纳米碳酸钙制备新工艺的研究及其数学模型的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米碳酸钙是一种新兴的功能性填充材料,广泛的应用于橡胶、塑料、造纸、涂料、油墨等行业,它不仅可以起到增容降价的作用,而且也具有优良的补强性。尤其是近年来,随着纳米技术的发展和橡胶、塑料、造纸等行业的发展,对纳米碳酸钙的需求量迅速增加,对其粒度、晶形和性能提出了更高的要求。因此,纳米活性碳酸钙制备技术的研究具有重要意义。
     目前,国内外普遍采用碳化法制备纳米CaCO_3。在合成过程中,碳化反应是最为关键的一个步骤。本论文将超声波引入碳化过程,发现超声波可以在一定程度上强化碳化反应,缩短碳化时间,使纳米CaCO_3粒径更加细小。为了从根本上强化碳化反应,本文开发了一种新的碳化工艺——自吸式搅拌碳化法,并作为本文研究的重点。试验中用pH计和电导率仪跟踪碳化反应的全过程,研究了碳化过程的特点。结果表明:这种带有高速搅拌的自吸式反应器,可以极大地强化碳化反应,可以使CO_2的平均吸收率提高到75%左右,而且使反应时间缩短了4倍多(和传统的鼓泡搅拌法相比),制备的纳米碳酸钙粒径为30—50nm,粒度分布更窄。文中还以CO_2的吸收率和沉降体积为参数,对温度、CO_2浓度和Ca(OH)_2浓度进行了单因素和正交试验研究,最终确定了制备纳米碳酸钙的最佳工艺条件:温度为20—30℃,Ca(OH)_2浓度为8—12%,CO_2浓度为50—80%。
     为了满足不同行业对不同晶形碳酸钙的需求,本论文以自吸式搅拌反应器为主体设备,通过添加不同的添加剂,得到了立方形、链形、片形、球形和棒形五种超细碳酸钙产品。并以晶体生长动力学为基础,从添加剂的种类、用量及添加时间三个角度出发,研究了其对CaCO_3产品的粒度和晶形的影响。
     基于粘胶工业的需求以及实际生产中存在的问题,本文从纳米碳酸钙的活化机理出发,研究了粘胶专用低吸油量纳米活性碳酸钙的工艺条件和主要影响因素。工艺条件选择活化温度为50—60℃,活化时间为1小时。研究表明,活化剂、添加剂、碳化工艺对吸油值都有较显著的影响。最终选择了两种较好的复合活化剂和相应的添加剂,活化产品能达到国家优等品,吸油值也可明显降低。
     最后,本文以自吸式搅拌碳化法为研究对象,研究了碳化反应的
    
    宏观动力学规律,并拟合了试验数据,进行了模型验证,得到了具有
    令人满意的预测效果的宏观动力学分段模型,并对鼓泡搅拌反应器的
    传质特性进行研究,与自吸式搅拌反应器进行比较,结果表明自吸式
    搅拌反应器可以使液相体积传质系数kt.a和气液相界接触面积a提高
    一个数量级,从理论上证明了新型反应器可以极大强化吸收传质,提
    高相界接触面积,从而极大强化碳化反应,缩短碳化反应时间。同时
    也充分说明了新工艺选择的科学性和可靠性,也为纳米碳酸钙的生产
    提供了一定的理论依据。
Nanometer calcium carbonate is a kind of new functional filler, widely used in rubber, plastic, paper, paint, printing ink, and so on. Nanometer CaCO3 not only has the function of increasing volume and decreasing cost, but also has the function of reinforcing. Especially in recent years, with the development of nanometer technology, nanometer calcium carbonate demand of different trades such as rubber, plastic and paper is highly increased; at the same time, those trades also make more requirements for particle size, crystal shape and performance. So the study of active nanometer calcium carbonate has important significance.
