复杂条件下复合地基固结解析理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与砂井地基相比,复合地基具有桩体压缩模量较大、直径较大、受荷后应力向桩体集中以及桩体发生侧向膨胀等特点,因此,复合地基固结虽然类似于砂井地基固结但又与之不同。本文针对现有复合地基固结理论不能合理充分地考虑复合地基这些特点的不足,基于复合地基桩、土共同承担外部荷载的原则,提出了一个新的关于复合地基固结的初始条件,并对复合地基施工扰动引起的土体渗透系数变化、附加应力随深度和时间变化、桩体固结压缩、土体非线性以及桩、土发生侧向变形等复杂情况下的复合地基固结问题进行了较详细深入的研究,主要的工作和创新成果如下:
     1.给出了能同时考虑扰动区土体渗透系数变化、附加应力既随时间变化又随深度变化的复合地基固结普遍解,以及荷载单级施加、附加应力沿深度线性变化时超静孔压和平均固结度的具体表达式,并对地基的固结性状和桩-土应力比的发展规律进行了分析。
     2.鉴于传统桩周流量连续的假定与等应变条件矛盾,对现行桩周流量连续假定提出了修正,建立了新的能够考虑桩体压缩的复合地基固结控制方程,给出了瞬时加荷和附加应力沿深度均匀分布情况下复合地基超静孔压和平均固结度的表达式,将其与以往解答进行了对比,分析了复合地基的固结性状。结果表明:采用修正的桩周流量连续条件给出的地基平均固结度小于传统桩周连续假定给出的平均固结度,而且,随着井径比的减小,两者之间的差值变大。
     3.为考虑由于桩径较大而实际存在于桩体内的径向渗流,建立了能考虑桩体内的径、竖向组合渗流的复合地基固结控制方程,引入两个新的边界条件,并给出了相应解析解。对比分析表明:本章的解答可以合理地退化到五种简单情况下的地基固结解答;不考虑桩体内径向渗流将高估复合地基固结度速率,而且,井径比越小,高估值越大。
     4.通过引入广为认同的土体孔隙比和有效应力以及孔隙比和渗透系数的对数关系,考虑了土体固结过程中压缩模量非线性增长和渗透系数非线性减小的特征,给出了一种复合地基非线性固结解析解,并对复合地基的非线性固结性状进行了分析。结果表明:考虑非线性时按应力和按变形定义的两种固结度不相等,并且按变形定义的固结度一般大于按应力定义的固结度;当压缩指数小于渗透指数时,不考虑土体的非线性特征会低估地基的固结度,而当压缩指数大于渗透指数时,不考虑土体的非线性则会高估地基的固结度;对于按应力定义的固结度来说,当压缩指数小于渗透指数时,随着附加应力的增大,地基固结速度加快,而当压缩指数大于渗透指数时,附加应力增大,地基固结减慢;对于按变形定义的固结度而言,不论压缩指数大于还是小于渗透指数,复合地基固结速度总是随着附加应力增大而加快。
     5.在竖向变形相等的条件下,给出了能考虑桩体和土体在固结过程中发生侧向变形的复合地基固结解析解,并对该解和不考虑桩、土侧向变形的现有解答进行了比较。结果表明:考虑桩体的侧向变形会降低地基的固结速率。最后分析了桩体和土体的变形模量和泊松比对地基固结的影响以及桩-土应力比随时间的发展规律,结果表明:桩、土的泊松比越小,地基固结越快;桩、土的弹性模量之比越大,变形模量之比越大,则复合地基固结越快;考虑了桩、土的侧向变形后,复合地基的桩-土应力比虽然随固结逐渐增大,但与现有理论预测的不同,该应力比不会增长到桩-土模量比的值。
     本文工作使复合地基固结理论与实际更接近。
Comparing with sand drain well, the columns in composite ground have a higher compression modulus and a larger diameter together with the characteristics of stress concentration from soil to column and the lateral expansion of column after loading applied. Therefore, although the consolidation theory for composite ground is similar to that for sand drain ground, it is also different from the latter. Aiming at the difficiency that the previous consolidation theory can not consider the abovementioned characteristic of composite ground in a comprehensive and rational way, a new initial condition more suitable for the consolidation of composite ground is derived based on the principle that the external load is always undertaken by the column and the surrounding soil together. Furthermore, detailed studies are made on the consolidation of composite ground under a series of complicated conditions, such as the variation of horizontal permeability coefficient of soil due to the column construction, the depth-and time-dependent characteristic of stress increment, the consolidation and compression of column, the non-linearity of soil and the later difromations of soil and column in the process of consolidation et al. The main original works and innovative achievements are as follows:
     1. A general analytical solution is obtained for the consolidation of composite ground considering simultaneously the variation of horizontal permeability coefficient of soil, the coupled variation of stress increment with depth and time together. Furthermore, detailed solutions are obtained for excess pore water pressure (EPWP) and average degree of consolidation (ADC) under the particular situation that the stress increment is linearly changed along the column depth and the erternal load is applied in a single-stage way. Finally, the consolidation behavior of composite ground and the development of the column-soil stress ratio are analyzed, respectively.
