二化螟、大螟对氟虫腈和三唑磷的敏感性差异及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二化螟Chilo suppressalis (Walker)和大螟Sesamia inferens Walker是水稻上两个重要害虫。自20世纪90年代以来,由于气候变暖、耕作制度改变、杂交稻种植面积扩大及害虫抗药性等原因,稻螟连年大爆发,对水稻的高产优质造成严重威胁。长期以来,防治稻螟主要依靠化学农药。由于大量用药,已导致二化螟对多种农药产生抗性。为了控制螟害,新农药不断被引进。然而,一种新农药可能对主要靶标害虫有效,但有时却可引起另一种害虫的猖獗。因此,在大面推广之前,对引进的新农药进行全面评估很有必要。本文就二化螟和大螟对氟虫腈和三唑磷的敏感性差异及其机理进行研究,主要结果如下:
     1 二化螟的抗性监测
     抗性监测结果表明,浙江省各地二化螟种群对杀虫单和三唑磷均已普遍产生高水平抗性,特别是浙东南沿海的瑞安、平阳、乐清和温岭等地的二化螟种群,其抗性倍数均在160倍以上。大部分种群对氟虫腈和阿维菌素仍然保持敏感,其抗性倍数在5倍以下,但监测发现瑞安二化螟种群对氟虫腈的抗性达6.5倍,为低水平抗性。药剂敏感性监测结果显示,二化螟和大螟的田间种群对氟虫腈的敏感性逐年下降,两种螟虫对氟虫腈抗性的发展趋势一致。相比而言,二化螟田间种群个体间的异质性逐年增加,而大螟种群个体异质性无明显变化。连续两年的田间调查结果表明,氟虫腈对水稻螟虫的控害能力优于三唑磷,但氟虫腈的使用易引起大螟种群数量的上升,而三唑磷则易引起二化螟田间种群的上升。
     2 二化螟和大螟不同地区种群抗性相关酶系的分析
     2.1 二化螟不同地区种群抗性相关酶系的活性与频率分布
     从频率分布来看,天台、上虞、秀城和瑞安种群高羧酸酯酶(CarE)酶活性[>6.0μmol·min~(-1)·(mg pro)~(-1))]个体的频率明显比其他种群要高。CarE的平均活性则以秀城和上虞两个种群的比活力最高,分为9.176和8.793μmol·min~(-1)·(mg pro)~(-1),其他种群CarE的平均酶活性在2.543~7.165μmol·min~(-1)·(mg pro)~(-1)之间。相关性分析表明,二化螟不同种群的平均CarE活性与其对氟虫腈、三唑磷和杀虫单的抗性水平均没有显著相关,说明CarE在二化螟对这些杀虫剂的抗性形成中不是主导因子。
     乐清、平阳、瑞安、秀洲4个种群的谷胱甘肽S-转移酶(GSTs)个体酶活性明显较高,大部分个体分布于200μmol·min~(-1)·(mg pro)~(-1)以上的酶活区段。GSTs的平均酶活性以温州地区的平阳、瑞安及乐清3个种群明显高于其他种群。不同地区二化螟种群GSTs活性与其对
Striped stem borer (SSB), Chilo suppressalis (Walker) and purplish stem borer (PSB), Sesamia inferens Walker are two pests of rice. Since 1990s, there have been outbreaks in China because of the changes in climate, rice cultivation system, the extension of hybrid varieties and insecticide resistance. From past to now, control of rice stem borers mainly depended on pesticides. Because of extensive use of pesticides, SSB have developed resistances. Therefore, newly pesticides have to be introduced to control the populations of rice stem borers. However, a newly pesticide may effectively control one of pests but cause another pest outbreak. In this paper, the differential susceptibility and its mechanisms to fipronil and triazophos of SSB and PSB are studied. 1 Monitoring of insecticide resistance in SSBResults of monitoring showed that all populations of SSB collected from different counties or cities, Zhejiang province, had developed high level resistance (>40-fold) to monosultap and triazophos. Very high level of resistance to these two insecticides (> 160-fold) were detected in Rui'an, Pingyang, yueqi and Wenling populations collected from southeast Zhejiang province, where insecticides had been most extensively used. Low level of resistance to fipronil (6.5-fold) was detected in Rui'an population, but other populations tested remained susceptible (<5-fold) to this newly introduced insecticide though some susceptibility variation existed. No apparent resistance to abamectin had been detected after examining 12 populations collected from Zhejiang provinces, with susceptibility variation among them less than 2.8-fold.Dynamics of fipronil susceptibility in SSB and PSB were monitored continuously from 2003
    to 2005. The results indicated that the susceptibility to fipronil decreased year by year, and the trends of developing resistance to fipronil is consistent in these two rice stem borers. By comparison, the heterogeneity in population of SSB increased year by year, but vary little in PSB.The rate of deadheart and whitehead of rice and the amounts of populations of SSB and PSB were investigated continuously from 2004 to 2005. The results showed that fipronil could more effectively control the rate of deadheart and whitehead than triazophos in the paddy field. Meanwhile, it was found that the population of PSB increased significantly in fipronil-treated paddy field, while the population of SSB increased in triazophos-treated paddy field. 2 Biochemical characterization of insecticide-resistance related enzymes in different populations of SSB and PSB2.1 Activities and their frequencies of insecticide-resistance related enzymes in different populations of SSBFrequency distribution patterns of carboxylesterase (CarE) activity of Tiantai, Shanyu, Xiucheng and Rui'an populations had much more individuals possessing high activity [>6.0umol?nin"1?