浅淹没型双层水平板防波堤水动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水平板类防波堤消防浪效果和波浪荷载受诸多因素影响,已有研究表明双层板较单层或多层板具有其优势并对消除波浪有确实效果。对双层水平板防波堤,多设为潜淹没型式。现有成果缺乏波浪荷载变化规律的系统分析,特别是深层次的消浪机理和实用化尺度优化研究更少见。
     针对上述问题,本文采用物理模型试验与数值模拟相结合的方法研究了浅淹没双型双层水平板防波堤的水动力特性。
     数值模型研究部分,利用Fluent软件,基于考虑真实流体粘性的N-S方程,结合Fluent中用户自定义函数(UDF)功能在连续方程和动量方程中分别添加造波源项和消波源项。利用采用VOF方法捕捉自由面,建立了二维数值波浪模型。该模型可同步获得水平板上的波浪压力、水平板周围的流场及水平板前后的波浪形态。
     物理模型试验部分,直接测定了双层板结构各表面上点压力分布,为数学模型的验证提供论证依据。
     基于通过验证的数值模型,通过较大范围地变化多个影响因素的取值范围,考察不同影响因素对双层水平板型防波堤荷载的影响,进而获得双层水平板型防波堤荷载的变化规律;通过流场结构、波浪压力分布的联合分析较深层次地探讨消浪和受力机理。研究主要结论归纳为:
     1.相对板宽B/L和相对水深d/L对是影响浅淹没型双层水平板防波堤防浪性能两个最重要的参数,而相对板间距S/H影响较小。
     2.就相对板宽B/L而言,对于单频波浪,不是板越宽消浪效果越好,而是消浪效果随板宽的增加(相对板宽在0.3~1.5范围内变化时)呈现波动。当相对潜深d1/H在0.4~1.33、相对板间距S/H在1.0~1.67范围内变化时,B/L取值为0.8~0.9时防波堤防浪效果最佳。
     3.就相对水深d/L而言,相对水深越小,双层水平板的消浪效果越佳。在相对潜深d1/H在0.4~1.33、相对板宽B/L在0.284~0.67范围内变化时,相对水深小于0.2时,透射系数不大于0.4;相对水深在0.2~0.3范围内变化时,透射系数在0.4~0.7范围内变化。
     4.上层板所受总力与双层板所受总力大小相当,且随相对板宽B/L、相对板间距S/H和相对水深d/L的变化趋势基本一致;下层板所受结构总力较小。
     5.双层水平板的消浪机理之一可以认为是双层板阻断了波浪的正常行进,将波浪水质点的准闭合椭圆运动分隔转变成多层复杂运动形态,在双层板中间水域,主要以板后方波浪的回流为主,水质点呈水平运动;在水平板两端和结构物上方,强紊动和漩涡运动为主;在水平板下侧,也以水平运动为主。上述流场结构具有能量耗散、反射作用,进而起到减小结构物后方波浪波高的作用。
     6.行进波浪与回流波浪的碰撞是产生结构物表面冲击压力的主要因素。上层板上表面前端和后端最容易受到冲击压力的影响。
The wave-dissipating performance and wave forces of horizontal plate breakwater are influenced by many factors. Existing research has revealed that compared with single plate breakwater and multi-plate breakwater, twin-plate breakwater has better wave-dissipating performance, and most of the win-plate breakwaters are designed as shallow submerged type. However, existing research achievement lacks of systematic analysis of the varying pattern of wave forces, especially for the research of deep wave-dissipating mechanism and practical scale optimization.
     In view of the above questions, this dissertation conducts a series of studies related to the hydrodynamic performance of shallow submerged horizontal twin-plate breakwater through both physical model tests and numerical simulation.
     As for numerical simulation, a2-D numerical wave flume is developed based on FLUENT software.2-D Reynolds-Averaged Navier-Stokes equation, which considers real viscosity, is used together with the UDF function of Fluent. The wave generation source and wave-dissipating source are added in the continuity equation and momentum equation. The VOF method is used to capture free surface. This numerical model can be used to obtain wave pressure on the horizontal plates, wave particle velocity around the breakwater and waveform at the front and back of the breakwater.
     As for the physical test, wave pressure on the surface of the plates is measured aiming at providing evidence of the numerical model.