     2. In light of the contradiction between the tradional flow continuity assumption at the column-soil interface and the equal strain condition, the traditional flow continuity assumption is modified to eliminate this contradiction. New equations governing the consolidation of composite ground are proposed to account for the column consolidation and compression. Solutions are obtained for EPWP and ADC with an instantly applied and uniformly distributed stress increment along column depth. Then the present solution is compared to some previous available solutions and the consolidation behavior of composite ground is investigated. The results show that ADC predicted by the present solution is less than that predicted by the previous solution using the traditional flow continuity assumption. In addition, the difference in ADC predicted by these two types of solution increases with a reduction of radius ratio.
     3. To incorporate the radial seepage within the column due to the large diameter of column, new governing eqations for consolidation are proposed to consider the combined flows in radial and vertical directions within the column. The solutions of the new governing equation are obtained by introducing two new boundary conditions. The results by comparisons show that the present solution can be degenerated to five simple particular cases in a rational way. Ignoring the radial flow within the column will over-estimate the consolidation rate. Furthermore, the less the radius ratio is, the greater the over-estimated value is.
     4. By incorporating the well-known logarithm relationship in effective stress and void ratio as well as that in void ration and permeability coefficient, the characteristics of the nonlinear increase in the soil's compressive modulus and the non-linear decrease in the soil's permeability during consolidation are considered. Based on the non-linear characteristics of soil, an analytical solution for the consolidation of composite ground is developed. Then the non-linear consolidation behavior of composite ground is analyzed and the results show that ADC in terms of stress is not equal to that in terms of deformation and furthermore the latter is always greater than the former. When the soil's compressive indices is less than the permeability indices, ignoring the soil's non-linearity will under-estimate the consolidation rate; however, when the soil's compressive indices is greater than the permeability indices, the reverse is true: ignoring the non-linearity will over-estimate the consolidation rate. For ADC based on stress, when the soil's compressive indices is less than the permeability indices, the increase in the stress increment within the ground leads to an acceleration of the consolidation rate; however, when the compressive indices is larger than the permeability indices, the increase in the stress increment causes a reduction in the consolidation rate. For ADC in terms of deformation, whether the compressive indices is less or larger than the permeability indices, an increase in the stress increment within the ground always accelerates the consolidation rate.
     5. Under the condition of equal vertical deformation, an analytical solution is derived for the consolidation of composite ground by incorporating the lateral deformations of column and soil occurring in the process of consolidation. The present solution is compared to the solution ignoring the lateral deformations of column and soil. The results show that considering the lateral deformation will reduce the consolidation rate. Finally, analyses are performed on the influence of Poisson's ratios and Young's moduli of column and soil to the consolidation behavior of composite ground and the development of column-soil stress ratio is investigated. The results show that the less the Poisson' ratios of column and soil are and the larger the Young' modulus ratio of column to soil is, the greater the consolidation rate is. When the lateral deformations of column and soil are considered, the column-soil stress ratio will keep increasing during the earlier stage of consolidation, but unlike that predicted by traditional theory, it will not increase up to the value of compression modulus ratio of column to soil.
     The present work makes consolidation theory of composite ground closer to the practical engineering.
引文
[1]Aboshi H,Ichimoto E,Enoki M,and Harada K.The composer—a method to improve characteristics of soft clays by inclusion of large diameter sand columns.Proceedings of the International Conference on Soil Reiforcement,E.N.P.C.,Pads,1979,vol.1,pp.211-216.
    [2]Alamgir M,Miura N,Poorooshasb H B,and Madhav M R.Deformation analysis of soft ground reinforced by columnar inclusions.Computers and Geotechnics,1996,18(4):267-290.
    [3]Balaam N P,Polous H G,and Brown P T.Settlement analysis of soft clays reinforced with granular piles.Proceedings of the 15~(th) Asian Regional Conference,Bangkok,1977,vol.1,pp.81-92.
    [4]Balaam N P,and Booker J R.Analysis of rigid rafts supported by granular piles.International Journal for Numerical and Analytical Methods in Geomechanics,1981,5:379-403.
    [5]Balaam N P,and Booker J R.Effect of stone column yield on settlement of rigid foundations in stabilized clay.International Journal for Numerical and Analytical Methods in Geomechanics,1985,9:331-351.
