产品设计的模糊质量功能配置技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质量功能配置是面向用户的系统化产品设计方法,通过质量屋矩阵转换方式,将用户需求逐层分解为各阶段设计和制造要求,实现产品的并行开发。为了解决产品早期设计阶段质量功能配置中存在的输入信息不确定性和判断的主观性所带来的本质模糊性问题,本文以质量屋信息模糊化处理为主线,对模糊环境下的质量屋分析与决策技术进行了深入系统的研究。
     本文在分析传统质量功能配置方法采用精确数字标度无法有效处理模糊性问题的不足基础上,基于质量屋输入信息的语言变量表达形式和质量屋构建过程的主观评估方式,建立了完整的模糊质量屋理论框架,并围绕质量屋建立与分析中各部分的信息模糊化处理以及模糊环境下的质量屋决策研究解决方法。
     用户需求的提取与分析是质量功能配置的关键环节,规范化流程和结构化表达是信息获取的有效方法,利用模糊动态聚类方法可以实现用户需求项的层次化管理。重要度是质量屋的基本输入信息,本文分析了主观确定和客观确定方法的片面性,提出了一个综合主客观因素的模糊评判逆过程方法,利用客观信息建立模糊关系方程,以主观信息推导评判结果,按择近原则确定近似的权重分配。该方法能够有效利用容易获取的主客观信息,实例研究结果证明了可行性。
     技术特征重要度排序是质量屋的重要输出信息,本文针对采用模糊序关系进行两两对比方法计算复杂问题,提出了一种改进方法,通过建立一致的参照基准,定义效用函数,大幅减少了计算次数,解决了多个技术特征模糊重要度排序效率问题,提高了排序的可靠性。
     技术特征目标值的配置是一个复杂的多变量、多目标决策过程。本文分析了质量屋技术特征配置存在的模糊因素,提出了一个综合考虑模糊目标、模糊约束和模糊系数的可能性线性规划模型,克服了局部模糊优化的不完整性。仿真结果表明,该方法获得的技术特征优化配置结果是一个随着可信性和可能性不同而变化的改进区间。
     产品设计是一个多方案评估与择优过程。为了使质量屋能够用于方案评估,用方案排序矩阵替换技术竞争性矩阵,对质量屋结构进行了改进,以关系矩阵联系用户需求与方案技术特征,实现面向用户的技术方案评估。为了解决信息不完备条件下的方案评估问题,提出了一个基于质量屋的模糊方案优选模型。首次提出直接利用质量屋输出的技术特征模糊权重和设计方案定性、定量指标建立模糊决策矩阵,以海明距离为测度工具,采用模糊折衷方法进行模糊多属性决策,实现了早期设计阶段的方案优先级排序。仿真研究验证了方法的可行性和有效性。
     质量功能配置的多功能小组工作模式体现了群决策特点。本文研究了知识协同的原理和方法,确定了质量屋群决策模型的先综合评估结果再统一决策原则。充分考虑质量功能配置过程内在模糊性和成员偏好差异,提出了一个基于模糊群决策的质量屋方案评估模型,通过群体信息综合加权和指标加权,实现信息协同,计算各方案与模糊理想解的相对贴近度确定方案的优先次序。仿真结果表明,该模型为质量屋应用于设计方案择优提供了实用化方法。
Quality function deployment (QFD) is a systematic customer-oriented method of product design. Through matrices named 'House of Quality' (HOQ) translation, Customer requirements are broken down into each stage of designing and manufacturing requirements step by step, and then the concurrent engineering of product development is put into practice. To solve the intrinsic fuzziness problem that is brought about by indefinite input information and subjective evaluation in the early stage of product design, through fuzzing information in HOQ which is the main clue of this article, the analytic and decision-making technology of HOQ in fuzzy environment is studied deeply and systematically.
     Based on analyzing the deficiency that traditional QFD which adopted exact digital scale cannot tackle the fuzzy problem effectively, according to linguistic variable expression style of HOQ input information and subjective evaluation way of HOQ constructing process, the comprehensive theoretic framework of fuzzy HOQ is founded. Surrounding each part of data fuzzing in building and analyzing process of HOQ and decision-making research of HOQ in the fuzzy environment, resolution methods are studied.
     Drawing and analyzing the customer requirements is the critical step in QFD. Normalized process and constructed expression method are the effective way. Utilizing fuzzy analytic cluster method can realize customer requirement items levels management. Customer requirement weights are the basic input information of HOQ. In this article, one-sided character is analyzed in subjective determination or objective determination method separately, and a reversal process method of fuzzy evaluation integrating subjective and objective factors is presented. The objective information is used to found the fuzzy relation equation. The subjective information is applied to deduce evaluation result. According to the principle of closeness optimization, the approximate weights are determined. The method can effectively use the subjective and objective information what can be captured easily. The example result proved the feasibility.
