are sampled infarms or derived from arrived samples for inspection from Shandong Peninsula, China.The results show that diseases occurred frequently and pose a threat to the sustainabledevelopment of half-smooth tongue sole farming industry. The investigation also findthat fin and tail rot, skin ulceration, subcutaneous abscess, ascites and enteritis werethe most common diseases in cultured half-smooth tongue sole in China. Thesediseases have conspicuous clinical epidemiologic characteristics and are easilyrecognizable in farming. There are no viral and parasitic disease fish in our collection samples.
     2. Histopathology of cultured half-smooth tongue sole typical diseases
     As the typical diseases, the fish associated with skin ulcer and ascites symptomare respectively chosen for histopathology analysis. The results reveal that mostorgans of skin ulcer fish exhibit varying organ lesion beside the ulceration on the body.The major organs pathological changes of diseased fish include muscle fiberspyknosis and focal ulceration, branchial lamella oedema and capillaries dilation withcongestion, red blood cells infiltration in the derma of the fin, the detachment of innernuclear layer and outer plexiform layer in the retina, tissues necrosis and ulcer in thehepatopancreas and kidney, dead red blood cells accumulation in the spleen, necrosisof myocardium and hemocyte and lymphocyte infiltration in the heart, detachment ofmucosal epithelium and lamina propria and focal epithelial tissues hyperplasia andulceration in gastrointestinal tract. The diseased fish associated with ascites also showdifferent pathological changes in most organs. Comparing to skin ulcer disease, thesefish organs lesions are relatively lesser degree. The major damage of organs indiseased fish with ascites symptom are: spot congestion in dermis, epithelium oedemaand cylindrical cell hyperplasia in branchial lamella, myocardium focal fracture,tissue focal necrosis in hepatopancreas, the fusion of glomerulu and renal interstitium,thrombosis and connective tissue hyperplasia of gallbladder wall, neural cellsvacuolar and granular degeneration existence in brain, lamina propria focal necrosis instomach and intestine. Surmising from the results, multiple organ tissues damage andmetabolic dysfunction or loss, this may be the ultimate cause of death in diseased fish.
     3. Microecology characteristics of cultured half-smooth tongue sole in outdoorpond
     Three healthy half-smooth tongue sole are randomly selected form the outdoorculture pond for correlation analysis of microflora in different fish organs, water, pondsediment and pellet feed using microorganism cultivating, PCR-DGGE and PTS-454(high-through sequencing technique based on Roche454platform) methods. The studies find that only vibrios can be isolated form fish intestine, water and pondsediment using traditional microorganism cultivating method. But the results ofbacteria isolation are not enough to support the correlativity analysis of microflora inthe samples. Using PCR-DGGE technique, the correlation of microbial communitiesin fish organs, water and pond sediment can be qualitatively analyzed. And microbialdiversity in these samples is also analyzed through the electrophoretic bandsrecovering and sequencing. But there are some deviations which can not be avoided inparallel experiment. According to the analysis of PTS-454results, we can confirm thatthe microbial community structure in half-smooth tongue sole different organs is verysimilar. It is also relevant to the microflora in pellet feed for feeding, while almostindependent from the microflora in water and pond sediment.
     4. Infectious microecology characteristics of diseased half-smooth tongue sole inindoor farming system
     The infectious characteristics of diseased half-smooth tongue sole respectivelyassociated with skin uler and ascites are also analyzed using the three aforementionedmethods. Three diseased fishes associated with skin ulceration symptom and onenormal fish in the same farming system as samples are derived from one indoor farm,and three diseased fishes associate with ascites and one normal fish in the samefarming system from another indoor farm. Bacteria can be isolated only from portionsof diseased fish focal ulceration and intestine. These becteria belong to Vibrios,Alteromonas, Pseudomonas, Shewanella, etc. It is still difficult to analyze thecorrelation of microbial community structure in the samples basing on these bacteriaisolation. However, the similarity between the microflora in different organs ofdiseased fish but different from normal fish organs are confirmed by PCR-DGGEmethod. The results also reveal the limited relationship of microflora betweenhalf-smooth tongue sole intenstine, water and pellet feed in indoor farming system.The water, pellet feed and four fishes are also studied the microbial communitystructure by PTS-454method. The results show that predominant strains in all fishorgans are similar and different from those in water and pellet feed. But the abundance of different predominant strains changes noticeably during the diseaseoccurrence. This means that the microecology niche of predominant strains reverseafter disease occurrence. Most of bacterial16S rRNA sequences obtaining byPTS-454can not find the similar data in NCBI GenBank.