    [6]Barksdale R D,and Bachus R C.Design and construction of stone columns.Report FHWA/RD-83/026,National Technical Information Service,Springfield,Virginia,1983.
    [7]Basak P.Consolidation by sand drains in initial gradient soils.Journal of Geotechnical Engineering Division,1977,103(11):1327-1333.
    [8]Basak P,and Madhav R.Analytical solutions of sand drain problems.Journal of Geotechnical Engineering Division,1978,104(1):129-135.
    [9]Basu D,and Prezzi M.Effect of the smear and transition zones around PVD installed in a triangular pattern on the rate of soil consolidation.International Journal of Geomechanics,2007,7(1):34-43.
    [10]Bergado D T,Asakami H,Aifaro M C,and Balasubramaniam A S.Smear effects of vertical drains on soft Bangkok clay.Journal of Geotechnical Engineering,1991,117(10):1509-1530.
    [11]Bergado D T,Ruenkrairergsa T,Taesiri Y,and Balasubramaniam A S.Deep soil mixing used to reduce embankment settlement.Ground Improvement,1999,3:145-162.
    [12]Berry P L,and Wilkison W B.The radial consolidation of clay soils.Geotechnique,1969,19(2):253-284.
    [13]Bhide S B.Sand drains additional design criteria.Journal of Geotechnical Engineering Division,1979,105(4):559-568.
    [14]Boit M.General theory of three-dimensional consolidation.Journal of Applied Physics,1941,12:155-164.
    [15]Carrillo N.Simple two and three dimensional cases in the theory of consolidation of soils.Journal of Mathematical Physies,1942,21(1):1-5.
    [16]Cassagrande L,and Poulos S.On the effectiveness of sand drains.Canadian Geotechnical Journal,1968,6:287-326.
    [17]Castro J,and Sagaseta C.Consolidation around stone columns.Influence of column deformation.International Journal for Numerical and Analytical Methods in Geomechanics,2009,33(7):851-877.
    [18]Chai J C,Miura N,Sakajo S,and Bergado D T.Behavior of vertical drain improved subsoil under embankment loading.Soils and Foundations,1995,35(4):49-61.
    [19]Chai J C,Miura N,and Sakajo S.A theoretical study on smear effect around vertical drain.Proceedings of the 14~(th) International Conference of Soil Mechanics and Foundations Engineering,Hamburg,1997,vol.3,pp.1581-1584.
    [20]Chai J C,and Miura N.Investigation of factors affecting vertical drain behavior.Journal of Geotechnical and Geoenvironmental Engineering.1999,125(3):216-226.
    [21]Chai J C,Shen S L,Miura N,and Bergado D T.Simple method of modeling PVD improved subsoil.Journal of Geotechnical and Geoenvironmental Engineering,2001,127(11):965-972.
    [22]Chai J C,Cater J P,and Hayashi S.Ground deformation induced by vacuum consolidation.Journal of Geotechnical and Geoenvironmental Engineering,2005,131(12):1552-1561.
    [23]Chai J C,Cater J P,and Hayashi S.Vacuum consolidation and its combination with embankment loading.Canadian Geotechnical Journal,2006,43:985-996.
    [24]Charles J A,and Watts K S.Compressibility of soft clay reinforcement with granular columns.Proceedings of the 8~(th) European Conference on Soils Mechanics and Foundations Engineering,1983,pp.347-352.
    [25]Chu J,Yan S W,and Yang H.Soil improvement by the vacuum preloading method for an oil storage station.Geotechnique,2000,50(6):625-632.
    [26]Chu J,Goi M H,and Lim T T.Consolidation of cement-treated sewage sludge using vertical drains.Canadian Geotechnical Journal,2005,42:528-540.
    [27]Davis F H,and Raymond G P.A non-linear theory of consolidation.Geotechnique,1965,15(2):161-173.
    [28]Eriksson U,Hansbo S,and Torstensson B A.Soil improvement at Stockholm-Arlanda airport.Ground Improvement,2000,4:73-84.
    [29]Fang Z,and Yin J H.Physical modeling of consolidation of Hong Kong marine clay with prefabricated vertical drains.Canadian Geotechnical Journal,2006,43:638-652.
    [30]Han J,and Ye S L.Field tests of soft clay stabilized by stone columns in coastal areas in China.Proceedings of the 4~(th) International Conference on Piling and Deep Foundation,Balkema,Rotterdam,The Netherlands,1991,pp.243-248.
    [31]Han J,and Ye S L.Settlement analysis of buildings on the soft clays stabilized by stone columns.Proceedings of the International Conference on Soil Improvement and Piles Foundations,Nanjing,China,1992,pp.446-451.