     Ranking the technical characteristic weights is the important output information of HOQ. Aiming to the problem that adopted fuzzy order relationship method to compare couples conducting complexly, this article brings forward an improved method. By founding uniform benchmark to refer and defining utility function, computing burden decreases largely. The problem of deficiency on ranking multiple technical characteristic fuzzy weights is solved. The reliability is increased.
     The deployment of technical characteristic target value is a complicated process with multiple variables and multiple objectives. Existent fuzzy factors in technical characteristic deployment of HOQ are analyzed in this article. A possibility linear program model, which comprehensively considers fuzzy objectives, fuzzy restricts and fuzzy coefficients, is presented. Incompleteness of partial fuzzy optimization is conquered. The simulation result shows that the acquired technical characteristic optimum deployment result is a changed improved region that comes along with the credibility and possibility.
     Product design is a process of multi-scheme evaluation and optimization selection. In order to supply HOQ to schemes evaluation, the structure of HOQ is reformed through substituting the schemes ranking matrix for the technical competitive analysis matrix. The relationship matrix is used to connect customer requirements to technical characteristics of schemes, and then customer-oriented schemes evaluation is realized. For solving the problem of schemes evaluation in the condition of incomplete information, a fuzzy schemes selection model based on HOQ is given. For the first time, the fuzzy technical characteristic weights outputted from HOQ and the quantitative or qualitative technical values of design schemes are utilized directly to found a fuzzy decision-making matrix. Hamming distance is used as measure tool. Fuzzy compromise method is adopted to implement fuzzy multi-attribute decision-making. Then, the aim of prioritizing the schemes in the early design stage is realized. Simulation study proved the feasibility and usefulness.
     Multi-functional team working pattern of QFD embodies group decision-making characteristics. In this article, the author researches the principles and methods of knowledge collaboration, and determines the rule of integrating evaluation results in advance and united decision-making afterwards. Considering inherent fuzziness of QFD process and each individual member's different preferences sufficiently, a scheme evaluation model using HOQ based on fuzzy group decision-making is put forward. Through weighting the integrated group information and weighting technical values, knowledge collaboration is carried out. The ranking of the schemes is determined by computing each scheme's relative closeness degree to fuzzy ideal solution. Simulation research shows that the model gives the practical way to apply the HOQ to designing schemes selection.
引文
[1] 吴昭同,余忠华,陈文华等.保质设计.第一版.北京:机械工业出版社,2004
    [2] 林志航.产品设计与制造质量工程.第一版.北京:机械工业出版社,2005
    [3] 邵家骏.质量功能展开.第一版.北京:机械工业出版社,2004
    [4] 刘鸿恩.改进的质量功能展开.系统工程理论方法应用.1995,4(4):49-53页
    [5] 刘鸿恩.改进的质量功能展开理论框架.系统工程理论与实践.1996,7:63-67页
    [6] 刘鸿恩,张列平等.改进的质量功能展开系统方法.系统工程理论与实践.2000,2:58-62页
    [7] 刘鸿恩,张列平.质量功能展开(QFD)理论与方法——研究进展综述.系统工程.2000,18(2):1-5页
    [8] 车阿大,林志航.质量功能配置的多目标规划模型.计算机集成制造系统.1998,6:26-30页
    [9] Lin C T. A fuzzy logic based approach for implementing quality function deployment. Smart Engineering System Design, 2003,5: 55-65P
    [10] Wang J. Fuzzy outranking approach to prioritize design requirements in quality function deployment. INT. J. PROD. RES., 1999,37(4):899-916P
    [11] Kreng V B, Lee T P. QFD-based modular product design with linear integer programming-a case study. J. Eng. Design, 2004,15 (3):261-284P