     Summarizing these results, two suppositions are brought forward. First, in thecases of this paper, the predominant bacteria in all fish samples are almost the same.Obviously, there may be symbiotic microflora in cultured half-smooth tongue solebody. These bacteria are exclusivity and regardless of farming system, environmentand fish health changes. It can be colonization during the larval fish rearing stage.Second, in the indoor farming system, the microecology niche of these bacteriachanged in the fish body, which may be the direct cause of disease occurrence.
引文
[1]农业部渔业局.2010中国渔业年鉴.北京:中国农业出版社,2010.25
    [2]曲凌云,张进,孙修勤.养殖牙鲆淋巴囊肿病流行状况与组织病理学研究.黄渤海海洋,1999,17(2):43~47
    [3]绳秀珍,战文斌.鱼类淋巴囊肿病毒靶器官的组织病理研究.中国海洋大学学报(自然科学版),2006,36(5):749~753
    [4]绳秀珍,邢婧,战文斌,王云忠.4种海水鱼淋巴囊肿组织的病理特征比较.中国水产科学,2007,14(5):849~853
    [5] Bloch B, Larsen J L. An iridovirus-like agent associated with systemic infection in culturedturbot, Scophthalmus maximus fry in Demmark. Diseases of Aquatic Organisms,1993,15:235~240
    [6] Wi-Sik Kim, Myung-Joo Oh, Sung-Ju Jung, Young-Jin Kim, Shin-Ichi Kitamura.Characterization of an iridovirus detected from cultured turbot Scophthalmus maximus inKorea. Diseases of Aquatic Organisms,2005,64:175~180
    [7]秦蕾.养殖大菱鲆爱德华氏菌病及其几种重要疾病的病理学研究:[博士学位论文].青岛:中国海洋大学,2006
    [8] Richards R H., Buchanan J S. Studies on Herpesvirus scophthalmi infection of turbotScophthalmus maximus (L.): histopathological observation. Journal of Fish Diseases,1978,1:251~258
    [9] Bloch B,Larsen J L. A case of severe general oedema in young farmed turbot associatedwith a herpes virus infection. Bulletin of the European Association of Fish Pathologists,1994,14:130~132
    [10] Castric J, Bausin-Laurencin F, Coustans M F, Auffret M. Isolation of infectious pancreaticnecrosis virus, Ab serotype, from an epizootic in farmed turbot, Scophthalmus maxmus.Aquaculture,1987,67:117~126
    [11] Mortensen S H. Mortensen, ystein Evensen, R dseth O M, Hjeltnes B K. The relevanceof infectious pancreatic necrosis virus (IPNV) in farmed Norwegian turbot (Scophthalmusmaximus). Auqaculture,1993,115:243~252
    [12] A Montes, A Figueras, B Novoa. Nodavirus encephalopathy in turbot (Scophthalmusmaximus): Inflammation, nitric oxide production and effect of anti-inflammatorycompounds. Fish&Shellfish Immunology,2010,28(2):281~288
    [13] Toranzo A E, Santos Y, Lemos M L, Ledo A, Bolinches J. Homology of vibro anguillarum,strains causing epizootics in turbot, salmon and trout reared on the Atlantic coast of Spain.Aquaculture,1987,67:41~52
    [14] Novoa B., Nu ez S, Fern ndez-Puentes, Figueras A J, Toranzo A E. Epizootic study in atubot farm: bacteriology, virology, parasitology and histology. Aquaculture,1992,107:253~258
    [15] Ronald J Roberts. Fish Pathology (Third Edition). W B SAUNDERS.2001.