    [32]Han J,and Ye S L.Simplified method for consolidation rate of stone column reinforced foundations.Journal of Geotechnical and Geoenvironmental Engineering.2001,127(7):597-603.
    [33]Han J,and Ye S L.A theoretical solution for consolidation rates of stone column-reinforced foundations accounting for smear and well resistance effects.The International Journal of Geomechanics,2002,2(2):135-151.
    [34]Hansbo S.Consolidation of fine-grained soils by prefabricated drains.Proceedings of the 10~(th)International Conference on Soil Mechanics and Foundations Engineering,Stockholm,Sweden,1981,vol.3,pp.677-682.
    [35]Hansbo S.Design aspects of vertical drains and lime column installation.Proceedings of the 9~(th)Southeast Asian Geotechnical Conference.Bangkok,Thailand,1987,pp.1-12.
    [36]Hansbo S.Practical aspects of vertical drain design.Proceedings of the 14~(th) International Conference on Soil Mechanics and Foundations Engineering,Hamburg,Germany,1997,vol.3,pp.1749-1752.
    [37]Hawlader B C,lmai G,and Muhunthan B.Numerical study of the factors affecting the consolidation of clay with vertical drains.Geotextiles and Geomembranes.2002,20(4):213-239.
    [38]Hird C C,Pyrah I C,and Russell D.Finite element modeling of vertical drains beneath embankments on soft ground.Geotechnique,1992,42(3):499-511.
    [39]Hird C C,Pyrah I C,Russell D,and Cinicioglu F.Modeling the effect of vertical drains in two-dimensional finite element analyses of embankments on soft round.Canadian Geotechnical Journal,1995,32:795-807.
    [40]Hird C C,and Moseley V J.Modeling study of seepage in smear zones around vertical drains in layered soil.Geotechnique,2000,50(1):89-97.
    [41] Hird C C, and Sangtian N. Model study of seepae in smear zones around vertical drains in layered soil:Further results. Geotechnique, 2002, 52(5): 375-378.
    [42] Holts R D, Jamiolkowshi M B, Lancellotta R, and Pedroni P. Behavior of bent prefabricated vertical drains. Proceedings of the 12~(th) International Conference on Soil Mechanics and Foundations Engineering,Rio de Janeiro, 1989, vol.3, pp. 1657-1660.
    [43] Indraratna B, Balasubramaniam A S, and Ratnayake A M P. Performance of embankment stabilized with vertical drains on soft clay. Journal of Geotechnical Engineering, 1994, 120(2): 257-273.
    [44] Indraratna B, and Redana I W. Plane-strain modeling of smear effects associated with vertical drains.Journal of Geotechnical and Geoenvironmental Engineering, 1997a, 123(5): 474-478.
    [45] Indraratna B, Balasubramaniam A S, and Sivaneswaran N. Analysis of settlement and lateral deformation of soft clay foundation beneath two full-scale embankments. International Journal for Numerical and Analytical Methods in Geomechanics, 1997b, 21: 599-618.
    [46] Indraratna B, and Redana I W. Labaoratory determination of smear zone due to vertical drain installation.Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(2): 180-184.
    [47] Indraratna B, and Redana I W. Numerical modeling of vertical drains with smear and well resistance installed in soft clay. Canadian Geotechnical Journal, 2000, 37:133-145.
    [48] Indraratna B, and Sathananthan I. Comparison of field measurements and predicted performance beneath full-scale embankments. Proceedings of the 6~(th) International Symposium on Field Measurements in Geomechanics, Oslo, Norway, 2003, pp. 117-127.
    [49] Indraratna B, Bamunawita C, and Khabbaz H. Numerical modeling of vacuum preloading and field applications. Canadian Geotechnical Journal, 2004,41(6): 1098-1110.
    [50] Indraratna B, Sathananthan I, Rujikiatkamjorn C, and Balasubramaniam A S. Aanlytical and numerical modeling of soft soil stabilized by PVD incorporating vacuum preloading. International Journal of Geomechanics, 2005,5(2): 114-124.
    [51] Indraratna B, Rujikiatkamjorn C, and Sathananthan I. Radial consolidation of clay using compressibility indices and varying horizontal permeability. Canadian Geotechnical Journal, 2005,42: 1330-1341.
    [52] Juran I, and Guermazi A. Settlement response of sofy soils reinforced by compacted sand columns. Journal of Geotechnical Engineering, 1988, 114(8): 930-943.
    [53] Lekha K R, Krishnaswamy N R, and Basak P. Consolidation of clay by sand drain under time-dependent loading. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(1): 91-94.