    [12] Zaim S, Sevkli M. The methodology of quality function deployment with crisp and fuzzy approaches and an application in the Turkish shampoo industry. Journal of Economic and Social Research 4(1):27-53P
    [13] Iranmanesh S H, Salimi M H. An investigation of rank reserval when using fuzzy importance levels in QFD analysis. International Journal of Reliability, Quality and Safety Engineering, 2003,10(2):185-203P
    [14] Temponi C, Yen J, Tiao W A. House of quality: A fuzzy logic-based requirements analysis. European Journal of Operational Research, 1999, (117):340-354P
    [15] Ho E S S A, Lai Y J, Chang S I. An integrated group decision-making approach to quality function deployment. IIE Transactions, 1999, (31):553-567P
    [16] 翟丽.质量功能展开技术及其应用综述.管理工程学报.2000,14(1):52-60页
    [17] Vairaktarakis G L. Optimization tools for design and marketing of new improved products using the house of quality. Journal of Operations Management, 1999, (17):645-663P
    [18] 林志航.计算机辅助质量系统.第一版.北京:机械工业出版社,1997
    [19] Cristiano J J, Liker J K, White C C. Key factors in the successful application of quality function deployment(QFD). IEEE Transaction on Engineering Management, 2001,48(1):81-95P
    [20] 郝永敬,吴晓丹等.使用主因素分析法重构质量屋.计算机集成制造系统.2002,8(2):162-165页
    [21] Kim J K, Han C H, et al. A knowledge-based approach to the quality function deployment. Computers ind. Engng, 1998,35(1-2): 233-236P
    [22] Shin J S, Kim K J. Complexity reduction of a design problem in QFD using decomposition. Journal of Intelligent Manufacturing, 2000, (11):339-354P
    [23] Cristiano J J, liker J K, White C C. Customer-driven product development through quality function deployment in the U.S. and Japan. J PROD INNOV MANAG 2000, (17):286-308P
    [24] 陈以增,唐加福等.基于质量功能展开的产品规划模型.东北大学学报(自然科学版).2002,23(8):809-812页
    [25] 李飞,徐成贤.QFD技术中各设计要求间依赖关系的线形规划处理.系统工程理论与实践.2000,7:27-30页
    [26] 孔造杰,郝永敬,王云峰.一种扩展的质量功能配置模型.系统工程理论与实践.2001,4:111-113页
    [27] 王美清,唐晓青.一种面向产品规划过程的组合质量屋.北京航空航天大学学报.2004,30(7):652-656页
    [28] Mill H F. Simplifying the implementation of QFD. 1994 The institution of Electrical Engineers:1-5P
    [29] 车阿大,林志航,陈康宁.质量功能配置中基于ANN的用户需求重要度评估方法.西安交通大学学报.1999,33(5):75-78页
    [30] 孔造杰,郝永敬.用权重概率综合系数法确定QFD中用户要求重要性.计算机集成制造系统.2001,7(2):65-72页
    [31] Pullman M E, Moore W L, Wardell D G. A comparison of quality function deployment and conjoint analysis in new product design. The Journal of Product Innovation Management 2002, (19):354-364P
    [32] Kwong C K, Bai H. A fuzzy AHP approach to the determination of importance weights of customer requirement in quality function deployment. Journal of Intelligent Manufacturing, 2002,13: 367-377P
    [33] Kwong C K, Bai H. Determining the importance weights for the customer requirements in QFD using a fuzzy AHP with an extent analysis approach. IIE Transactions, 2003, (35):619-626P
    [34] 王琦,钟毓宁.基于模糊层次分析法的QFD用户需求权重求法.湖北工学院学报.2004,19(2):54-57页
    [35] 陈以增,唐加福等.基于质量屋的用户需求权重确定方法.系统工程理论与实践.2003,8:36-41页
    [36] Park T, Kim K J. Determination of an optimal set of design requirements using house of quality. Journal of Operations Management, 1998, (16):569-581P
    [37] Cristiano J J, White C C. Application of multiattribute decision analysis to quality function deployment for target setting. IEEE Transaction on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2001,31(3):366-382P
    [38] 陈以增,任朝辉.基于QFD的产品多目标规划模型.东北大学学报(自然科学版).2003,24(1):46-49页
    [39] 陈以增,唐加福等.基于质量屋的产品设计过程.计算机集成制造系统.2002,8(10):757-761页
    [40] 陈以增,唐加福等.基于质量屋的优化模型.中国机械工程.2003,14(11):967-970页
    [41] Fung R Y K, Tang J, et al. Modelling of quality function deployment planning with resource allocation. Res Eng Design, 2003, (14):247-255P
    [42] Fung R Y K, Tang J, et al. Product design resources optimization using a non-linear fuzzy quality function deployment model. INT. J. PROD. RES., 2002,40(3):585-599P
