用户名: 密码: 验证码:
桥梁的几类SHM Benchmark及模型修正的子结构与响应面方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,一个定义良好的精准数值分析模型是桥梁健康监测中损伤识别、安全评定和寿命预测等问题研究的基础。本文针对桥梁健康监测中的Benchmark司题和模型修正进行研究和探讨,主要内容如下:
     (1)针对桥梁结构健康监测Benchmark司题,建立了几类不同复杂层次的桥梁Benchmark模型试验系统:空间桁架桥梁模型、单跨简支梁桥模型、独塔斜拉桥模型和山东滨州大跨斜拉桥实验室模型。桥梁Benchmark模型试验系统内容包括:a)物理模型的设计和实现;b)试验系统搭建和多工况静动力试验;c)通过有限元建模和模型修正得到各桥梁模型的基准有限元模型。不同复杂层次的桥梁SHM Benchmark试验系统,为桥梁SHM技术的研究和应用提供了比较理想的实验室研究平台。
     (2)分析了有限元模型修正中待修正参数的选取,主要分为参数的灵敏度分析和显著性方差分析,通过滨州桥实验室有限元模型的仿真算例,分析了基于灵敏度分析和显著性方差分析的参数选取方法。灵敏度分析简单直观,易于工程应用,方差分析最大的优点是能考虑各参数之间的交叉效应,更符合实际情况。
     (3)针对桥梁结构模型修正中待修正参数多和可用测试信息有限的问题,进行了基于不同信息量、不同类型信息和多信息综合的模型修正分析,同时针对在役和在建的斜拉桥结构,分别给出了由局部到整体的子结构模型修正方法。结果表明特征信息量的多少和质量,严重影响模型修正的效果,结合不同类型信息的模型修正对修正结果有较大的改善;斜拉桥子结构模型修正能提高修正效率和修正结果的可信性。
     (4)探讨径向基函数(RBF)的响应面方法在桥梁结构系统中的应用。给出了RBF响应面建模方法和求解策略,对样本选取和确定RBF最优形状系数做了分析并给出建议。对比分析了传统多项式函数和多个RBF响应面方法在拟合大跨斜拉桥设计参数和响应输出之间复杂隐式关系的表现,并对各模型的抗噪声污染能力做了对比分析。分析结果表明,RBF响应面模型明显优于传统多项式模型,能很好的拟合复杂的斜拉桥结构系统。
     (5)把径向基函数响应面方法应用于大型复杂桥梁结构的模型修正中。首先,针对单层空间桁架模型的几种不同损伤工况做了数值算例分析;然后,对实验室独塔斜拉桥模型和滨州斜拉桥模型,基于仿真数据和试验测试数据进行了模型修正。结果表明,基于仿真数据的模型修正结果精度较高,修正参数较严格的收敛于目标值;基于试验数据的模型修正,能得到与实际情况相符的合理结果,验证了该方法的有效性。
It is well known that a well-defined and precise analytical model of bridge is very important, and it is the research foundation for damage identification, safety evaluation and life prediction in bridge structural health monitoring (SHM). In this paper, the bridge SHM benchmark problem and model updating are studied and discussed. The main content of this dissertation is as follows:
     (1) Several bridge model benchmark experimental systems with increasing complexity are designed and constructed for bridge SHM benchmark study. They are a steel truss bridge model, a single span and simply supported grid bridge model, a single tower cable-stayed bridge model and the SHM laboratorial model of a long-span cable-stayed bridge. Each bridge benchmark system includes the following three steps:a) the design and realization of bridge physical model; b) the establishment of model experimental system, then, various static and dynamic experiments are carried out on the model experimental system; c) the initial Finite Element Model is constructed, and the benchmark numerical model of physical model can be achieved by updating the initial Finite Element Model (FEM) based on the experimental data of the bridge model. These bridge benchmark model experimental systems can provide an ideal and convenient experimental platform for bridge SHM study.
     (2) The parameters selection methods of sensitivity analysis and variance analysis with respect to design parameters are performed for model updating based on FEM simulation of a cable-stayed bridge laboratorial model to investigate the reasonability. Results show that the sensitivity analysis has clear conception and can be easily applied to practical engineering; variance analysis based on testing samples generated by design of experiment (DOE) in the global design space could quantitatively show the significance levels of design parameters to modal eigenvalues.
     (3) To investigate the problems of multi-parameter and limited testing data in bridge model updating, various numerical simulation of model updating are implemented based on different types and amounts of information and their combination. Results indicate that the quantity and quality of characteristic information for model updating have significantly impacts on the modification results, and the model updating by utilizing integrated data of different characteristic information can considerably improve the updated results. Meanwhile, substructure model updating approaches are proposed for existing and under-construction cable-stayed bridges. The numerical simulation and experimental demonstration indicated that the proposed methods are valid and reliable with high efficiency.
     (4) The response surface method based on radial basis functions (RBFs) is investigated to model the input-output system of large-scale structures. As a methodology study, the complicated implicit relationships between the design parameters and response characteristics of cable-stayed bridges are employed in the construction of response surface (RS) models. Several methods of DOE are investigated to study the sample selection for RS modeling, and the shape parameter of RBFs for RS approximation of the interested features of cable-stayed bridges is studied. Some suggestions for selecting samples and optimal shape parameters are proposed. The RS methods based on approximate functions of different RBFs are investigated. Meanwhile, the commonly used RS method of polynomial function is also carried out for comparison. For each RS method, the approximation accuracy is evaluated and the anti-noise ability is also discussed. Results demonstrate that RS methods based on RBFs have high approximation accuracy and exhibit a better performance than that based on polynomial function.