    [16] I R Bricknella, T J Bowdena, D W Verner-Jeffreysa, D W Brunoa, R J Sheildsb, A E Ellisa.Susceptibility of juvenile and sub-adult Atlantic halibut (Hippoglossus hippoglossusL.) toinfection byVibrio anguillarum and efficacy of protection induced by vaccination. Fish&Shellfish Immunology,2000,10(4):319~327
    [17]夏永娟,黄威权,姜国良.鳗弧菌感染牙鲆的组织学和免疫组织化学观察.海洋科学,2000,24(10):42~44
    [18]张正,王印庚,韩文君,李秋芬.养殖大菱鲆烂鳍病病原菌的鉴定及系统发育学研究.海洋科学进展,2004,22(2):193~197。
    [19]杨少丽.养殖大菱鲆苗期主要细菌性疾病的研究:[硕士学位论文].青岛:中国海洋大学,2004
    [20]张正.养殖大菱鲆流行病调查及主要细菌性疾病的病原学研究:[硕士学位论文].青岛:中国海洋大学,2004
    [21]吕俊超,李轩,韩茵,等.养殖大菱鲆中牙鲆肠弧菌的分离鉴定及组织病理学.水产学报,2009,33(2):311~317
    [22]吕俊超,张晓华,王燕,兰建新,韩茵,刘云.养殖大菱鲆病原菌杀鲑气单胞菌无色亚种的分离鉴定和组织病理学研究.中国海洋大学学报,2009,39(1):91~95
    [23] Eric Gauger, Roxanna Smolowitz, Kevin Uhlinger, Jessica Casey, Marta Gómez-Chiarri.Vibrio harveyi and other bacterial pathogens in cultured summer flounder, Paralichthysdentatus. Aquaculture,2006,260:10~20
    [24] B K Diggles, J Carson, P M Hine, R W Hickman,M J Tait. Vibrio species associated withmortalities in hatchery-reared turbot (Colistium nudipinnis) and brill (C. guntheri) inNew Zealand. Aquaculture,2000,183:1~12
    [25] Tang Xiaoqian, Zhou Li, Zhan Wenbin, et al. Isolation and Characterization of PathogenicListonella anguillarum of Diseased Half-Smooth Tongue Sole (Cynoglossus semilaevisGünther). J. Ocean Univ. Chin.,2008,7(3):343~351
    [26]刘云,姜明,姜国良,杨栋,张士璀.迟缓爱德华氏菌对牙鲆免疫器官的影响.海洋科学,2000,12:42~46
    [27]张晓君,战文斌,陈翠珍,房海.牙鲆迟钝爱德华氏菌感染症及其病原的研究.水生生物学报,2005,29(1):31~37
    [28] F Padrós, C Zarza, L Dopazo, M Cuadrado, S Crespo. Pathology of Edwardsiella tardainfection in turbot, Scophthalmus maximus (L.). Journal of Fish Diseases,2006,29(2):87~94
    [29] J M Nieto, S Devesa, I Quiroga, A E Toranzo. Pathology of Enterococcus sp. infection infarmed turbot, Scophthalmus maximus L. Journal of Fish Diseases,1995,18(1):21~30
    [30] Larsen J L, Pedersen K. Atypical Aeromonas salmonicida isolated from diseased turbot(Scophthalmus maximus L.). Acta Veterinaria Scandinavica,1996,37:139~146
    [31] Santos dos N M S, Vale do A, Sousa M J, Silva M T. Mycobacterial infection in farmedturbot Scophthalmus maximus. Diseases of Aquatic Organisms,2002,52:87~91
    [32] Devesa S, Barja J L, Toranzo A E. Ulcerative and skin fin lesions in reared turbot(Scophthalmus maxmus, L.). Journal of Fish Diseases,1989,12:323~333
    [33] Viganeulle M, Baudin Laurencin F. Serratia liquefaciens: a case report in turbot(Scophthalmus maximus) cultured in floating cages in France. Aquaculture,1995,132:121~124
    [34] Robert A Murchelano And John Ziskowski. Histopathology of an acute fin lesion in thesummer flounder, Paralichthys dentatus, and some speculations on the etiology of fin rotdisease in the New York Bight. Journal of Wildlife Diseases,1977,13:103~106
    [35]秦蕾,王印庚,张立敬,戴继勋.蟹栖异阿脑虫寄生大菱鲆及其组织病理学研究.水生生物学报,2007,31(5):618~628
    [36] Sterud E, Hansen M K, Mo T A. Systemic infection with Uronema-likes ciliater in farmedturbot, Scophthalmas maximus (L.). Journal of Fish Diseases,2000,23(1):33~37
    [37] Iglesias R, Paramá A, álvarez M F, Leiro J, Fernaánudez J, Sanmartín M L. Philasteridesdicentrarchi (Ciliophora, Scuticociliatida) as the causative agent of scuticociliatosis infarmed turbot Scophthalmus maximus in Galicia (NW Spain). Diseases of AquaticOrganisms,2001,46:47~55
    [38]崔龙波,周雪莹,程敬伟,李永胜,马家好.大菱鲆纤毛虫病的病理学.中国水产科学,2008,15(4):622~629
    [39] Ramasamy Harikrishnan, Chang-Nam Jin, Ju-Sang Kim, Chellam Balasundaram,Moon-Soo Heo. Philasterides dicentrarchi, a histophagous ciliate causing scuticociliatosisin olive flounder, Philasterides dicentrarchi-Histopathology investigations. ExperimentalParasitology (Available online29December2011), In Press.