    [54]Lekha K R,Krishnaswamy N R,and Basak P.Consolidation of clays for variable permeability and compressibility.Journal of Geotechnical and Geoenvironmental Engineering,2003,129(11):1001-1009.
    [55]Li A L,and Rowe R K.Combined effects of reinforcement and prefabricated vertical drains on embankment performance.Canadian Geotechnical Journal,2002,38:1266-1282.
    [56]Lorenzo G A,and Bergado D T.New consolidation equation for soil-cement pile improved ground.
    Canadian Geotechnical Journal,2003,40:265-275.
    [57]Madhav R,Park Y M,and Miura N.Modeling and study of smear zones around band shaped drains.Soils and Foundations,1993,33(4):135-147.
    [58]Majorana C,Mazzalai P,and Odorizzi S.Prediction of the settlement of steel petroleum tanks resting on stone columns reinforced soil.Proceeding of the Eighth European Conference of Soils Mechanics and Foundations Engineering,1983,pp.271-274.
    [59]Moser M A.The effectiveness of sand drains in soft soils.International Symposium on SOFT Clay,Bankok,Thailand,1977:261-270.
    [60]Munfakah G A,Sarkar S K,and Castelli R J.Performance of a test embankment founded on stone columns.Proceedings of the International Conference on Advances in Piles and Ground Treatment for Foundations,London,1983,pp.259-265.
    [61]Nagaraj T S,Pandian N S,and Narashima Raju P S R.Stress-state-permeability relations for overconsolidated clays.Geotechnique,1994,44(2):349-352.
    [62]Nogami T,and Li M.Consolidation of clay with a system of vertical and horizontal drains.Journal of Geotechnical and Geoenvironmental Engineering.2003,129(9):838-848.
    [63]Olson R E.Consolidation under time-dependent loading,Journal of Geotechnical Engineering Division ASCE 1977,103(GT1):55-60.
    [64]Onoue A.Consolidation of multilayered anisotropic soils by vertical drains with well resistance.Soils and Foundations,1988a,28(3):75-90.
    [65]Onoue A.Consolidation by vertical drains taking well resistance and smear into consideration.Soils and Foundations,1988b,28(4):165-174.
    [66]Onoue A,Ting N H,Germaine J T,and Whitman R V.Permeability of disturbed zone around vertical drains.Proceedings of Geotechnical Engineering Congress,Boulder,1991,vol.2,pp.879-890.
    [67]Poulos H G.Analysis of the settlement of pile groups.Geotechnique,1968a,18:449-471.
    [68]Poulos H G,and Davis E H.The settlement behavior of a single axially loaded incompressible piles and piers. Geotechnique, 1968b, 18: 351-371.
    
    [69] Poulos H G. Piled raft foundation: design and application. Geotechnique, 2001, 51(2): 95-113.
    [70] Pulko B, and Majes B. Simple and accurate prediction of settlements of stone column reinforced soil. The 16~(th) International Conference on Soil Mechanics and Geotechnical Enineering, Osaka, Japan, 2005, vol.3,pp. 1401-1404.
    [71] Qian J H, Zhao W B, Cheung Y K, and Lee P K K. The theory and practice of vacuum preloading.Computers and Geotechnics, 1992, 13: 103-118.
    [72] Randolph M F, and Worth C P. An analysis of the vertical deformation of pile groups. Geotechnique,1979, 29(4): 423-439.
    [73] Rao X K, and Raju M V R. One-dimensional consolidation with three-dimensional flow for timw-dependent loading. Journal of Geotechnical Engineering, 1990, 116(10): 1576-1580.
    [74] Richart Jr. F E. A review of the theories for sand drains. Proc. ASCE, 1957, Vol.83, No.Sm3: 1-38.
    [75] Robertson P K, Campanella R G, and Brown P T. Prediction of wick drain performance using piezometer cone data. Canadian Geotechnical Journal, 1998,25: 56-61.
    [76] Robinson R G. Consolidation analysis with pore water pressure measurements. Geotechnique, 1999,49(1): 127-132.
    [77] Rujikiatkamjorn C, and Indraratna B. Analytical solutions and design curves for vacuum-assisted consolidation with both vertical and horizontal drainage. Canadian Geotechnical Journal, 2007, 44:188-200.
    [78] Runesson K, Hansbo S, and Wiberg N E. The efficiency of partially penetrating vertical drains.Geotechnique, 1985, 35(4): 511-516.
    [79] Saye S R. Assessment of soil disturbance by the installation of displacement sand drains and prefabricated vertical drains. In Soil behavior and soft ground construction. Edited by Germaine J.T.,Sheahan T.C., and Whitman R.V. ASCE Geotechnical Special Publication 119, ASCE, Reston, Va. No.119,2003, pp.325-362.