    Presently, carbonization method is widely adopted to prepare nanometer CaCO3 in home and abroad. During the synthesis process, carbonization reaction is the key step. Initially taking sonochemistry in carbonization, the influence of ultrasound on the carbonation process of the synthesis of nanometer calcium carbonate was studied. The result showed that under the ultrasound, nanometer calcium carbonate with uniform fine particle size could be obtained, and carbonization time could be shortened. Carbonization reaction was strengthened in some degree. In
    order to strengthen carbonization fundamentally, a new technology --
    self-suction stirred carbonization method was developed in this article.
    Taking the new reactor -- self-suction stirred reactor as main research
    object, using pH meter and conductivity meter to trace the whole process, carbonization characters of new technology were studied. The results showed that self-suction stirred reactor, with high-speed stirring, could strengthen carbonization effectively, obviously raise the average absorptivity of CO2 to 75%, shorten the carbonization time fourfold or so (comparing to the traditional bubbling method), and prepare 30-50 nanometer calcium carbonate with mean particle size. Taking CO2 absorptivity and sedimentation volume as parameters, and based on the single factor and orthogonal experiments of temperature, CO2 concentration and Ca(OH)2 concentration, the optimum technology conditions were determined. The temperature was 20 to 30 C, CO2 concentration was about 50% to 80% and Ca(OH)2 concentration was 8%
    
    
    to 12%.
    To meet the demands of different trades for CaCO3 of various crystal shapes, using self-suction stirred reactor as main equipment, through adding different additives, ultrafine CaCO3 with five different shapes (including cube, chain, plate, sphere and stick) were synthesized in this article. Based on the crystal growing kinetics, the influences of additives on CaCO3 were studied. From the sorts, the amount, and the adding time, the influences of additives on particle size and crystal shape were studied.
    Based on the mechanism of surface modification, the technology conditions and main influence factors of nanometer calcium carbonate using in viscose with low oil absorption were studied. The modification temperature was 50 to 60 C, and modification time was about 1 hour. The carbonation technology, modification temperature, time, composition and additive had notably influence on oil absorption. In the end, two better compound activators and some additives were selected. Under the condition, modifying products could reach the national standard of high quality products, and oil absorption could be decreased sharply.
    In the end, using self-suction stirred carbonization as research object, macrokinetics law of carbonization was explored. Macrokinetics sectioned model with favorable prediction effect was obtained. Comparing to bubbling stirred reactor, new reactor could raise liquid volume mass transfer coefficient kL-a and gas-liquid contact area a an order of magnitude. It showed theoretically that new technology could make gas and liquid mixing completely, make bubble little, strengthen gas-liquid reaction effectively, and shorten carbonization time. It also fully illustrated reliability and scientific quality of the new technology. Moreover, it provided theory reference for producing nanometer calcium carbonate.