    [40] R A Matthews, B F Matthews. Cell and tissue reactions of turbot Scophthalmus maximus(L.) to Tetramicra brevifilum gen. n., sp. n.(Microspora). Journal of Fish Diseases,1980,3:495~515
    [41] Novoa B, Nu ez S, Fern ndez-Puentes, Figueras A J, Toranzo A E. Epizootic study in atubot farm: bacteriology, virology, parasitology and histology. Aquaculture,1992,107:253~258
    [42] Branson E, Riaza A, Alvarez-Pellitero P. Myxosporean infection causing intestinal diseasein farmed turbot Scophthalmus maximus (L.),(Teleostei: Scophthalmidae). Journal of FishDiseases,1999,22:395~399.
    [43] Redondo M J, Oswaldo Palenzuela, Pilar Alvarez-Pellitero. Studies on transmission and lifecycle of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of turbot Scophthalmusmaximus. Folia Parasitologica,2004,51:188~198
    [44] Leiro P, Ortega P, Fernández, Sanmartín. An amoeba associated with gill disease in turbot,Scophthalmus maximus (L.). Journal of Fish Diseases,1998,21(4):281~288.
    [45] Cristina López-Galindo, Luis Vargas-Chacoff, Enrique Nebot, José F Casanueva, DanielRubio, Montserrat Sol é, Juan Miguel Mancera. Biomarker responses in Soleasenegalensis exposed to sodium hypochlorite used as antifouling. Chemosphere,2010,78:885~893
    [46] Ian R Bricknell, David W Bruno, Timothy J Bowden, Peter Smith. Fat cell necrosissyndrome in Atlantic halibut, Hippoglossus hippoglossus L. Aquaculture,1996,144:65~69
    [47] Pedro M Costa, Sandra Caeiro, Jorge Lobo, Marta Martins, Ana M Ferreira, MiguelCaetano, Carlos Vale, T ángel DelValls, Maria H Costa. Estuarine ecological risk based onhepatic histopathological indices from laboratory and in situ tested fish. Marine PollutionBulletin,2011,62:55~65
    [48] Pedro M Costa, Mário S Diniz, Sandra Caeiro, Jorge Lobo, Marta Martins, Ana M Ferreira,Miguel Caetano, Carlos Vale, T ángel DelValls, M Helena Costa. Histological biomarkersin liver and gills of juvenile Solea senegalensis exposed to contaminated estuarinesediments: A weighted indices approach. Aquatic Toxicology,2009,92:202~212
    [49] S Reiser, J P Schroeder, S Wuertz, W Kloas, R Hanel. Histological and physiologicalalterations in juvenile turbot (Psetta maxima, L.) exposed to sublethal concentrations ofozone-produced oxidants in ozonated seawater. Aquaculture,2010,307:157~164
    [50] G C M Grinwis, P W Wester, A D Vethaak. Histopathological effects of chronic aqueousexposure to bis(tri-n-butyltin)oxide (TBTO) to environmentally relevant concentrationsreveal thymus atrophy in European flounder (Platichthys flesus). Environmental Pollution,2009,157:2587~2593
    [51] R A Khan, D E Barker, R Hooper, E M Lee, K Ryan, K Nag. Histopathology in WinterFlounder (Pleuronectes americanus) Living Adjacent to a Pulp and Paper Mill. Arch.Environ. Contam. Toxicol.,1994,26:95~102