    [80] Seah T H, and Juirnarongrit T. Constant rate of strain consolidation with radial drainage. Geotechnical Testing Journal, ASTM, 2003, 26(4): 1-12.
    [81] Seah T H, Tangthansup B, and Wongsatian P. Horizontal coefficient of consolidation of soft Bangkok clay. Geotechnical Testing Journal, ASTM, 2004, 27(5): 1-11.
    
    [82] Sharma J S, and Xiao D. Characterization of a smear zone around vertical drains by large-sacle laboratory tests.Canadian Geotechnical Journal,2000,37(6):1265-1271.
    [83]Singh G,and Hattab T N.A laboratory study of efficiency of sand drains in relation to methods of installation and spacing.Geotechnique,1979,29(4):395-422.
    [84]Tang X W.A study for consolidation of ground with vertical drain system.Ph.D.thesis,Saga University,Japan,1998a.
    [85]Tang X W,and Onisuka K.Consolidation of ground with partially vertical drains.Geotechnical Engineering Journal,1998b,29(2):209-231.
    [86]Tang X W,and Onisuka K.Consolidation by vertical drains under time-dependent loading.International Journal for Numerical and Analytical Methods in Geomechanics,2000,24:739-751.
    [87]Tang X W,and Onisuka K.Consolidation of double-layered ground with vertical drains.International Journal for Numerical and Analytical Methods in Geomechanics,2001,25(14):1449-1465.
    [88]Timoshenko S P,and Goodier J N.Theory of elasticity.北京,清华大学出版社.
    [89]Tran T A,and Mitachi T.Equivalent plane strain modeling of vertical drains in soft ground under embankment combined with vacuum preloading.Computers and Geotechnics,2008,35(5):655-672.
    [90]Van Impe W F,and De Beer E.Improvement of settlement behavior of soft layers by means of stone columns.The 8~(th) European Conference on Soil Mechanics and Foundation Engineering,Helsinki,1983,vol.1,pp.309-312.
    [91]Walker R,Indraratna B.Vertical drain consolidation with parabolic distribution of permeability in smear zone.Journal of Geotechnical and Geoenvironmental Engineering,2006,132(7):937-941.
    [92]Wang X S,and Jiao J J.Analysis of soil consolidation by vertical drains with double porosity model.International Journal for Numerical and Analytical Methods in Geomechanics,2004,28:1385-1400.
    [93]Xie K H,Lee P K K,and Cheung Y K.Consolidation of a two-layer system with ideal drains.In Proceeding of the 8~(th) International Conference on Computer Methods and Advances in Geomechanics,Morgantown,West Virginia,USA,1994,vol.1,pp.789-794.
    [94]Xie K H,Lu M M,Hu A F,and Chen G H.A general theoretical solution for the consolidation of a composite foundation,Computers and Geotechnics,2009,36(1-2):24-30.
    [95]Xie K H,Lu M M,and Liu G B.Equal strain consolidation for stone-column reinforced foundation.International Journal for Numerical and Analytical Methods in Geomechanics,DOI:10.1002/nag.790.(in Press,Available Online)
    [96]Xie K H,Gao P,and Xie X Y.Consolidation theory for soft clays reinforced by cement of granular columns.Proceedings Of 10~(th) International Conference of the Association for Computer Methods and Advances in Geomechanics.America,Tucson,2001:1263-1268.
    [97]Yang Z H,and Jennie B.Study of soil layering effects on lateral loading behavior of piles.Journal of Geotechnical and Geoenvironmental Engineering,2005,131(6):762-770.
    [98]Yoshikuni H,and Nakanodo H.Consolidation of soils by vertical drain wells with finite permeability.Soils and Foundations,1974,14(2):35-46.
    [99]Yoshikuni H.Design and control of construction in the vertical drain method.Gihoudou,Tokyo:Gihoudou,1979.
    [100]Zeng G X,and Xie K H.New development of the vertical drain theories.Proceeding of the 12~(th)International Conference on Soil Mechanics and Foundation Engineering,Rotterdam,The Netherlands,1989,vol.2,pp.1435-1438.
    [101]Zeng G X,Pan Q Y,and Xie K H.Advances in design theories for vertical drains.Proceedings of the First Iranian International Seminar on Soils Mechanics and Foundations Engineering,Iran,1990,pp.278-289.
    [102]Zeng G X,Xie K H,and Zhu X R.Advances in the theories of consolidation by vertical drains.Proceedings of the International Conference on Structures and Foundation,Hangzhou,1994,pp.11-25.