     (5) The RBFs-based RS method is applied to model updating of large and complicated bridge. Firstly, the numerical simulation of model updating based on RBFs-based RS approach is carried out on a space truss bridge model; then, simulation analysis and experimental verification are performed on a single tower cable-stayed bridge model and a scaled model of a long-span cable-stayed bridge. Simulation analysis shows the updated results have high accuracy, and the model updating based experimental data indicates that the results are reasonable. It is demonstrated that the proposed approach is valid for model updating of large and complicated bridge structures.
引文
[1]欧进萍.重大工程结构的累计损伤与安全评定.走向21世纪的中国力学-中国科协第9次“青御科学家论坛”报告文集.北京:清华大学出版社,1996.p.179-189.
    [2]欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用[J].中国科学基金,2005,1:8-12.
    [3]李冬生.拱桥吊杆损伤监测与健康诊断[D].哈尔滨:哈尔滨工业大学,2007.
    [4]Loland, O. and Dodds, C.J. Experience in developing and operating integrity monitoring system in north sea[C]. Proceedings of the 8th Annual Offshore Tech,1976,313-319.
    [5]Vandiver, J.K. Detection of structure failure on fixed platforms by measurement of dynamic response[J]. Journal of Petroleum Technology,1977, March,305-310.
    [6]Kenley, R.M. and Dodds C.J. West sole we platform:detection of damage by structural response measurements[C]. Proceedings of the 12th Annual Offshore Tech,1980:111-118.
    [7]Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review[R]. Los Alamos:Los Alamos National Laboratory,1996.
    [8]Van der Auweraer, H. and Peeters, B. International research projects on structural health monitoring:An overview[J]. Structural Health Monitoring,2003,2(4):341-358.
    [9]Ou, J.P. Some recent advances of intelligent health monitoring systems for infrastructures in Mainland China[C]. Proceedings of 1st International Conference on Structural Health Monitoring and Intelligent Infrastructures. Tokyo, Japan,2003.
    [10]Ou, J.P. Advances on vibration control and health monitoring of civil infrastructures in mainland China[C]. International Symposium on Network and Center-Based Research for Smart Structures Technologies and Earthquake Engineering. Tokyo, Japan,2004. p.6-10.
    [11]Ou, J.P. and Li, H. Structural health monitoring in mainland China-review and future trends[J]. Structural Health Monitoring,2010,9(3):219-231.
    [12]Mita, A. Emerging needs in Japan for health monitoring technologies in civil and building structures[C].2nd International Workshop on Structural Health Monitoring. Stanford University, Sept.8-10,1999. p.56-67.
    [13]Yun, C.B., Lee, J.J., Kim, S.K. and Kim, J.W. Recent R&D activities on structural health monitoring for civil infra-structures in Korea[J]. KSCE Journal of Civil Engineering,7(6): 637-651.
    [14]Koh, H.M., Choo, J.F., Kim, S.K. and Kim, C.Y. Recent development of bridge health monitoring system in Korea[M]. In:Ansari F, editor. Sensing Issues in Civil Structural Health Monitoring. Springer Netherlands,2005. p.33-42.
    [15]张启伟.大型桥梁健康监测概念与监系统设计[J].同济大学学报(自然科学版)、2001,29(01):65-69.
    [16]周文松.大跨度斜拉桥健康监测系统研究与应用[D].哈尔滨:哈尔滨工业大学,2006.
    [17]Li, H. and OU, J.P. Intelligent health monitoring systems for cable-stayed bridges[C]. Proc. SPIE 5765, Smart Structures and Materials 2005:Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA, March 7-102005.
    [18]Kwong, H.S., Lua, C.K. and Wong, K.Y. Monitoring system for Tsing Ma Bridge[C] Proceedings of the 13th Structures Congress. Boston, MA, April 3-5,1995.264-267.
    [19]Wong, K.Y., and Ni, Y.Q. Structural health monitoring of cable supported bridges in Hong Kong[M]. Chapter 12 of the book:Structural Health Monitoring of Civil Infrastructure Systems, edited by Karbhari, V.M. andAnsari, F. Woodhead Publishing, Cambridge, UK,2009.
    [20]何旭辉.南京长江大桥结构健康监测及其关键技术研究[D].长沙:中南大学,2004.
    [21]黄方林,王学敏,陈政清等.大型桥梁健康监测研究进展[J].中国铁道科学,2005,26(02):1-7.
    [22]Chen, J.C., eds. Proceedings of the Second International Workshop on Structural Control:Next Generation of Intelligent Structures. Hong Kong University of Science and Technology, December 18-21,1996. p.32-35.
    [23]Black, C.J. and Ventura, C.E. Blind test on damage detection of a steel frame structure[C]. Proceedings of the 16th International Modal Analysis Conference. Santa Barbara, California, February 2-5,1998. p.623-629.
    [24]Ventura, C.E, Prion H.G.L., Black C.J, et al. Modal properties of a steel frame used for seismic evaluation studies[C]. Proceedings of the 15th International Modal Analysis Conference, Florida Orlando, February 3-6,1997.
    [25]Johnson, E.A., Lam, H.F. Katafygiotis, L.S. and Beck, J. A benchmark problem for structural health monitoring and damage detection[C]. Proceedings of the 14th ASCE Engineering Mechanics Conference. Austin, Texas, May 21-24,2000.
    [26]Bernal, D. and Gunes, B. Observer/Kalman and subspace identification of the ubc benchmark structural model[C]. Proceedings of the 14th ASCE Engineering Mechanics Conference. Austin, Texas, May 21-24,2000.