引文
[1]汪晖,汪国云,帅颖松等.我国超微细粉体应用市场分析.化工进展,1993(2):48~50
    [2]余振威,王甫云,刘其昌.关于我国碳酸钙工业发展的几点建议.无机盐工业,1998,30(3):21~23
    [3]胡庆福,胡小波,宋丽英.碳酸钙工业发展之浅析.无机盐工业,1999,31(5):18~21
    [4]李连成,周产力,吴畏等.我国纳米碳酸钙市场.无机盐工业,2000,32(6):23~25
    [5]Woode, Richard Derek Anthony. Production of Calcium Carbonate. US4018877, 1977-04-19
    [6]Takuma Shotaro. Production of Precipitated Calcium Carbonate Light. JP3261618A2, 1989-10-04
    [7]王毓娥.日本碳酸钙工业发展动向.无机盐工业,1985,17(5):39~44
    [8]胡志彤.国外碳酸钙工业进展.无机盐工业,1989,21(2):30~33
    [9]长谷川博.轻质极微细碳酸钙工业的现状.石膏与石灰,1973(12):33~41
    [10]吴绍吟,练恩生.纳米碳酸钙的特点与应用.橡胶工业,1999,46(3):146~150
    [11]陈建新,梅海军,张景香等.超细颗粒的制备及应用.无机盐工业,2001,33(1):26~32
    [12]卫志贤,郑岚,刘荣杰.超细碳酸钙的制备.化工进展,1998(5):50~53
    [13]Cai Hanhai, Li Sidong, Tian Guoren, etc. Reinforcement of natural rubber latex film by ultrafine calcium carbonate. Journal of Applied Polymer Science, 2002,87(6):982~985
    [14]杨清芝,张殿荣,王巧娥等.羧化聚丁二烯改性超细碳酸钙对丁苯橡胶力学-性能和加工性能的影响.橡胶工业,1998,45(12):713~716
    [15]黄承亚.链状超细碳酸钙的合成研究.无机盐工业,1995,27(6):7~10
    [16]Shang S W. Williams J W and solderholm K J M. Using the bond energy density to predict the reinforcing ability of a composite. Journal of Materials Science, 1992(27): 4949~4956
    [17]Shang S W. Williams JW and solderholmK JM. Work of adhesion influence on the rhedogical properties of sillicafilled polymer composites.
    
    Journal of Materials Science, 1995(30): 4323~4334
    [18]杜振霞,贾志谦等.纳米碳酸钙表面改性及在涂料中的应用研究.北京化工大学学报,1999,26(2):83~85
    [19]曹运长.超微细碳酸钙—高档油墨填料206的研制.无机盐工业,2000,33(1):23~25
    [20]贾永林.油墨碳酸钙的研制.无机盐工业,2002,34(1):32~32.
    [21]高桥一人,金井清,南里泰德等.造纸碳酸钙的制备.日本公开特许,特开平656422,1994
    [22]齐藤光正.金属陶瓷超微粒子的特性及应用.粉体工业,1998,30(3):35~40
    [23]John Hanna. Advances in Fine Particle' s Processing. Elsevier Sci. Publishing Co. Inc. 1990.181~186
    [24]Kauffeldt Th, Schmidt-Ott A, Lakner H. Measuring Properties of Nanoparticles by Aerosol Methods. Proceedings of the 2nd International Conference on Nanostructured Materials. Stuttgart, Ger, Pergamon. Press nc, Tarrytown, NY, USA. Oct. 1995:655~658
    [25]曹茂盛.超微颗粒制备科学与技术.哈尔滨:哈尔滨工业出版社,1995.20~63
    [26]张士成,韩跃新,蒋军华等.纳米碳酸钙的合成方法.矿产保护与利用,1998(3):11~15
    [27]白鸽玲,满瑞林.纳米级和特型活性碳酸钙的制备.应用化工,2001,30(6):10~13
    [28]王国庆,崔英德.轻质碳酸钙生产工艺.北京:化学工业出版社,1993.150~160
    [29]张士成,韩跃新,蒋军华.纳米碳酸钙的合成方法.矿产保护与利用,1998(3):11~15
    [30]李连成,周产力,吴畏等.我国纳米碳酸钙市场.无机盐工业,2000,32(16):23~25