    [103]Zhang Y G,Xie K H,and Wang Z.Consolidation analysis of composite ground improved by granular columns considering variation of permeability coefficient of soil.ASCE GeoShanghai International Conference Special Publication,Ground Modification and Seismic Mitigation(GSP 152),2006.
    [104]Zhu G F,and Yin J H.Consolidation of soil under depth-dependent ramp load.Canadian Geotechnical Journal,1998,35(3):344-350.
    [105]Zhu G F,and Yin J H.Consolidation of double soil layers under depth-dependent ramp load.Geotechnique,1999,49(3):415-421.
    [106]Zhu G F,and Yin J H.Finite element analysis of consolidation of soils with vertical drain.International Journal for Numerical and Analytical Methods in Geomechanics,2000,24(4):337-366.
    [107]Zhu G F,and Yin J H.Consolidation of soil with vertical and horizontal drainage.Geotechnique,2001a,51(4):361-367.
    [108]Zhu G F,and Yin J H.Design charts for vertical drains considering construction time.Canadian Geotechnical Journal,2001 b,38(5):1142-1148.
    [109]Zhu G F,and Yin J H.Consolidation analysis of soil with vertical and horizontal drainage under ramp loading considering smear effects.Geotextiles and Geomembranes,2004(22):63-74.
    [110]Zou Y.A non-linear permeability relation depending on the activation energy of pore liquid.Geotechnique,1996,46(4):769-774.
    [111]方磊,谢永利.柔性基础下复合地基桩土应力比模型试验.长安大学学报:自然科学版,2005,25(2):30-32.
    [112]高彦斌,黄亮,叶观宝.路堤荷载下桩土复合地基性状分析.中国公路学报,2008,21(1):6-11.
    [113]龚晓南.高等土力学.北京,中国建筑工业出版社,1996:116-135.
    [114]龚晓南.复合地基理论与工程应用.北京,中国建筑工业出版社,2002:100-130.
    [115]郝玉龙,陈云敏,王军.深厚软土未打穿砂井超载预压地基孔隙水压力消散规律分析.中国公路学报,2004a,15(2):36-39.
    [116]李志斌,叶观宝,徐超.水泥土搅拌桩复合地基桩土应力比的对比分析.地下空间与工程学报,2005,1(3):386-389.
    [117]刘吉福.路堤下复合地基桩、土应力比分析.岩石力学与工程学报,2003,22(4):674-677.
    [118]刘加才,施建勇,赵维炳.真空堆载联合预压作用下路基固结分析.水运工程,2003,353(6):1-9.
    [119]刘加才,赵维炳,施建勇.真空预压作用下竖井地基孔压消散研究.中国公路学报,2004a,17(2):37-42.
    [120]刘加才,施建勇.用最小二乘法确定竖井地基平均固结度.长江科学院院报,2004b,21(4):28-31.
    [121]刘加才,施建勇.一种竖井地基竖墙化等效计算方法.岩土力学,2004a,25(11):1782-1785.
    [122]刘杰,张可能.复合地基荷载传递规律及变形计算.中国公路学报,2004,17(1):20-23.
    [123]刘杰,赵明华,何杰.碎石桩复合地基承载即变形性状研究.湖南大学学报:自然科学版,2007,34(5):15-19.
    [124]刘兴旺,谢康和,潘秋元,曾国熙.竖向排水井地基粘弹性固结解析理论.土木工程学报,1998,31(1):10-19.
    [125]卢萌盟,谢康和,张玉国,陈国红.考虑施工扰动和荷载效应的复合地基固结解.岩土工程学报,2008,30(4):549-554.
    [126]卢萌盟,谢康和,张玉国,胡安峰.考虑土体水平渗透系数变化的复合地基固结解.浙江大学学报:工学版,2008,42(11):1996-2001.
    [127]卢萌盟,谢康和,王坤,齐添.考虑桩体内径向渗流的复合地基固结解.固体力学学报,2009,30(2):155-161.
    [128]钱家欢,赵维炳.真空预压砂井地基固结分析的半解析方法.中国科学(A辑),1988,4:439-448.
    [129]沈伟,池跃君,宋二祥.考虑桩、土、垫层协同作用的刚性桩复合地基沉降计算方法.工程力学,2003,20(2):36-42.
    [130]施建勇,赵维炳,艾英钵,顾吉.砂井地基预压加固的粘弹塑性分析研究.岩土工程学报,1996,18(3):13-17.
    [131]王军,陈云敏.考虑土结构性影响的砂井地基固结度计算,中国公路学报,2001,14(2):22-26.
    [132]王瑞春.竖井地基和散体材料桩复合地基固结解析研究.杭州:浙江大学博士论文,2001a.