    [27]Dyke, S.J., Caicedo, J.M. and Johnson, E.A. Monitoring of a benchmark structure for damage identification[C]. Proceedings of the 14th ASCE Engineering Mechanics Conference. Austin, Texas, May 21-24,2000.
    [28]Au, S.K., Yuen K.V. and Beck J. Two-stage system identification results for benchmark structure[C]. Proceedings of the 14th ASCE Engineering Mechanics Conference. Austin, Texas, May 21-24,2000.
    [29]Corbin, M., Hera, A. and Hou, Z. Locating damage regions using wavelet approach[C]. Proceedings of the 14th ASCE Engineering Mechanics Conference. Austin, Texas, May 21-24, 2000.
    [30]Katafygiotis, L.S., Lam, H.F. and Mickleborough, N. Application of a statistical approach on a benchmark damage detection problem[C]. Proceedings of the 14th ASCE Engineering Mechanics Conference. Austin, Texas, May 21-24,2000.
    [31]Lus, H. and Betti, R. Damage identification in linear structural systems[C]. Proceedings of the 14th ASCE Engineering Mechanics Conference. Austin, Texas, May 21-24,2000.
    [32]Bernal, D. A Flexibility based approach for the characterization of damage application to phase Ⅱe of the IASC-ASCE benchmark study[C]. Proceedings of the 21st International Modal Analysis Conference. Kissimmee, Florida, February 3-6,2003.
    [33]Caicedo, J. and Dyke, S. Phase Ⅱ SHM benchmark studies:Application of the NEXT and ERA for damage detection[C]. Proceedings of the 21st International Modal Analysis Conference. Kissimmee, Florida, February 3-6,2003.
    [34]Ching, J. and Beck J. Two-stage bayesian structural health monitoring approach for Ⅱ ASCE benchmark studies[C]. Proceedings of the 21st International Modal Analysis Conference. Kissimmee, Florida, February 3-6,2003.
    [35]Lam, Heung-Fai. Phase Ⅱe of the IASC-ASCE benchmark study on structural health monitoring[C]. Proceedings of the 21st International Modal Analysis Conference. Kissimmee, Florida, February 3-6,2003.
    [36]Ventura, C.E., Lord, J.F., Turek, M., et al. Experimental studies and remote monitoring of iasc-asce benchmark test frame[C]. Proceedings of the 21st International Modal Analysis Conference. Kissimmee, Florida, February 3-6,2003.
    [37]Dyke, S.J., Bernal, D., Beck, J., et al. Phase Ⅱ experimental structural health monitoring benchmark problem[C]. Proceedings of the 16th ASCE Engineering Mechanics Conference. Seattle, Washington, July 16-184,2003.
    [38]Franco, G.E. and Betti, R. An evolutionary strategy for structural damage detection[C]. Proceedings of the 16th ASCE Engineering Mechanics Conference. Seattle, Washington, July 16-18,2003.
    [39]Giraldo, D., Caicedo, J. and Dyke, S. Application of structural health monitoring techniques to the phase Ⅱ experimental benchmark problem[C]. Proceedings of the 16th ASCE Engineering Mechanics Conference. Seattle, Washington, July 16-18,2003.
    [40]Hera, A. and Hou, Z. Wavelet approach for damage detection using experimental data of ASCE benchmark study[C]. Proceedings of the 16th ASCE Engineering Mechanics Conference. Seattle, Washington, July 16-18,2003.
    [41]Black, C.J. and Ventura C.E. Blind test on damage detection of a steel frame structure[C]. Proceedings of the 16th International Modal Analysis Conference. Santa Barbara, California, February 2-5,1998. p.623-629.
    [42]Jason, L. Burkett. Benchmark studies for structural health monitoring using analytical and experimental models[D]. Orlando, Florida,:University of Central Florida,2003.
    [43]Ciloglu, K., Catbas, F.N., et al. Structural identification of phenomenological physical models with controlled mechanisms of uncertainty. Proc. SPIE 4330,165,,2001.
    [44]Mufti, A. Guidelines for structural health monitoring[M]. Winnipeg Manitoba:ISIS Canada Corporation, September 2001.
    [45]FBI TaskGroup. Monitoring and safety evaluation of existing concrete structures (state-of-the-art report).2002.
    [46]Aktan, A.E., Catbas, F., Grimmelsman, K.A., et al. Development of a model health monitoring guide for major bridges[M]. Drexel intelligent Infrastructure and Transportation Safety Institute, September 2002.
    [47]ISO. Mechanical vibration-evaluation of measurement results from dynamic tests and investigation on bridges[M]. ISO,2002.
    [48]Dir. u. Prof. Dr. W. RUcker D-IFH, Dipl.-Ing. R. Rohrmann. guideline for structural health monitoring. Berlin,Germany:SAMCO,2006.
    [49]Mottershead, J.E. and Friswell, M.I. Model updating in structural dynamics:a survey[J]. Journal of Sound and Vibration,1993,167(2):347-375.
    [50]Brownjohn, J.M.W., Dumanoglu, A.A. and Severn, R.T. Ambient vibration survey of the Faith Sultan Mehmet(second Bosporus) suspension bridge[J]. Earthquake Engineering and Structural Dynamics,21(10):907-924.
    [51]Berman, A. Mass matrix correction using an incomplete set of measured models[J]. AIAA Journal,1979,17(10):1147-1148.
    [52]Baruch, M. Optimal correction of mass stiffness matrix using measured modes[J]. AIAA Journal, 1982,20(11):1623-1626.
    [53]He, J. and Ewins, D.J. Analytical stiffness matrix correction using measured vibration modes[J]. Modal Analysis:International Journal of Analytical and Experimental Modal Analysis,1986,7: 9-14.