    [52] I McFadzen, S Baynes, J Hallam, A Beesley, D Lowe. Histopathology of the skin of UV-Birradiated sole (Solea solea) and turbot (Scophthalmus maximus) larvae. MarineEnvironmental Research,2000,50:273~277
    [53] Alessio Bonaldo, Luca Parma, Luciana Mandrioli, Rubina Sirri, Ramon Fontanillas, AnnaBadiani, Pier Paolo Gatta. Increasing dietary plant proteins affects growth performance andammonia excretion but not digestibility and gut histology in turbot (Psetta maxima)juveniles. Aquaculture,2011,318:101~108
    [54] Thomas Lang, Werner Wosniok, Janina Bar ien, Katja Broeg, Justyna Kopecka, JariParkkonen. Liver histopathology in Baltic flounder (Platichthys flesus) as indicator ofbiological effects of contaminants. Marine Pollution Bulletin,2006,53:488~496
    [55] Mehdi Yousefian, Mojtaba Sheikholeslami Amiri. A review of the use of prebiotic inaquaculture for fish and shrimp. African Journal of Biotechnology,2009,8(25):7313~7318
    [56] S K Nayak. Probiotics and immunity: A fish perspective. Fish&Shellfish Immunology,2010,29:2~14
    [57] Arkadios Dimitroglou, Daniel L. Merrifield, Oliana Carnevali, Simona Picchietti, MatteoAvella, Carly Daniels, Derya Güroy, Simon J Davies. Microbial manipulations to improvefish health and production-A Mediterranean perspective. Fish&Shellfish Immunology,2011,30(1):1~16
    [58]陈孝煊,吴志新,周文豪.鱼类消化道菌群的作用与影响因素研究进展.华中农业大学学报,2005,24(5):523~528
    [59]赵庆新.鲤科(Cyprinidate)鱼肠道菌群分析.微生物学杂志,2001,2:18~20
    [60]侯进慧,陈宏伟,曹泽虹,高兆建,蔡侃.鲫鱼肠道细菌菌群初步分析,2010,31(11):178~181
    [61]尹军霞,张建龙,沈文英,石巧红,顾海凤.鱼食性与肠道菌群关系的初步研究,水产科学,2004,23(3):4~6。
    [62]周玉法,刘敬博,苗增民,蔡玉梅,李代军. ERIC-PCR对山东省东平湖4种常见淡水鱼肠道菌群多样性的分析.动物医学进展,2010,31(S):139~142
    [63]汤伏生,曾勇,张兴忠,朱晓燕.鱼类细菌群落中的致病嗜水气单胞菌.水产学报,1995,19(4):369~373。
    [64]王伟霞,李福后,李信书.大弹涂鱼肠道细菌学分析.安徽农业科学,2007,35(12):3545~3549
    [65]周志刚,石鹏君,姚斌,何夙旭,苏永全,丁兆坤.基于PCR-DGGE指纹图谱川纹笛鲷及圆白鲳消化道壁优势菌群结构比较分析.水生生物学报,2007,31(5):682~688
    [66] B Spanggaard, I Huber, J Nielsen, T Nielsenc, K F Appel, L Gram. The microflora ofrainbow trout intestine: a comparison of traditional and molecular identification.Aquaculture,2000,182:1~15
    [67] L Grisez, J Reyniers, L Verdonck, J Swings,F Ollevier. Dominant intestinal microflora ofsea bream and sea bass larvae, from two hatcheries, during larval development. Aquaculture,1997,155:387~399
    [68] David W, Verner-Jeffreys, Robin J Shields, Ian R Bricknell, T Harry Birkbeck. Changes inthe gut-associated microflora during the development of Atlantic halibut (Hippoglossushippoglossus L.) larvae in three British hatcheries. Aquaculture,2003,219:21~42
    [69]汤菊芬,吴灶和,简纪常,鲁义善,王蓓.复方中草药对吉富罗非鱼生长及肠道菌群的影响.广东海洋大学学报,2009,29(6):46~49
    [70]祖国掌,李槿年,张传亮,张晓华,韦众,许建新.中草药复方对草鱼鱼种肠道菌群与血液有形成分的影响.中国微生态学杂志,2008,20(1):4~6
    [71]尹军霞,陈瑛,孟丽丽.益生菌剂对鲫鱼肠道菌群影响的初步研究.水产科学,2007,26(11):610~612。