    [31]Shbazaki Hiroji, Edagawa Hisashi, Kondo Satoshi. Continuous Manufacture of Precipitated Calcium Carbonate. US4133894, 1979-01-09
    [32]Yamada H., Hara N. Formation Process of Calcium Carbonate in the Reaction of System Ca(OH)_2-H_2O-CO_2. Gypsum and Lime, 1985, 19(4):3~12
    
    
    [33] Yamada H. Transformation of Amorphous CaCO3 in the System of Ca(OH)_2-H_2O-CO_2. Gypsum and Lime, 1986, 20(3): 221~225
    [34] Juvekar V.A., Sharra M.M. Absorption of CO2 in a Suspension of Lime. Chemical Engineering Science, 1973, (28): 825~837
    [35] 姚守信.生产轻质碳酸钙用碳化塔结构的实验研究.无机盐工业,1997,29(6):37~38
    [36] 山田英夫,原尚道.超细碳酸钙的制备.日本特许公开.JP79—41299
    [37] 胡庆福,李保林.连续碳化法制备制造超细碳酸钙及其产品应用探索.河北化工学院学报,1987,9(2):55~63
    [38] 刘伯元,黄锐.非金属纳米材料.中国粉体技术,2001,7(2):33~35
    [39] 胡庆福,李国庭,王金阁等.双喷新工艺制造活性超细碳酸钙.非金属矿,1998,21(1):33~35
    [40] 满瑞林,余嘉耕,汤义武等.超细碳酸钙生产设备.化工装备技术,1998,19(2):1~4
    [41] 满瑞林,余嘉耕,汤义武等.轻质碳酸钙碳化新工艺.无机盐工业,1997,29(5):35~36
    [42] 王玉红,陈建峰.超重力反应结晶法制备纳米碳酸钙颗粒研究.粉体技术,1998,4(4):5~11
    [43] 王玉红,陈建峰,贾志谦等.旋转填充床新型反应器中合成纳米碳酸钙过程特性研究.化学反应工程与工艺,1997,13(6):141~146
    [44] 沈志刚,陈建峰.超重力反应器制备超细碳酸钙新工艺研究.无机盐工业,2001,33(11):3~5
    [45] 王水,胡庆福.内循环碳化塔制备纳米碳酸钙新工艺.无机盐工业,2002,34(3):8~10
    [46] 李根福.超声空化技术生产纳米活性碳酸钙工艺.中国 CN1262223A.2000-08-09
    [47] D·R·都茨施,K·J·威斯.碳酸钙分散颗粒的制备方法.中国CN:1203566A 1998-12-30
    [48] 袁伟,金鑫.片状晶形轻质碳酸钙的制备方法.中国CN:1032912C1996-10-2
    [49] 愈圭在.胶态碳酸钙链形超细碳酸钙颗粒及其生产方法.中国CN:1058683C 2000-11-22
    [50] Kami pa Gikyoshi. Manufacture of uniform calcium carbonate. Ind. Eng. chem., 1990, (1): 62~68
    
    
    [51] Tanaka, Koichi. Manufacture of Uniform Cubic Calcium Carbonate. JP02184518, 1990-06-12
    [52] Tanaka Koichi, Kumasaka Tetsuo, Yamashita Kazuo. Production of Cubic Calcium Carbonate Having Uniform Particle Diameter. JP2184518A2, 1989-01-12
    [53] Shbazaki Hiroji, Edagawa Hisashi, Kondo Satoshi. Continuous Manufacture of Precipitated Calcium Carbonate. US4133894, 1979-0109
    [54] 郑岚.立方形超细碳酸钙的制备研究.无机盐工业,1998,30(1):5~7
    [55] 黄承亚.链状超细碳酸钙的合成研究.无机盐工业,1996,28(6):7~10
    [56] 肖良质,洪广言.链状超细碳酸钙的合成机理与热稳定性研究.精细化工,1989,6(5):5~8
    [57] 全学军.不同形态碳酸钙的制备.四川有色金属,1994(4):1~4
    [58] 黄建花,童九如.乳液法制备片状碳酸钙.现代化工,1994,14(5):27~30
    [59] 胡琳娜,何豫基,宋宝俊.多种晶形微细碳酸钙研制.非金属矿2001,24(3):10~12
    [60] 顾燕芳,王松,胡黎明等.超细CaCO_3合成过程中的形态控制.华东化工学院学报 1993,19(5):550~556
    [61] Cui Aili, Wang Zichen, Luo Yu, et al. Synthesis of Ultrafine Calcium Carbonate with Various Shapes. 96 China-Japan Symposium on Particuology, Beijing, 1996:164~167