    [43] 杨明顺,林志航.具有离散和连续型技术特征的质量屋优化模型.机械工程学报.2004,40(3):111-114页
    [44] Karsak E E, Sozer S, Alptekin S E. Product planning in quality function deployment using a combined analytic network process and goal programming approach. Computers & Industrial Engineering, 2002, (44):171-190P
    [45] 车阿大,林志航,高国军.改进的质量功能配置模型-模糊质量功能配置.系统工程理论与实践.1998,4:131-135页
    [46] 车阿大,林志航,方勇.模糊集理论在QFD中的应用.系统工程理论方法应用.1998,7(2):55-57页
    [47] Khoo L P, Ho N C. Framework of a fuzzy quality function deployment system. INT. J. PROD. RES., 1996,34(2):299-311P
    [48] 杨明顺,罗时飞,林志航.概念设计方案估计中用户满意度确定的一种方法.工程图学学报.2003,2:52-59页
    [49] Kim K J, Moskowitz H, et al. Fuzzy multicriteria models for quality function deployment. European Journal of Operational Research, 2000, (121):504-518P
    [50] Liang-Hsuan C, Ming-Chu W. A fuzzy model for exploiting quality function deployment. Mathematical and Computer Modelling, 2003, 38:559-570P
    [51] Vanegas L V, Labib A W. A fuzzy quality function deployment(FQFD) model for deriving optimum targets. INT. J. PROD. RES., 2001, 39(1):99-120P
    [52] Tang J F, Fung R Y K, et al. A new approach to quality function deployment planning with financial consideration. Computers & Operations Research 2002, (29):1447-1463P
    [53] 陈以增,唐加福.基于模糊规划的QFD系统参数确定方法.管理科学学报.2003,6(4):23-28页
    [54] 陈以增,唐加福等.模糊回归理论在QFD系统建摸中的应用研究.机械工程学报.2003,39(4):25-29页
    [55] Chen Y, Tang J, Fung R Y K. Fuzzy regression-based mathematical programming model for quality function deployment. INT. J. PROD. RES., 2004, 42 (5): 1009-1027P
    [56] 车阿大,林志航,高国军.并行工程中的模糊知识(信息)协同方法研究.机械科学与技术.1997,16(5):908-912页
    [57] 杨明顺,林志航,陈琨.模糊质量功能配置中多粒度多语义语言信息的处理.信息与控制.2003,32(1):9-13页
    [58] 解建喜,宋笔锋,刘东霞.飞机顶层设计中的模糊质量功能配置方法.机械工程学报.2004,40(9):
    [59] 苑彩云,檀润华等.质量功能配置下的快速夹紧装置概念设计.计算机集成制造系统.2002,8(3):239-242页
    [60] 钟金琴,方睿,袁兆山.基于QFD的面向对象需求分析方法.合肥工业大学学报(自然科学版).2004,27(1):58-62页
    [61] Doukas L, Pollock G, Jeyaratnam C. A spreadsheet implementation of QFD and systems engineering approaches to support concurrent engineering. Innovation in Technology Management-The Key to Global Leadership, PICMET'97, Porland International Conference on Management and Technology 27-31 July 1997: 815-820P
    [62] Chuang P T. Combining the analytic hierarchy processand quality function deployment for a location decision from a requirement. Int J Adv Manuf Technol, 2001, (18):842-849P
    [63] 袁凌.基于模糊聚类的竞争者识别.系统工程.2004,22(7):31-34页
    [64] 刘鸿恩,张列平,朱道立.模糊递阶质量屋方法.上海交通大学学报.2002,36(4):584-587页
    [65] Ghahramani B, Housyar A. Benchmarking the application of quality function deployment in rapid prototyping. Journal of Materials Processing Technology, 1996, (61):201-206P
    [66] Matzler K, Hinterhuber H H. How to make product development projects more successful by integrating Kano's model of customer. Technovation, 1999,18(1):25-38P
    [67] Lai X, Xie M, Tan K C. Optimizing product design using the Kano model and QFD. Internation Engineering Management Conference 2004,IEEE:1085-1089P
    [68] Tan K C, Shen X X. Integrating Kano's model in the planning matrix of quality function deployment. Total Quality Management, 2000, 11(8):1141-1151P
    [69] Hsiao S W. Concurrent design method for developing a new product. International Journal of Industrial Ergonomics, 2002, (29): 41-55P
    [70] 同淑荣,彭炎午.制造质量控制与质量功能展开的集成模型.西北工业大学学报.2001,19(1):122-125页
    [71] Park J H, Yang K M, et al. A quality function deployment methodology with signal and noise ratio for improvement of Wasserman's weights. Int J Adv Manuf Technol, 2004:1-7P
    [72] Hua Z S, Shi Q, Wang W. TRIZ technology forecasting as QFD input within the NPD activities. Chinese Journal of Mechanical Engineering, 2004,17(2):284-288P
    [73] 李跃生,王晓军.扩展型QFD分析模型在航天产品研制中的应用研究.中国质量.2003,9:4-8页
    [74] 杨多明,阮镰.系统工程与质量功能展开的综合应用研究.北京航空航天大学学报.1998,24(3):362-364页