    [72]汪立平,马相杰,冷向军,赵勇.甘露寡糖对罗非鱼肠道菌群的影响.食品工业科技,2010,10:142~145
    [73]冯敬宾,胡超群.海水鱼类共附生细菌群落研究进展.生态学报,2010,30(10):2722~2734
    [74]周金敏,吴志新,曾令兵,王树云,毕鹏,陈孝煊.黄颡鱼肠道及养殖水体中菌群的分析.华中农业大学学报,2010,年10月,29(5):613~617
    [75]祝东梅,吴志新,冯雪,王艳,庞素风,周金敏,王树云,陈孝煊.草鱼受精卵茵群的研究.华中农业大学学报,2008,27(1):91~95
    [76]陈营,王福强,邵占涛,王斌.乳酸菌对牙鲆稚鱼养殖水体和肠道菌群的影响.海洋水产研究,2006,27(3):37~41
    [77] Guimei Yang, Baolong Bao, Eric Peatman, Huirong Li, Lubiao Huang, Daming Ren.Analysis of the composition of the bacterial community in puffer fish Takifugu obscurus.Aquaculture,2007,262:183~191
    [78] Tiziana La Rosa, Simone Mirto, Antonio Mazzola, Teresa Luciana Maugeri. Benthicmicrobial indicators of fish farm impact in a coastal area of the Tyrrhenian Sea.Aquaculture,230:153~167
    [79] Naoki Kawahara, Kotaro Shigematsu, Toshiaki Miyadai, Ryuji Kondo. Comparison ofbacterial communities in fish farm sediments along an organic enrichment gradient.Aquaculture,2009,287:107~113
    [80] Manu Tamminen, Antti Karkman, Jukka Corander, Lars Paulin, Marko Virt. Differences inbacterial community composition in Baltic Sea sediment in response to fish farming.Aquaculture,2011,313:15~23
    [81]王印庚,张正,秦蕾,等.养殖大菱鲆主要疾病及防治技术.海洋水产研究,2004,25(6):61~68
    [82] Wang Yan, Han Yin, Li Yun, et al. Isolation of Photobacterium damselae subsp. piscicidafrom diseased tongue sole (Cynoglossus semilaevis Günther) in Chin. Acta MicrobiologicaSinica,2007,47(5):763~768
    [83]张晓君,秦国民,阎斌伦,等.半滑舌鳎病原鳗利斯顿氏菌表型及分子特征研究.海洋学报,2009,31(5):112~122
    [84]刘朝阳,王印庚,孙晓庆.颗粒饲料携带细菌与大菱鲆疾病发生的相关性.南方水产,2009,5(4):13~21
    [85]柳学周,庄志猛,马爱军,等.半滑舌鳎繁殖生物学及繁育技术研究.海洋水产研究,2005,26(5):7~14
    [86]梁友,柳学周.半滑舌鳎室内水泥池和池塘养殖技术的初步研究.海洋水产研究,2006,27(2):69~73
    [87]张永举,郑炯,曹志害.北方池塘生态养殖半滑舌鳎技术.中国水产,2007,10:28~29
    [88]李雪容.半滑舌鳎池塘及工厂化养殖技术要点.中国水产,2007,6:57~58
    [89]宋振荣.水产动物病理学.厦门:厦门大学出版社,2009.88
    [90]宋振荣.水产动物病理学.厦门:厦门大学出版社,2009.71
    [91]范文辉,黄倢,王秀华,等.养殖大菱鲆溃疡症病原菌的分离鉴定及系统发育分析.微生物学报,2005,45(5):665~670
    [92]郑天伦,王国良,黄家庆,等.养殖大黄鱼溃疡病的病原菌及其防治药物.浙江大学学报(理学版),2006,33(5):573~577
    [93]任红梅,何智,杨德英,等.黄鳝体表溃疡病病原菌的分离与鉴定.水生生物学报,2010,34(6):1106~1111
    [94]戴瑜来,吕永林,李凯,等.大黄鱼溃疡病的组织病理和超微病理研究.热带海洋学报,2010,29(5):174~179
    [95]李海燕,黄文芳.鳜细菌性烂鳃病的鳃、肝、肾组织病理研究.华南师范大学学报(自然科学版),1999,3:67~73
    [96]徐晓津,徐斌,王军,等.哈维氏弧菌人工感染大黄鱼的组织病理学研究.厦门大学学报(自然科学版),2009,48(2):281~286
    [97]朱成科,周晓扬,张其.南方鲇幼鱼细菌性败血症病原与组织病理.中国水产科学,2011,18(2):360~370
    [98]吕俊超,李轩,韩茵,等.养殖大菱鲆中牙鲆肠弧菌的分离鉴定及组织病理学.水产学报,2009,33(2):311~317
    [99]吕俊超,张晓华,王燕,等.养殖大菱鲆病原菌杀鲑气单胞菌无色亚种的分离鉴定和组织病理学研究.中国海洋大学学报,2009,39(1):91~95
    [100]邢德峰,任南琪.应用DGGE研究微生物群落时的常见问题分析.微生物学报,2006,46(2):331~335
    [101] Mitchell L Sogin, Hilary G Morrison, Julie A Huber, David Mark Welch, Susan M Huse,Phillip R Neal, Jesus M Arrieta, Gerhard J Herndl. Microbial diversity in the deep sea andthe underexplored ‘‘rare biosphere’’. PNAS,2006,103(32):15~23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700