    [54]Baruch, M. Optimization procedure to correct stiffness and flexibility matrices using vibration tests[J]. AIAA Journal,1978,16(11):1208-1210.
    [55]Baruch, M. Methods of reference basis for identification of linear dynamic structures[J]. AIAA Journal,1984,22(4):561-564.
    [56]Berman, A. and Nagy, E.J. Improvement of a large analytical model using test data[J]. AIAA Journal,1983,21(8):1168-1173.
    [57]Chen, J.C. and Wada, B.K. Criteria for analysis-test correlation of structural dynamic systems[J]. Journal of applied mechanics,1975,24(2):471-477.
    [58]Chen, J.C. and Garba, J.A. Analytical model improvement using modal test results[J]. AIAA Journal.1980,18(6):684-690.
    [59]Caesar, B. Updating system matrices using modal test data. Proceedings of the 5th International Modal Analysis Conference,1987. p.453-459.
    [60]Kabe, A.M. Stiffness matrix adjustment using mode data[J]. AIAA Journal,1985,23(9): 1670-1676.
    [61]Wei, F.S., and Zhang, D.W. Mass matrix modification using element correction method[J]. AIAA Journal,1989,27(1):119-121.
    [62]张德文,Wei,F.S.,李应明.修正动力分析模型的最优元素型摄动法[J].振动工程学报.1988,1(4):97-105.
    [63]Minas, C. and Imnan, D.J. Matching finite element models to modal data[J]. Journal of Vibration and Acoustics,1990,112(1):84-92.
    [64]Zimnernan, D.C. and Widengren, M. Correcting finite element models using a symmetric eigenstructure assignment technique [J]. AIAA Journal,1990,28(9):1670-1676.
    [65]Fox, R.L. and Kapoor, M.P. Rates of change of eigenvalues and eigenvectors [J]. AIAA Journal, 1968,6(2):2426-2429.
    [66]Collins, J.D., Kennedy, B. and Hart, G.C. Statistical identification of structures[J]. AIAA Journal, 1973,12(2):185-190.
    [67]Wel Tim, J.C. and Zhang, Q. Correction of FEM via selected physical parameters[C]. proceedings of 7th IMAC. Las vegas,1989.
    [68]Link, M. Updating of analytical models-Review of numerical procedures and application aspects[C].In Processing of the Structural Dynamics Forum SD2000:Los Alamos,1999.
    [69]Zapico, J.L., Gonzalez, M.P., Friswell, M.I. et al. Finite element model updating of a small scale bridge[J]. Journal of Sound and Vibration,2003,268(5):993-1012.
    [70]Jaishi, B. Finite element model updating of civil engineering structures under operational conditions[D].福州:福州大学,2005.
    [71]秦仙蓉.基于灵敏度分析的结构计算模型修正技术及相关问题研究[D].南京:南京航空航天大学,2001.
    [72]费庆国,张令弥,李爱群,等.基于统计分析技术的有限元模型修正研究[J].振动与冲击,2005,24(3):23-26.
    [73]Blakely, K.D. Selection of measurement and parameter uncertainties for finite element models[C]. Proceedings of the 2nd International Modal Analysis Conference. New York,1984. p.82-88.
    [74]Firswell, M.I. The adjustment of structural parameters using a minimum variance estimator[J]. Mechanical Systems and Signal Processing,1989,3(2):143-155.
    [75]Friswell, M.I., Mottershead, J.E. and Ahmndian, H. Finite element model updating using experimental tested data parameterization and regularization[J]. Transactions of the Royal Society of London, Series A, Special Issue on Experimental Modal Analysis,359(1778), January 2001,169-186.
    [76]Pabst, U. and Hagedorn, P. Identification boundary conditions as a part of model correction[J]. Journal of Sound and Vibration,1995,182(4):565-575.
    [77]Ren, Y. and Beards, C.F. Identification of joint properties of a structure using FRF data[J]. Journal of Sound and Vibration,1995,186(4):567-587.
    [78]Wang, M., Heo, G. and Satpathi, D. Dynamic characterization of a long span bridge:a finite element based approach[J]. Soil Dynamics and Earthquake Engineering,1997,16(503-512.
    [79]Brownjohn, J.M.W. and Xia, P.Q. Dynamic assessment of curved cable-stayed bridge by model updating[J]. Journal of Structural Engineering,2000,126(2):252-260.
    [80]Zhang, Q.W., Chang, T.Y. and Chang, C.C. Finite-element model updating for the Kap Shui Mun cable-stayed bridge[J]. Journal of Bridge Engineering,2001,6(4):285-293.
    [81]夏品奇,James, M.W. Brownjohn.斜拉桥有限元建模与模型修正[J].振动工程学报,2003,16(2):219-223.
    [82]范立础,袁万城,张启伟.悬索桥结构基于敏感性分析的动力有限元模型修正[J].土木工程学报,2000,33(1):9-14.
    [83]郑惠强,陈鹏程,必为建,等.大型桥吊结构动力有限元模型修正[J].同济大学学报,2001,29(12):1412-1415.
    [84]张启伟.基于环境振动测量值的悬索桥结构动力模型修正[J].振动轼程学报,2002,15(1):74-78.
    [85]郭力,韩晓林,李兆霞.基于环境振动测试的润扬桥塔模型修正[J].特种结构,2003,20(4):68-70.
    [86]王浩,王付全,李爱群,等.大跨度缆索支撑桥梁分阶段有限元模型修正[J].工程力学,2009,26(10):111-116.