    [75] 梁墚,周俊,罗彪.MC模式下基于顾客需求的产品配置优化分析.管理科学学报.2003,6(3):52-65页
    [76] 徐碚,胡建勋.QFD在ISO9001体系构建中的应用研究.中国质量.2004,5:42-45页
    [77] 郑大兵,黄丽华,李勇.QFD在企业过程优化中的应用.管理科学学报.1999,2(4):8-15页
    [78] 杨明顺,林志航.QFD中用户需求重要度确定的一种方法.管理科学学报.2003,6(5):65-71页
    [79] 车阿大,林志航,苏强.并行工程中基于信任度的知识(信息)协同问题研究.机械工业自动化.1998,20(2):8-10页
    [80] 冯珍,徐国华.产品级再使用满意度分析的QFD逆过程法.四川大学学报(工程科学版).2004,36(1):83-86页
    [81] 车阿大,林志航.产品设计中获取用户需求的研究及软件系统的开发.机械设计.1998,1:20-22页
    [82] 刘玉敏,张晓丽,徐济超.用户满意度测评的质量功能展开方法.系统工程理论与实践.2004,9:20-27页
    [83] 龚益鸣,丁明芳,崔建.用户需求识别及其模型.复旦学报(自然科学版).2003,42(5):718-720页
    [84] 冯珍,徐国华,李向军.基于QFD的产品级再使用维护设计.中国机械工程.2004,15(4):307-309页
    [85] 真彤,高琦等.基于QFD的企业敏捷化反应.中国机械工程.1998,9(1):22-24页
    [86] 郑联语,唐晓青,汪叔淳.基于QFD的数控加工工艺质量优化规划方法.机械工程学报.2001,37(8):38-42页
    [87] 齐二石,焦建新.基于功能需求模式识别的变异式产品需求分析建模方法及其在产品设计中的应用.系统工程理论与实践.1999,(3):13-23页
    [88] 宋轲,唐任仲.基于用户需求的业务过程分析.工程设计学报.2004,11(1):1-5页
    [89] 苏颖,于明,张伯鹏.基于信息的质量功能配置公理化研究.计算机集成制造系统.2002,8(10):829-834页
    [90] 陈以增,唐加福等.基于质量屋的设计方案选择模型.计算机集成制造系统.2003,9(2):127-131页
    [91] 郭伟,王凤歧.面向并行工程的产品需求建模方法.天津大学学报.1998,31(4):393-400页
    [92] 郑华林,刘飞.面向大规模定制的产品需求建模方法研究.中国机械工程.2003,14(6):471-474页
    [93] 曲孝海,唐加福,陈以增.模糊动态聚类在质量功能展开(QFD)中的应用.管理科学与系统科学研究新进展.第7届全国青年管理科学与系统科学学术会议论文集:330-335页
    [94] 方喜峰,吴洪涛等.模糊推理在QFD中的应用.华东船舶工业学院学报(自然科学版).2001,15(2):63-67页
    [95] 王爱民,孟明辰,黄靖远.通过动态QFD实现需求驱动的产品族设计方法研究.中国机械工程.2003,14(8):666-670页
    [96] 邱明华,胡保生.一种质量职能配置(QFD)的定量评价方法.系统工程理论与实践.1997,6:35-39页
    [97] 苏强,陈剑.质量管理层次结构模型.清华大学学报(自然科学版).1999,39(10):124-127页
    [98] 古莹奎,黄洪钟,孙占全.质量屋在产品生命周期设计中的应用.中国机械工程.2003,14(24):2134-2137页
    [99] Nogueira J C. A budget method using quality function deployment. The Engineering Economist. 2003,48(4): 333-344P
    [100] Myint S. A framework of an intelligent quality function deployment(IQFD) for discrete assembly environment. Computers & Industrial Engineering, 2003, (45):269-283P
    [101] Yang Y Q, Wang S Q. A fuzzy quality function deployment system for buildable design decision-makings. Automation in Construction, 2003, (12): 381-393P
    [102] Verma D, Knezevic J. A fuzzy weighted wedge mechanism for feasibility assessment of system reliability during conceptual design. Fuzzy Sets and Systems, 1996, (83):179-187P
    [103] Jagdev H, Bradley P, Molloy O. A QFD based performance measurement tool. Computers in Industry 1997, (33):357-366P
    [104] Chan L K, Wu M L. A systematic approach to quality function deployment with a full illustrative example. The International Journal of Management Science, 2005, (33):119-139P
    [105] Verma D, Chilakapati R, Fabrycky W J. Analyzing a quality function deployment matrix an expert system-based approach to identify inconsistencies and opportunities. Journal of Engineering Design, 1998,9(3):251-261P
    [106] Owlia M S, Aspinwall E M. Application of quality function deployment for the improvement of quality in an engineering department. European Journal of Engineering Education, 1998,23(1):105-115P
    [107] Dagersten N, Heywood M I, Chatwin C R. Batch process control using QFD matrices and simulation. Production Planning & Control, 1998,9(4):335-348P
    [108] Kamata J M, Anumba C J, et al. Client requirements processing in construction: a new approach using QFD. Journal of Architectural Engineering, 1999(3):8-15P
    [109] Bode J, Fung R Y K. Cost engineering with quality function deployment. Computers ind. Engng, 1998,35(3-4):587-590P
    [110] Ermer D S, Kniper M K. Delighting the customer: quality function deployment for quality service design. TOTAL QUALITY MANAGEMENT, 1998,9(4-5):86-91P
    [111] Geiger M, Steger W. Design for manufacturing with generative production processes and a neutral test environment. Computers in industry, 1995, (28):29-33P
    [112] Sinaloganathan S, Evbuomwan N F O. Design function deployment a design system for the future. Design Studies, 1995, (16): 447-470P