    [62] 杜仕国.填料的改性及其表征.塑料工业,1994,(2):48~51
    [63] 陈烨璞,吉红念,赵英刚等.碳酸钙填料的表面改性.无锡轻工大学学报,1999,18(4):11~15
    [64] Kim DoSu, Lee Churlkyoung. Surface modification of precipitated calcium carbonate using aqueous fluosilicic acid. Applied Surface Science, 2002,202(1): 15~23
    [65] 白木羲一.粉体的表面改性.日本橡胶,1992,65(5):68~77
    [66] 吉晓莉,陈家焱.粉体表面改性处理设备及其发展.湖北化工,1998(4):37~38
    [67] 潘鹤林.CaCO_3粉末表面处理进展.无机盐工业,1996,28(1):24~27
    [68] 於莉莉,于经元,康仕芳.碳酸钙粉末的表面改性.天津化工,2000(3):
    
    11~13
    [69]胡庆福,胡晓波,宋丽英等.沉淀碳酸钙制造及其改性处理技术.非金属矿,1999,22(2):33~35
    [70]丘泰球,李月花,陈树功.声场对蔗糖结晶成核过程的影响.声学技术,1993,1 (12):15~19
    [71]王伟宁,吕秉玲.超声场在碱式氯化镁结晶中的应用.无机盐工业,1990,22(3):22~25
    [72]梁新义,泰永宁,齐晓固等.超声共沉淀法制备LaCoO3纳米微晶的研究.化学物理通报,1998,4(11):376~381
    [73]Juvekar V. A., Sharra M.M. Absorption of CO_2 in a Suspension of Lime. Chemical Engineering Science, 1973 (28): 825~837
    [74]蔡菊香,岳林海.超细碳酸钙合成条件的研究.化工进展,1995(5):7~9
    [75]徐华蕊,李凤生.沉淀法制备纳米级粒子的研究.化工进展,1996,(5):29~31
    [76]国碳酸钙行业科学技术顾部组.碳酸钙行业形势报告.无机盐工业,1989,21(1):1~4
    [77]肖品东.超细碳酸钙生产中碳化工序控制因素的分析.无机盐工业,2001,33(5):28~30
    [78]Xiang, L; Xiang, Y; Wang, Z.G. ;etc. Influence of chemical additives on the formation of super-fine calcium carbonate. Powder Technology, 2002,126(4):129~133
    [79]姚连增.晶体生长基础.合肥:中国科学技术大学出版社,1995.279~283
    [80]A. W. Adamson. Formation Process of Calci μ m Carbonate in the Reaction of System Ca(OH)_2-H_2O-CO_2. Physical Chemistry of Surface(中译文).北京:科学出版社,1985年:394~395
    [81]Wachi S., Jones A.G. Effect of Gas-Liquid Mass Transfer on Crystal Size Distributions During the Batch Precipitation of Calcium Carbonate. Chemical Engineering Science, 1991, 46(12): 3289~3293
    [82]Jones A.G., Hostomsky J., Zhou Li. On the Effect of Liquid Mixing Rate on Primary Crystal Size During the Gas-Liquid Precipitation of Calcium Carbonate. Chemical Engineering Sclence, 1992, 47(13/14): 3817~3824
    [83]Reader R. J. Interaction of Divalent Cobalt, Cadmium, and Barium with the Calcite Surface During Layer Growth. Geochemical et
    
    Cosmochimica Acta, 1996, 60(9): 1543~1547
    [84]柴崎宏二. 沉淀碳酸钙的连续制备法.日本公开特许,昭54-27200
    [85]郑忠.胶体化学导论.北京:高等教育出版社1989.28~30,44~45
    [86]唐振宁. 吸油量的测定及应用.中国涂料,1994(3):28~30
    [87]中华人民共和国化学工业部.HG/T 2567-94.工业活性沉淀碳酸钙化工行业标准.北京:中国标准出版社,1994-02-09

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700