    [87]田仲初,彭涛,陈政清.佛山东平大桥静动力分层次有限元模型修正研究[J].振动与冲击,2007,26(6):162-165.
    [88]Yun, C. and Lee, H. Substructural identification for damage estimation of structures[J]. Structural Safety,1997,19(1):121-140.
    [89]Koh, C.G. and Shankar, K. Substructural identification method without interface measurement[J]. Journal of Engineering Mechanics,2003,129(7):769-776.
    [90]谢献忠,易伟建.结构物理参数时域识别的子结构方法研究[J].工程力学,2005,22(5):94-98.
    [91]郭力,李兆霞,陈鸿天.基于子结构分析的多重子步模型修正方法[J].中国工程科学,2006,8(9):42-48.
    [92]Hou, J.L., Lukasz Jankowski and Ou, J.P. A substructure isolation method for local structural health monitoring[J]. Structural Control and Health Monitoring,2011,18(6):601-618.
    [93]侯吉林,欧进萍.基于局部模态的约束子结构模型修正法[J].力学学报,2009,42(5):748-756.
    [94]侯吉林,欧进萍.基于局部脉冲响应的约束子结构修正法[J].工程力学,2009,26(11):23-30.
    [95]侯吉林,欧进萍.基于局部时间序列的约束子结修正[J].振动工程学报,2009,22(3):305-312.
    [96]穆雪峰,姚卫星,余雄庆,等.多学科设计优化中常用代理模型的研究[J].计算力学学报2005,22(5):608-612.
    [97]Hill, W.J. and Hunter, W.G. A Review of response surface methodology:A literature review[J]. Technometrics,1966,8(5):571-590.
    [98]Montgomery, D. C.试验设计与分析[M].北京:中国统计出版社,1998.
    [99]Mead, R. and Pike, D.J. A review of response surface methodology from a biometrics viewpoint[J]. Biometrics,1975,31(12):803-851.
    [100]隋允康,张立新,杜家政.基于响应面方法的桁架截面敏度分析和优化[J].力学季刊,2006,27(1):96-102.
    [101]佟晓利,赵国藩.一种与结构可靠度分析几何法相结合的响应面方法[J].土木工程学报,1997,30(4):51-57.
    [102]邓苗毅,任伟新.基于响应而方法的结构有限元模型修正研究进展[J].铁道科学与工程学报,2008,5(3):42-45.
    [103]窦毅芳,王中伟,张为华.固体火箭发动机内弹道响应面建模方法研究[J].弹箭与制导学报,2007,27(5):133-135.
    [104]郭勤涛,张令弥,费庆国.用于确定性计算仿真的响应面法及其试验设计研究[J].航空学报,2005,26(1):55-61.
    [105]Matherton. Principles of geo-statistics[J]. Economic geology,1963,58(1246-1266.
    [106]Giunta, A.A., and Watson, L.T. A comparison of approximation modeling techniques: polynomial versus, interpolating models[J]. AIAA-98-4758,1998.
    [107]张崎.基于Kriging方法的结构可靠性分析及优化设计[D].大连:大连理工大学,2005.
    [108]Welch, W.J., buck, R. J. and Sacks, J. Predicting and computer experiments[J]. Technometrics, 1992,34(1):15-25.
    [109]Welch, W.J., Mitchell, T.J. and Wynn, H.P. Design and analysis of computer experiments[J]. Statistics Science,1989,4(4):409-435.
    [110]Martin, J.D. and Simpson, T.W. A study on the use of Kriging models to approximate deterministic computer models. Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Chicago:ASME,2003.
    [111]吴宗敏.径向基函数、散乱数据拟合与无网格偏微分方程数值解[J].工程数学学报,2002,19(2):1-12.
    [112]吴宗敏.函数的径向基表示[J].数学进展,1998,27(3):202-208.
    [113]Hardy, R.L. Theory and applications of the multiquadric-biharmonic method[J]. Computers & Mathematics with Applications,1990,19,163-208.
    [114]Franke, C. and Schaback, R. Solving partial differential equations by collocation using radial basis functions[J]. Applied Mathematics and Computation,1998,93(1):73-82.
    [115]Ball, K., Sivakumar, N. and Ward, J.D. On the sensitivity of radial basis interpolation to minimal distance separation distance[J]. Constructive Approximation 1992,8(4):401-426.
    [116]Dyn, N. Interpolation of scattered data by radial functions. Topics in Multivariate Approximation[M]. Academic Press,1987.
    [117]Jackson, I.R.H. Radial basis functions:a survey and new results[M]. University of Cambridge, Report No. DAMTP,NA16,1988.
    [118]Frank, R. Scattered data interpolation:test of some methods[J]. Mathematics of Computation, 1982,38(157):181-200.
    [119]Powell. M.J.D. The theory of radial basis function approximation in 1990[M]. Oxford, UK: Oxford University Press,1991.
    [120]孔宪仁,秦玉灵,罗文波.基于改进高斯径向基函数响应面方法的蜂窝板模型修正[J].复合材料学报,2011,28(5):220-227.
    [121]Brownjohn, J., Moyo, P.. Omenzetter, P. and Lu, Y. Assessment of highway bridge upgrading by dynamic testing and finite-element model updating[J|. Journal of Bridge Engineering,2003, 8(3):162-172.
    [122]Brownjohn, J. and Xia, P.Q. Dynamic assessment of curved cable-stayed bridge by model updating[J]. Journal of Structural Engineering,126(2):252-260.
    [123]Zapico, J.L., Gonzalez, M.P., Friswell, M.I. et al. Finite element model updating of a small scale bridge[J]. Journal of Sound and Vibration 2003,268(5):993-1012.