    [133]王瑞春,谢康和.考虑应力集中效应的散体材料桩复合地基固结解析解.科技通报,2001b,17(5):26-31.
    [134]王瑞春,谢康和.双层散体材料桩复合地基固结解析理论.岩土工程学报,2001c,23(4):418-422.
    [135]王瑞春,谢康和.半透水边界的竖向排水井地基粘弹性固结分析.长江科学院院报,2001d,18(6):33-36.
    [136]王瑞春,谢康和.变荷载下竖向排水井地基粘弹性固结沉降解析解.土木工程学报,2001e,34(6):93-99.
    [137]王瑞春,谢康和,关山海.变荷载下散体材料桩复合地基固结解析解.浙江大学学报:工学版,2002a,36(1):12-16.
    [138]王瑞春,谢康和.双层散体材料桩复合地基固结普遍解析解.中国公路学报,2002b,15(3):33-37.
    [139]王瑞春,童恺显,赖泉水.未打穿半透水下卧层的竖井地基固结解析研究.城市道桥与防洪,2003,1:31-35.
    [140]王瑞春,谢康和,唐晓武.未打穿散体材料桩复合地基固结解析研究.公路交通科技,2004,21(6):12-16.
    [141]吴慧明,龚晓南.刚性基础与柔性基础下复合地基模型试验对比研究.土木工程学报,2001,34(5):81-83.
    [142]谢康和.砂井地基:固结理论、数值分析与优化设计.杭州:浙江大学博士论文,1987.
    [143]谢康和,曾国熙.等应变条件下的砂井地基固结解析理论.岩土工程学报,1989a,11(2):3-17.
    [144]谢康和.砂井地基的优化设计.土木工程学报,1989b,22(2):3-11.
    [145]谢康和.复合地基固结理论研究现状与发展.地基处理,1993,4(3):1-14.
    [146]谢康和.等应变条件下的双层理想井地基固结理论.浙江大学学报,1995,29(5):529-539.
    [147]谢康和,周健.岩土工程有限元分析理论与应用.北京,科学出版社,2002.
    [148]谢康和,周开茂.未打穿竖向排水井地基固结理论.岩土工程学报,2006,28(6):679-684.
    [149]徐妍,吴芳,谢康和,林瑛.初始孔压非均布竖向排水井地基固结方程的解析解.水利学报,2008, 39(7):829-835.
    [150]徐洋,谢康和,胡茂刚.考虑变形协调的刚性基础复合地基沉降计算.浙江大学学报:工学版,2003,37(5):551-555.
    [151]徐洋,谢康和,何丽波.三维复合模型及其在散体材料桩复合地基分析中的应用.岩石力学与工程学报,2004,23(20):3405-3412.
    [152]徐芝纶.弹性理论,北京:高等教育出版社,1990.
    [153]叶书麟,韩杰,叶观宝.地基处理与托换技术.北京,中国建筑工业出版社,1994:178-253.
    [154]俞建霖,龚晓南,江璞.柔性基础下刚性桩复合地基的工作性状.中国公路学报,2007,20(4):1-15.
    [155]曾开华,俞建霖,龚晓南.高速公路通道软基低强度混凝土桩处理试验研究.岩土工程学报,2003,25(6):715-719.
    [156]曾开华,俞建霖,龚晓南.路堤荷载下低强度混凝土桩复合地基性状分析.浙江大学学报:工学版,2004,38(2):185-190.
    [157]张定.碎石桩复合地基的作用机理分析及沉降计算.岩土力学,1999,20(2):81-86.
    [158]张玉国,谢康和,应宏伟,胡安峰.双面半透水边界的散体材料桩复合地基固结分析.岩土工程学报,2005,27(3):304-307.
    [159]张玉国.散体材料桩复合地基固结理论研究.杭州:浙江大学博士论文,2005.
    [160]赵明,赵明华,陈昌富.确定碎石桩复合地基桩土应力比的一种新方法.湖南大学学报:自然科学版,2002,29(2):112-116.
    [161]赵维炳.砂井地基固结分析半解析方法的改进.岩土工程学报,1991,13(4):51-58.
    [162]赵维炳,陈永辉,龚友平.平面应变有限元分析中砂井的处理方法.水利学报,1998,29:53-57.
    [163]周开茂,谢康和,应宏伟,来方勇.双面排水条件下未打穿竖井地基固结计算.浙江大学学报:工学版,2007,41(1):151-156.
    [164]朱向荣,潘秋元,卞守中,谢康和.超载预压加固宁波机场场道软基.浙江大学百年校庆暨七十周年系庆土木工程论文集,杭州,1997,271-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700