     Based on the physical tests, multiple influencing parameters around a wide range of scale are tested, and the effect of different influencing parameters on wave forces is studied. Through analyzing wave particle velocity pattern and the distribution of wave pressure, the wave-dissipating mechanism and force mechanism are studied. The main research results are listed as following:
     1. Relative plate width(B/L) and the relative water depth(d/L) are the most important parameter that influences the wave-dissipating performance of the shallow submerged horizontal twin-plate breakwater, and relative distance of two plates(S/H) has small influence on the transmission coefficient
     2. As for B/L, the wave-dissipating performance is better not because of the wider of plate. The transmission coefficient fluctuates with the increase of B/L (B/L=0.5~1.5). When relative submerge deep(d1/H)=0.4~1.33, S/H=1.0~1.67, B/L=0.8~0.9, the wave-dissipating performance of twin-plate breakwater is optimaL
     3. As for d/L, the smaller of the d/L, the better the wave-dissipating performance is. When d1/H=0.4~1.33, B/L=0.284~0.67, d/L<0.2, the transmission coefficient is smaller than0.4; when d/L=0.2-0.3, the transmission coefficient changes between0.4and0.7.
     4. The total of upper plate is almost the same as that of the twin-plate, and they have the similar change trend with the change of B/L, S/H, d/L. The total force of the down plate is much smaller.
     5. One of the wave-dissipating mechanism of the twin-plate breakwater can be regarded as the blocking-up of normal progression of the waves. The elliptic motion of wave particle is separated and turned into multilayer complex water movement form. In the water area between the two plates, return flow is the main water movement form and the water particles move horizontally. At the front of and the back of the twin-plate breakwater, strong turbulent fluctuation and vortex motion are the main water movement form. Below the breakwater, water particles also move horizontally.
     6. The collision between progressing waves and return flow is the main factor that generates impact pressure on the surface of the twin-plate breakwater. The front and back end of the upper surface of the upper plate are more likely to be influenced by impact pressure.
引文
[1]交通部第一航务工程局勘察设计院.防波堤设计手册[M].北京:人民交通出版社,1982.
    [2]邱大洪,王永学.21世纪海岸和近海工程的发展趋势[J].自然科学进展,2000(11):24-28.
    [3]俞聿修.防波堤技术的新进展[J].中国港湾建设,1999(01):52-55.
    [4]谢世楞.90年代我国防波堤设计进展[J].水运工程,1999(10):11-17.
    [5]俞聿修.斜坡式和直墙式防波堤技术的新进展[J].港工技术,2000(04):1-4.
    [6]俞聿修.斜坡式防波堤技术的新进展[J].港工技术,1995(03):13-18.
    [7]王国玉.特种防波堤结构型式及水动力特性研究[D].大连理工大学,2005.
    [8]谢世楞.宽肩台斜坡式防波堤设计[J].港工技术,1996(02):1-8.
    [9]俞聿修.直墙式防波堤技术的新进展[J].港工技术,1996(01):1-7.
    [10]Takahashi S. Design of vertical breakwaters[J]. Port and Harbour Research Institute, Japan, Reference Document N34,1996.
    [11]徐光,谢善文,李元音.防波堤的新结构型式[J].水运工程,2001(11):20-25.
    [12]饶永红,俞聿修,张宁川.淹没状态下半圆型防波堤的水力特性研究[J].海洋学报(中文版),2001(02):124-131.
    [13]俞聿修,张宁川,饶永红.半圆型防波堤的水力特性研究[J].海洋工程,1999(04):39-48.
    [14]Jarlan G E. A perforated wall breakwater[J]. The Dock and Harbour Authority,1961, 41(486):394-398.
    [15]张丹,王爱群.关于管式透空直立式防波堤的研究和应用进展[J].海岸工程,2000(02):61-64.
    [16]Hendrik Bergmann, Hocine Oumeraci. Wave pressure distribution on permeable vertical walls [J]. Proceedings of the Coastal Engineering Conference,1998,2:2042-2055.
    [17]Goda Y. Random seas and desgin of maritime structures[M]. University of Tokyo Press, 1985.
    [18]林黛妍.天力混凝土消波块——用于直立岸壁的消波结构[J].港工技术,1995(02):10-16.
    [19]Harms V W. Design criteria for floating type breakwaters[J].J.of the Waterway, Port, Coastal and Ocean Division,1979(2):149-170.
    [20]吴维登,钟瑚穗,黄俊.钢管-轮胎浮式防波堤消波的几个影响因子[J].河海大学学报(自然科学版),2002(05):79-82.