    [124]Xu, B., Wu, Z., Chen, G. and Yokoyam, K. Direct identification of structural parameters from dynamic responses with neural networks[J]. Engineering Applications of Artificial Intelligence 2004,17 (8):931-943.
    [125]Jaishi, B. and Ren, W.X. Structural finite element model updating using ambient vibration test results[J]. Journal of Structural Engineering,2005,131(4):617-628.
    [126]Cha, P. and Tuck-Lee, J. Updating structural system parameters using frequency response data[J]. Journal of Engineering Mechanics,2000,126(12):1240-1246.
    [127]林循泓.振动模态参数识别及其应用[M].南京,东南大学出版社,1990.
    [128]曹树谦,张文德,萧龙翔.振动结构模态分析理论、试验与应用[M].天津,天津大学出版社,2001.
    [129]Bendat, J.S. and Piersol, A.G. Engineering applications of correlation and spectral analysis[M]. New York:John Wiley & Sons,1993.
    [130]Shih, C.Y., Tsuei, Y.G., Allematng, R. J. et al. Complex mode indication function and its application to spatial domain parameter estimation[J]. Mechanical Systems and Signal Processing, 1988,2(4):367-377.
    [131]Brincker, R., Zhang, L. and Andersen P.. Modal identification from ambient responses using frequency domain decomposition[C].18th IMAC,2000. p.625-630.
    [132]Ibrahim, S.R. and Mikulcik, E.C. Method for the direct identification of vibration parameters from the free response[J]. Shock and Vibration Bulletin,1977,47:183-198.
    [133]Ueng, J.M., Lin, C.C and Lin P.L. System identification of torsion ally coupled buildings[J]. Computers and structures,2000,74(6):667-686.
    [134]Brown, D.L. Parameter estimation technique for modal analysis[J]. SAE paper 790221,1979.
    [135]Void, H. and Rocklin, G.T. The numerical implementation of a multi-input modal estimation method for mini-computer[C]. Proceedings of the International Modal Analysis Conference, N. Y.,USA,1982.p.542-548.
    [136]Liu, K. Modal parameter estimation using the state space method[J]. Journal of Sound and Vibration,1996,197(4):387-402.
    [137]Bazan, F.S.V. Eigensystem realization algorithm(ERA):reformulation and system pole perturbation analysis[J]. Journal of Sound and Vibration,2004,274(1-2):433-444.
    [138]Smail, M. and Thomas. M. ARMA models for modal analysis:effect of model orders and sampling frequency[J]. Mechanical Systems and Signal Processing,1999,13(6):925-941.
    [139]Schwarz, B. and Richardson, M. Modal parameter estimation from ambient response data[C]. Proceedings of IMAC 19,2001.
    [140]Bodeux, J.B. and Golinval, J.C. Modal identification and damage detection using the Data-Driven stochastic subspace and ARMAV methods[J]. Mechanical Systems and Signal Processing,2003.71(1):83-89.
    [141]Akaile, H. Power spectrum estimation though autogressive model fitting[J]. Annals of the Institute of Statistical Mathematics.1969,21(1):407-419.
    [142]Smail, M., Thomas, M. and Lakis, A. A. Assessment of Optimal ARMA model orders for modal analysis[J]. Mechanical Systems and Signal Processing,1999.13(5):803-819.
    [143]Van Overschee, P. and De Moor, B. Subspace Algorithms for the Stochastic Identification Problem[J]. Automatica,1993,29(3):649-660.
    [144]Peeters, B and Roeck, G.D. Reference-based stochastic subspace identification for output-only modal analysis[J]. Mechanical Systems and Signal Processing,1999,13(6):855-878.
    [145]Cole, H.A. On the line analysis of random vibrations[J]. AIAA Paper No.68-288, AIAA/Asme 9th Structures, Structural Dynamics and Materials Conference, vol.68. Palm Springs, CA,1968. p.288-319.
    [146]Cole, H.A. On Line Failure Detection and damping measurement of aerospace structure by random decrement signature[R]. NASA CR-2205,1973.
    [147]Vandiver, J.K., Dunwoody, A.B. et al. A mathematical basis for the random decrement vibration signature analysis technique[J]. Journal of Mechanical Design,1982,104:307-313.
    [148]James, G. Carne, T. and Lauffer, J. The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines. SAND92-1666, Sandia National Laboratory, Albuquerque, NM,1993.
    [149]Huang, N.E., Shen, Z., Long, S.R. et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[C]. Proceeding of Royal Society. London,1998.
    [150]韩海明,沈涛虹.工况模态分析的EMD方法[J].振动与冲击,2002,21(4):69-72.
    [151]Chikkerur, S., Cartwright, A.N. and Govindaraju, V. Fingerprint enhancement using STFT analysis[J]. Pattern Recognition,2007,40(1):198-211.
    [152]Ghosh, P.K. and Sreenivas, T.V. Time-varying filter interpretation of Fourier transform and its variants[J]. Signal Processing,2006,86(11):3258-3263.
    [153]Zhang, Z.Y., Hua, H.X. et al. Modal parameter identification through Gabor expansion of response signals[J]. Journal of Sound and Vibration,2003,266(5):943-955.
    [154]Chandra Sekhar, S., Sreenivas, T.V. Adaptive spectrogram vs. adaptive pseudo-Wigner-Ville distribution for instantaneous frequency estimation[J]. Signal Processing,2003,83(7): 1529-1543.
    [155]Nayak, M.B. and Narasimhan, S.V. Autoregressive modeling of the Wigner-Ville distribution based on signal decomposition and modified group delay[J]. Signal Processing,2004,84(2): 407-420.