    [113] Han C H, Kim K J, et al. Determination of information system development priority using quality function development. Computers ind. Engng, 1998,35(1-2): 241-244P
    [114] Haapalainen M. Ergonomic design of non-powered hand tools: An application of quality function deployment(QFD). Occupational Ergonomics, 1999/2000, 2(3): 179-189P
    [115] Tsai Y T, Chang Y M. Function-based cost estimation integrating quality function deployment to support system design. Int J Adv Manuf Technol, 2004, (23): 514-522P
    [116] Zhou M. Fuzzy logic and optimization models for implementing QFD. Computers ind. Engng, 1998,35(1-2): 237-240P
    [117] Karsak E E. Fuzzy multiple objective programming framework to prioritize design requirements in quality function deployment. Computers & Industrial Engineering, 2004, (47): 149-163P
    [118] Sohn S Y, Choi I S. Fuzzy QFD for supply chain management with reliability consideration. Reliability Engineering and System Safety, 2001, (72):327-334P
    [119] Zhang Y, Wang H P, Zhang C. Green QFD-Ⅱ: a life cycle approach for environmentally conscious manufacturing by integrating LCA and LCC into QFD matrices. INT. J. PROD. RES., 1999,37(5): 1075-1091P
    [120] Kuo T C. Green product development in quality function deployment by using fuzzy logic analysis. 2003IEEE: 88-93P
    [121] Kao H P, Su E, Wang B. I~2QFD: a blackboard-based multiagent system for supporting concurrent engineering projects. INT. J. PROD. RES., 2002,40(5):1235-1262P
    [122] Reich Y. Improving the rationale capture capability of QFD. Engineering with Computers, 2000, (16):236-252P
    [123] Bai H, Kwong C K. Inexact genetic algorithm approach to target value setting of engineering requirements in QFD. INT. J. PROD. RES., 2003, (41):16: 3861-3881P
    [124] Rahimi M, Weidner M. Integrating design for environment(DfE) impact matrix into qualityfunction deployment(QFD)process. The Journal of Sustainable Product Design, 2002, (2):29-41P
    [125] Hanna V, Backhouse C J, Burns N D. Linking employee behavior to external customer satisfaction using quality function deployment. Proc. Instn Mech. Engrs, Part B: Engineering Manufacture, 2004,218:1167-1177P
    [126] Herrmann A, Huber F, Braunstein C. Market driven product and service design Bridging the gap between customer needs quality management, and customer satisfaction. Int. J. Production Economics, 2000, (66):77-96P
    [127] Han C H, Kim J K, Choi S H. Prioritizing engineering characteristics in quality function deployment with incomplete information: A linear partial ordering approach. Int. J. Production Economics, 2004, (91):235-249P
    [128] Zheng L Y, Chin K S. QFD based optimal process quality planning. Int J Adv Manuf Technol, 2004, (12): 1-11P
    [129] Johnson C N. QFD explained Use this process to ensure quality thoughout the product development process. Qual Prog, 2003, 36(3): 104P
    [130] Herzwurm G, Schockert S, Pietsch W. QFD for customer-focused requirements engineering. Proceeding of the 11th IEEE international requirements engineering conference, IEEE 2003: 330-338P
    [131] Lowe A, Ridgway K, Atkinson H. QFD in new production technology evaluation. Int. J. Production Economics, 2000, (67): 103-112P
    [132] Govers C P M. QFD not just a tool but a way of quality management. Int. J. Production Economics, 2001, (69): 151-159P
    [133] Moskowitz H, Kim K J. QFD optimizer: A novice friendly quality function deployment decision support system for optimizing product designs. Computers ind. Engng, 1997, 32(3): 641-655P
    [134] Marsot J. QFD: a methodological tool for integration of ergonomics at the design stage. Applied Ergonomics, 2005, (36): 185-192P
    [135] Davis P i. QFD-a structured approach to understanding the voice of the customer. 1995 IEEE: 245-251P