    [21]Ursell F. The effect of a fixed vertical barrier on surface waves in deep water[J]. Proc. Camb. Phil.Soc.,1947(43):374-382.
    [22]Wiegal R L. Transmission of wave past a rigid c\vertical thin barrier[J]. Journal of Water-ways and Harbors Division,1960,86(1):1-12.
    [23]He ins A E. Water waves over a channel of finite depth with a submerged plane barrier [J]. Canadian Journal of Maths,1950(2):210-222.
    [24]Burke J E. Scattering of surface waves on an infinitely deep fluid[J]. J. Maths Phys, 1964(5):805-819.
    [25]Stoker J J. Water Waves[M]. New York:Interscience,1957.
    [26]Ijima T, Ozaki S. Breakwater and quay wall by horizontal plates[J]. Proc.12th Coast. Energ. Conf.,1970,1537-1556.
    [27]Siew P F, Hurley D G. Long surface waves incident on a submerged horizontal plate[J]. J. Fluid Mech.,1977(86):141-151.
    [28]Patarapanich Mana. Forces and moment on a horizontal plate due to wave scattering[J]. Coastal Engineering,1984,8(3):279-301.
    [29]Liu P L, Iskandarani M. Hudrodynamic wave forces on a submerged horizontal plate[Z]. 198961-64.
    [30]Hin-Fatt Cheong, N. Jothi Shankar, S. Nallayarasu. Analysis of submerged platform breakwater by Eigenfunction expansion method[J]. Ocean Engineering,1996,23(8): 649-666.
    [31]Mana Patarapanich, Hin-Fatt Cheong. Reflection and transmission characteristics of regular and random waves from a submerged horizontal plate[J]. Coastal Engineering, 1989,13(2):161-182.
    [32]Xiping Yu, Allen T. Chwang. Water Waves above Submerged Porous Plate[J]. Journal of Engineering Mechanics,1994,120(6):1270-1282.
    [33]Hin-Fatt Cheong, M. Patarapanich. Reflection and transmission of random waves by a horizontal double-plate breakwater [J]. Coastal Engineering,1992,18(1-2):63-82.
    [34]S. Neelamani, T. Gayathri. Wave interaction with twin plate wave barrier[J]. Ocean Engineering,2006,33(3-4):495-516.
    [35]R. Usha, T. Gayathri. Wave motion over a twin-plate breakwater [J]. Ocean Engineering, 2005,32(8-9):1054-1072.
    [36]Keh-Han Wang, Qiang Shen. Wave motion over a group of submerged horizontal plates[J]. International Journal of Engineering Science,1999,37(6):703-715.
    [37]邱大洪,王学庚.深水薄板式防波堤的理论分析[J].水运工程,1986(04):8-12.
    [38]康海贵,王科.潜型水平板水动力特性的数值研究[J].海洋通报,2002(01):1-8.
    [39]王科.潜式水平板型防波堤消浪效果研究[D].大连:大连理工大学,2001.
    [40]王国玉,王永学,李广伟.多层水平板透空式防波堤消浪性能试验研究[J].大连理工大学学报,2005(06):865-870.
    [41]T JTJ.海浪模型试验规程[M].北京:人民交通出版社,2001:30-40.
    [42]R. I. Issa. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Comput. Phys,1986,62:40-65.
    [43]李胜忠.基于FLUENT的二维数值波浪水槽研究[D].哈尔滨工业大学,2006.
    [44]Pengzhi Lin, Philip L. F. Liu. Internal wave-maker for Navier-Stokes equations models[J]. Journal of Waterway, Port, Coastal and Ocean Engineering,1999,125(4): 207-215.
    [45]叶茂伍,陈云良,张挺,等.FLUENT软件在水利工程中的应用[J].水利水电科技进展,2006(03).
    [46]李凌.粘性流中水波与浮式结构物相互作用的数值模拟研究[D].上海交通大学,2007.
    [47]刘加海,杨永全,张洪雨.二维数值水槽波浪生成过程及波浪形态分析[J].四川大学学报(工程科学版),2004(06).
    [48]李玉成,滕斌.波浪对海上建筑物的作用[M].2版.北京:海洋出版社,2002.
    [49]P. F. Siew, D. G. Hurley. Long surface waves incident on a submerged horizontal plate [J]. Journal of Fluid Mechanics,1977,83(01):141-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700