    [156]Newland, D.E. Wavelet analysis of vibration. Part I:Theory[J]. Journal of vibration and acoustics,1994,116:409-416.
    [157]Wu, Y.J. and Du, R. Feature extraction and assessment using wavelet packets for monitoring of machining processes [J]. Mechanical Systems and Signal Processing,1996,10(1):29-53.
    [158]Huang, N.E., Shen, Z. and Long, S. A new view of nonlinear water waves:The Hilbert Spectrum[J]. Annual Review of Fluid Mechanics,1999,31(1):417-457.
    [159]Banan, M.R., Hjelmstad, K.D. Parameter estimation of structure from static response Ⅰ: Computational aspects[J]. Journal of Structural Engineering,1994,120(11):3243-3258.
    [160]Banan, M.R., Hjelmstad, K.D. Parameter estimation of structure from static response Ⅱ: numerical simulation studies[J]. Journal of Structural Engineering,1994,120(11):3259-3283.
    [161]李书,冯太华,范绪萁.一种利用静力试验数据修正有限元模型的方法[J].应用力学学报,1995,12(3):52-57.
    [162]Sanayei, M. and Sletnik, M. J. Parameter estimation of structure from static strain measurements I:formulation[J]. Journal of Structural Engineering,1996,122(5):555-562.
    [163]Sanayei, M. and Sletnik, M.J. Parameter estimation of structure from static strain measurements II:error sensitivity analysis[J]. Journal of Structural Engineering,1996,122(5):563-572.
    [164]Sanayei, M., Imbaro, G.R. et al. Structural model updating using experimental static measurements[J]. Journal of Structural Engineering,1997,123(6):792-798.
    [165]崔飞.桥梁参数识别与承载力评估[D].同济大学,2000.
    [166]崔飞,杨党旗,高岩.用参数识别技术进行桥梁结构损伤识别[J].中国铁道科学,2003,24(3):36-39.
    [167]向天宇,赵人达,刘海波.基于静力测试数据的预应力混凝土连续梁结构损伤识别[J].土木工程学报,2003,36(11):79-82.
    [168]Bakhtiari-Nejad, F., Rahai, A. and Esfandiari, A. A structural damage detection method using static noisy data[J]. Journal of Structural Engineering,2005,27(1784-1793.
    [169]张启伟,范立础.利用静动力测试数据的桥梁结构损伤识别[J].同济大学学报,1998,26(5):528-532.
    [170]袁旭东,周晶,黄梅.基于静力位移及频率的结构损伤识别神经网络方法[J].哈尔滨工业大学学报,2005,37(4):488-450.
    [171]田军.有限元模型静力—模态协同修正技术[D].西安:西北工业大学,2004.
    [172]宗周红,夏樟华.联合模态柔度和静力位移的桥梁有限元模型修正方法[J].中国公路学报,2008,21(6):43-49.
    [173]雷德明,严新平.多目标智能优化算法及其应用[M].科学出版社,2009.
    [174]Jaishi, B.基于环境振动的土木工程结构有限元模型修正[D].福州:福州大学,2005.
    [175]刘洋.高性能优化算法与结构模型修正的研究[D].哈尔滨:哈尔滨工业大学,2008.
    [176]Holland, J.H. Adaptation in Natural and Artificial Systems:An introductory analysis with application to biology, control, and artificial intelligence[M].1st edition, Ann Arbor, MI:The University of Michigan Press,1975,2nd edition, Cambridge, MA:MIT Press,1992.
    [177]Hemez, F.M., Farha, C.I, Bacher, E. and Vallat, S. On the efficiency of model updating via genetic algorithm for structural damage detection. vol.4. Collection of Technical Papers-AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 1995, p.2792-2801.
    [178]Akula, V.R., Ganguli, Rn. Finite element model updating for helicopter rotor blade using genetic algorithm[J]. AIAA Journal,2003,3(40):554-556.
    [179]Fiori de Castro, H., Junichi Idehara, S., Lucchesi Cavalca, K... et al. Updating method based on genetic algorithm applied to non-linear journal bearing model[C]. Eighth International Conference on Vibrations in Rotating Machinery-IMechE Conference Transactions,2004. p.433-442.
    [180]Kirkpatrick, S., Gelatt Jr, C.D. and Vecchi, M.P. Optimization by simulated annealing[J]. Science,1983,220(4598):671-680.
    [181]Lundy, M. and Mess, A. Convergence of an annealing algorithm[J]. Mathematical Programming, 1986,34(1):111-124.
    [182]Eberhart, R.C. and Kennedy, J. A new optimizer using particle swarm theory[C]. Proceedings of the 6th International Symposium on Micro machine and Human Science. Piscataway, NJ:IEE Service Center,1995. p.39-43.
    [183]Kennedy, J. and Eberhart, R.C. A discrete binary of the particle swarm algorithm[C]. Proceedings of IEEE international conference on systems, man and cybernetics. Piscataway, NJ: IEE Service Center,1997. p.4104-4109.
    [184]Bonabeau, E., Dorigo, M. and Theraulaz, G. Inspiration for optimization from social insect behavior[J]. Nature,2000,406(6):39-42.
    [185]Dorigo, M., Caro, G.D. and Gambardella, L.M. Ant algorithms for discrete optimization[J]. Atrificial Life,1999,5(2):137-172.
    [186]Atalla, M.J. and Inman. D.J. On model updating using neural networks[J]. Mechanical System and Signal Processing,1998,12(1):135-161.
    [187]Levin, R.I., Lieven, N.A.J. and Lowenberg, M.H. Measuring and improving neural network generalization for model updating[J]. Journal of Sound and Vibration,2000,238(2):401-424.