    [136] Chan L K, Wu M L. Quality function deployment: a comprehensive review of its concepts and methods. Quality Engineering, 2002-2003, 15(1): 23-35P
    [137] Delano G, Parnell G S, et al. Quality function deployment and decision analysis a R&D case study. International Journal of Operations & Production Management, 2000, 20(5): 591-609P
    [138] Franceschini F, Rossetto S. Quality function deployment: How to improve its use. Total Quality Management, 1998, 9(6): 491-500P
    [139] Hales R F. Quality function deployment to concurrent product/process development. 1993 IEEE: 28-34P
    [140] Bergquist K, Abeysekera J. Quality function deployment (QFD)A means for developing usable products. International Journal of Industrial Ergonomics, 1996, (18):269-275P
    [141] Benner M, hinnemann A R, et al. Quality function deployment (QFD)-can it be used to develop food products? Food Quality and Preference 2003, (14):327-339P
    [142] Chan L K, Wu M L. Quality function deployment: A literature review. European Journal of Operational Research, 2002; (143): 463-49YP
    [143] Martins A, Aspinwall E M. Quality function deployment: an empirical study in the UK. Total Quality Management, 2001, 12(5): 575-588P
    [144] Yang Y S, Jang B S, et al. Quality function deployment-based optimization and exploration for ambiguity. J. Eng. Design, 2003,14(1):83-113P
    [145] Chan L K, Kao H P, et al. Rating the importance of customer needs in quality function deployment by fuzzy and entropy methods. INT. J. PROD. RES., 1999,37(11):2499-2518P
    [146] Kauffmann P, Ricks W R, Shockcor J. Research portfolio analysis using extensions of quality function deployment. Engineering Management Journal, 1999,11(2):3-9P
    [147] Dikmen I, Birgonul M T, Kiziltas S. Strategic use of quality function deployment(QFD) in the construction industry. Building and Environment, 2005, (40): 245-255P
    [148] Kato S, Kimura F. Systematization of product life cycle technology utilizing the OFD method. Proceedings of EcoDesign2003: Third International of Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, December 8-11, 2003. 2003 IEEE: 418-421P
    [149] Zhao Y, Li X, et al. The application of extend QFD in BPR. 2003 IEEE: 4742-4747P
    [150] Zhao Y, Li X, et al. The framework of agent-based concurrent engineering oriented distributed QFD system. 2003 IEEE: 3484-3489P
    [151] G H Lee, A Kusiak. The house of quality for design rule priority. Int J Adv Manuf Technol, 2003, (17): 288-296P
    [152] Belhe U, Kusiak A. The house of quality in a design process. INT. J. PROD. RES., 1996, 34(8): 2119-2131P
    [153] Shen X X, Tan K C, Xie M. The implementation of quality function deployment based on linguistic data. Journal of Intelligent Manufacturing, 2001, (12): 65-75P
    [154] Schmidt R. The implementation of simultaneous engineering in the stage of product concept development: A process orientated improvement of quality function deployment. European Journal of Operational Research, 1997, (100): 293-314P
    [155] Smith J A, Angeli I I. The use of quality function deployment to help adopt a total quality strategy. Total Quality Management, 1995,6(1): 35-44P
    [156] Burke E, Kloeber J M, et al. Using and abusing QFD scores. Quality Engineering, 2002-03, 15(1): 9-21P
    [157] Wu HH, Liao A Y H, Wang PC. Using grey theory in quality function deployment to analyse dynamic customer requirements. Advanced Manufacturing Technology, Published online: 20 February 2004
    [158] Sarkis J, Liles D H. Using IDEF and QFD to develop an organization decision support methodology for the strategic justification of computer-integrated technologies. International Journal of Project Management, 1995,13(3):177-185P
    [159] Crowe T J, Cheng C C. Using quality function deployment in manufacturing strategic planning. International Journal of Operations & Production Management, 1996,16(4):35-48P