    [188]Chang, C.C., Chang, T.Y. and X u, Y.G. Selection of training samples for model updating using neural networks[J]. Journal of Sound and Vibration,2002,249(5):867-883.
    [189]徐宜桂,周轶尘,王志华.用神经网络方法修正悬索桥动力模型[J].振动工程学报,2000,13(1):46-52.
    [190]段雪平,朱宏平,熊世树.神经网络在建筑物有限元模型修正中的应用[J].噪声与振动控制,2000,2000(2):11-14.
    [191]瞿伟廉,谭冬梅,汪菁,等.基于神经网络的大型空间网架结构的有限元模型修正[J].地震工程与工程振动,2003,23(4):83-89.
    [192]费庆国,张令弥.基于径向基神经网络的有限元模型修正研究[J].南京航空航天大学学报,2004,36(6):748-752.
    [193]Gul, M. and Catbas, F.N. Statistical pattern recognition for Structural Health Monitoring using time series modeling:Theory and experimental verifications [J]. Mechanical Systems and Signal Processing,2009,23(7):2192-2204.
    [194]Zaurin, R. and Catbas, F.N. Benchmark studies for structural health monitoring using computer vision[C]. The Fourth International Conference on Bridge Maintenance, Safety, and Management. Seoul, Korea,2008.
    [195]Catbas, F.N., Gul, M. and Burkett, J.L. Damage assessment using flexibility and flexibility-based curvature for structural health monitoring[J]. Smart Materials and Structures, 2008,17(1):15-24.
    [196]Harris, H.G. and Sabnis, G.M. Structural modeling and experimental techniques[M].CRC Press, 1999.
    [197]Bao, Y., Li, H., An, Y. and Ou, J. Dempster-Shafer evidence theory approach to structural damage detection[J]. Structural Health Monitoring,2012,11(1):13-26.
    [198]An, Y. and Ou, J. Numerical studies on damage localization of steel-truss bridges using the curvature difference method of strain waveform fractal dimension[C]. The 6th International Workshop on Advanced Smart Materials and Smart Structures Technology. Dalian, China,2011.
    [198]侯吉林.约束子结构模型修正方法[D].哈尔滨:哈尔滨工业大学,2010.
    [200]陈开利.独塔斜拉桥的建设和展望[J].桥梁建设,1998,3:33-36.
    [201]戴利民.协作体系斜拉桥的结构分析[J].同济大学学报,2000,28(1):92-97.
    [202]李晓莉.独塔斜拉桥的设计理论研究[D].上海:同济大学,2006.
    [203]李亚非,颜东煌,田仲初.大型三塔斜拉桥铝合金试验模型的研制[J].长沙交通学院学报,2000,3:37-41.
    [204]Mottershead, J.E. and Fireswell, M. I. Model updating in structural dynamics:A survey[J]. Journal of Sound and Vibration,1993,167(2):347-375.
    [205]李辉,丁桦.结构动力模型修正方法研究进展[J].力学进展,2005,35(2):170-180.
    [206]吴迪,孙锦峰,冯丽云.假设检验时检验功效的SAS实现[J].郑州大学学报(医学版),2007,42(6):09-11.
    [207]陈平,王成震,周俊,等.运用SAS软件对上证指数月线数据的综合预测分析[J].系统工程理论与实践,2003,6:72-78.
    [208]陆健.临床试验统计分析规范性研究及SAS软件实现[D].上海:第二军医大学,2006.
    [209]Zong, Z.H., Wang, T.L., Huang, D.Z. et al. State-of-the-art report of bridge health monitoring [J]. Journal of Fuzhou University,2002,30(2):127-152.
    [210]任伟新,陈华斌.基于响应面的桥梁有限元模型修正[J].土木工程学报,2008,41(12):73-78.
    [211]李生勇,张哲,石磊等.一种在响应面法中选取样本点的新方法[J].计算力学学报,2007,24(6):899-904.
    [212]于雷,郑云龙.逐步回归响应面法[J].大连理工大学学报,1999,39(6):792-796.
    [213]徐军,郑颖人.响应面重构的若干方法研究及其在可靠度分析中的应用[J].计算力学学报,2002,19(2):217-221.
    [214]陈荣华.径向基函数拟插值理论及其在微分方程数值解中的应用[D].上海:复旦大学,2005.
    [215]熊正超.径向基函数逼近中的若干问题研究[D].上海:复旦大学,2007.
    [216]吴宗敏.关于径向基函数插值的收敛性[J].数学年刊,1993,14A(4):480-486.
    [217]马宝胜.响应面方法在多种实际优化问题中的应用[D].北京:北京工业大学,2007.
    [218]Stein, E.M. and Weiss, G. Introduction to fourier analysis on Euclidean space[M]. New Jersey: Princeton University Press,1971.
    [219]Carlson, R.E. and Foley. T.A. The parameter R2 in multiquadric interpolation[J]. Computers & Mathematics with Applications,1991,21(9):29-42.
    [220]Kansa, E.J. and Carlson, R.E. Improved accuracy of multiquadric interpolation using variable shape parameters[J]. Computers & Mathematics with Applications,1992,24(12):99-120.
    [221]Rippa, S. An algorithm for selecting a good value for the parameter e in radial basis function interpolation[J]. Advances in Computational Mathematics,1999,11(2-3):193-210.
    [222]Sarra, S.A. and Sturgill, D. A random variable shape parameter strategy for radial basis function approximation methods[J]. Engineering Analysis with Boundary Elements.2009,33(11), 1239-1245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700