    [160] Govers C P M. What and how about quality function deployment (QFD). Int. J. Production Economics, 1996, (46-47):575-585P
    [161] 李荣钧.模糊多准则决策理论与应用.第一版.北京:科学出版社,2002
    [162] 肖位枢.模糊数学基础及应用.第一版.北京:航空工业出版社,1992
    [163] 编写组.运筹学.第三版.北京:清华大学出版社,2005
    [164] 周泓,方卫国,吴健中.基于群体综合满意度的群决策方法.决策与决策支持系统.1995,5(2):78-86页
    [165] 胡仕成,王彦滨等.产品开发设计过程中的成本优化控制模型.中国机械工程.2004,15(1):39-41页
    [166] 唐加福,刘士新等.产品优化设计的资源分配模型.系统工程学报.2003,18(3):284-288页
    [167] 周康渠,廖林清等.改进的质量功能配置在定单驱动产品开发中的应用.中国机械工程.2005,16(7):603-607页
    [168] 邓丽,刘阶萍,查建中.基于QFD和CRB的产品方案设计综合评价.高技术通讯.2003,15(3):44-47页
    [169] 高琦,吴昭同.基于质量功能配置的产品优化设计.机械科学与技术.2002,21(6):1031-1033页
    [170] 巩敦卫,许世范,王雪松.基于质量功能配置的洗选产品优化设计.计算机集成制造系统.2000,6(3):91-93页
    [171] 唐加福,庞士宗等.利用品质功能展开进行产品优化设计.机械工程学报.2003,39(3):105-109页
    [172] 王应明,傅国伟.运用无限方案多目标决策方法进行有限方案多目标决策.控制与决策.1993,8(1):25-29页
    [173] 商建东,陈康宁.质量驱动的产品设计质量模糊评价及方案决策方法研究.中国机械工程.2000,11(12):1394-1398页
    [174] Bailetti A J, Litva P F. Integrating customer requirements into product designs. J PROD INNOV MANAG 1995,12:3-15P
    [175] 韩晓建,邓家提.产品概念设计过程的研究.计算机集成制造系统.2000,6(1):14-17页
    [176] 檀润华,王庆禹.产品设计过程模型、策略与方法综述.机械设计.2000,11:1-4页
    [177] 李登峰,程春田.部分信息不完全的多目标决策方法.控制与决策.1998,13(1):83-86页
    [178] 孙连胜,宁汝新,张志英.FMS规划方案的综合评估方法研究.机械工程学报.2003,39(2):47~52页
    [179] 韩晓建,邓家提.产品概念设计方案的评价方法.北京航空航天大学学报.2000,26(2):210-212页
    [180] 桑松,林烟,纪卓尚.船舶初步设计阶段智能决策支持系统的应用.上海交通大学学报.2003,37(8):1238-1241页
    [181] 吕建伟,易慧,刘中华.舰船设计方案评估指标体系研究.船舶工程.2005,27(4):53-57页
    [182] 侯宏峰,刘三阳,李益群.对方案有偏好的基于期望值的多属性决策法.西北大学学报.2005,35(6):708-710页
    [183] 杨明顺,林志航.多工具集成支持的产品概念设计方案评价与选择决策.小型微型计算机系统.2003,24(6):1037-1041页
    [184] 张维英,林烟,纪卓尚.多目标多层次船型方案模糊优选法.中国造船.2004,15(3):31-37页
    [185] 赵宏,黄洪钟等.概念设计产品的模糊可靠性预测及方案评价.机械科学与技术.2005,24(8):981-984页
    [186] 姜慧,高举红,徐燕申.机械产品设计方案的评价与决策.机械科学与技术.1999,18(6):903-908页
    [187] 谈理,刘谨等.机械设计方案的模糊评估系统的研究.机械设计.2006,23(4):7-9页
    [188] 姜燕萍,樊治平.基于模糊判断矩阵的一种方案排序方法.东北大学学报.2000,21(4):540-542页
    [189] 周凯波,黄进.基于模糊数的FAHP评价复杂产品概念设计方案.武汉理工大学学报.2003,25(3):79-82页
    [190] 朱龙英,朱如鹏等.基于信息公理的产品设计方案评价方法.南京航空航天大学学报.2005,37(3):386-390页
    [191] 李善仓,李宗斌.加工中心概念设计方案的综合评判法.2003,19(5):13-15页
    [192] 朱根林.军事行动决策的模糊综合评估.数学的实践与认识.2005,35(12):19-22页
    [193] 王力,刘家琦.梯形模糊AHP及其在卫星方案优选中的应用.哈尔滨工业大学学报.2002,34(3):315-319页
    [194] 黄琛,范玉顺.基于知识的协同过程建模与实现技术研究.高技术通讯.2004,11:42-46页
    [195] Li R J. Fuzzy method in group decision making. Computers and Mathematics with Application, 1999, 38: 91-I01P
    [196] 李德敏,周洁,张友良.Fuzzy决策中群体意见一致性指标与一致性判别方法.系统工程理论与实践.1998,11:92-95页
    [197] 潘越,钟谦,郑应平.并行工程多学科工作小组的决策模式和集体设计的支持.系统工程理论与实践.1997,6:17-21页
    [198] 王建维,张建明等.产品方案的模糊协同评价方法.农业机械学报.2005,36(3):106-110页
    [199] 徐泽水.纯语言多属性群决策方法研究.控制与决策.2004,19(7):778-786页
    [200] 宋光兴,邹平.多属性群决策中决策者权重的确定方法.系统工程.2001,19(4):84-89页
    [201] 姜艳萍,樊治平.基于不同粒度语言判断矩阵的群决策方法.系统工程学报.2006,21(3):249-253页
    [202] 刘华丽,朱大勇等.基于模糊评判的群决策方法.系统工程与电子技术.2005,27(12):2054-2056页
    [203] 周泓,方卫国,吴建中.基于群体综合满意度的群决策方法.决策与决策支持系统.1995,5(2):78-86页
    [204] 陈岩,樊治平.基于语言判断矩阵的群决策方法.东北大学学报(自然科学版).2004,25(3):303-306页
    [205] 赵海燕,张友良.面向产品并行开发过程的群决策支持系统研究.中国机械工程.2000,11(12):1376-1379页
    [206] 王明强,王宁生等.面向协同设计的机械产品全生命周期综合评价研究.机械科学与技术.2005,24(10):1241-1246页
    [207] 周文坤,李宗平,刘家诚.模糊偏好下群决策结构的研究.系统工程理论与实践.2001,2:17-20页
    [208] 杨明顺,李言,李鹏阳.偏好序下产品总体方案优选的一种群决策方法.西安理工大学学报.2005,21(3):253-256页
    [209] 谢晶耀.群决策集结函数有效性分析模型的改进.系统工程.1995,13(1):10-14页
    [210] 王欣荣,樊治平.群决策中基于语言信息处理的一种理想点法.中国管理科学.2002,10(6):84-87页
    [211] 肖四汉,樊治平,王梦光.群决策中两类偏好信息集成的目标规划模型.东北大学学报(自然科学版).2000,21(4):453-455页
    [212] 柴小青.一种基于专家模糊偏好集结的群决策方法.系统工程与电子技术.1998,3:32-35页
    [213] 吴冲,李汉铃,朱洪文.一种新的模糊多目标群决策方法.哈尔滨工业大学学报.2002,34(6):801-805页
    [214] 孟波.有限方案模糊多目标群决策方法的研究.系统工程.1995,13(4):43-47页
    [215] 孟波,付微.一种有限方案多目标群决策方法.系统工程.1998,16(4):57-61页
    [216] 郭春香,郭耀煌.属性具有不同形式偏好信息的群决策方法.系统工程与电子技术.2005,27(1):63-65页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700