(pigpro)"1)] of CarE than other populations. The highest mean CarE activity were found in Xiucheng and Shangyu. Their specific activities were 9.176 and 8.793 umol?min"I?(rng pro)"1, respectively. The specific activities of other populations ranged 2.543 to 7.165 umol-min~1?(mg pro)"1. There is no significant correlation between the levels of insecticide resistance (LD50) and enzyme activity. It revealed that SSB developed resistance to fipronil, triazophos and monosultap was not due to CarE activity.Results showed that there were much more individuals possessing high activity [>200umol?min"1?(mg pro)"1)] of GSTs in Yueqing, Pingyang, Rui'an and Xiuzhou than other populations. Pingyang, Rui'an and Yueqing population collected from Wenzou, Zhejiang province, had higher mean GSTs activities compare with other populations. The correlation coefficient between GSTs activity and resistance levels was 0.667 to fipronil and 0.839 to monosultap. It suggested that GSTs activity had some relations to fipronil and monosultap resistance levels and it could be used as a reference index for biochemical detection in SSB.There was 55% individuals possessing high activity [>1.0 nmol?min"I?(mgpro)"1)] of MFOs in Yueqing, 35% in Tiantai, 30% in Rui'an and Changxing. The highest mean MFOs activity were found in Rui'an and its specific activity was 1.407 nmolinin"1 ? (mg pro)"1. The specific activities of
    other populations ranged 0.510 to 1.063 nmolTnin"1 ?(mg pro)"1. The correlation coefficient between MFOs activity and resistance level was 0.794 to fipronil and 0.669 to monosultap. It revealed that MFOs activity had some relations to fipronil and monosultap resistance levels and it could be used as a reference index for biochemical detection in SSB.Results indicated that Yuhang, Dongxiang, Shaoxing, Pujiang and Changxing populations had more individuals with high activity of AChE [>1.5umol?min"1?(mg pro)"1] than other populations. The highest mean AChE activity was found in Yuhang and its specific activity was 2.511 umol?min"1?(mg pro)"1, specific activities of other populations ranged 0.989 to 1.976 umol?min"1?(mgpro)"1. The correlation coefficient between AChE activity and resistance level was -0.828 to triazophos. It suggested that AChE activity had some relations to triazophos resistance level. 2.2 The different susceptibility and its mechanisms to insecticides of SSB and PSBBioassay showed that SSB is susceptible to fipronil and resistant to triazophos, PSB is resistant to fipronil and susceptible to triazphos. Synergism experiments indicated that PBO had some antagonism to fipronil but some synergism to triazophos in both SSB and PSB.These results inferred that fipronil is metabolic activation in the rice stem borers. On the contrary, triazophos is metabolic detoxification.Biochemical analysis indicated that the activities and its frequencies of the insecticide-resistance related enzymes in SSB were all higher than those in PSB. Kinetic parameters between SSB and PSB varied greatly. These results implied that there were significant differences in both quantity and quality of the insecticide-resistance related enzymes between SSB and PSB.Inhibition tests in vitro showed that/50 of triazophos onAChE of SSB was 12.35-fold higher and the Kt of AChE in SSB was only 68% of that in PSB. Therefore, insensitive AChE may be a key mechanism responsible for the difference of triazophos susceptibility between SSB and PSB.Results also showed that the content of lipid in SSB was significant higher than that in PSB. The correlation between content of lipid and insecticide resistance was discussed. 3 Tissue and subcellular distribution of insecticide-resistance related enzymes in SSB and PSBOn the tissue distribution, MFOs and GSTs in the SSB and PSB were all distributed mostly in
    fat body, integument and gut, and the lowest in haemolymph. The pattern of CarE tissue distribution in both SSB and PSB were similar, which the major portion (>85%) of CarE specific activities were found in gut and fat body, and a little portion (<15%) in integument and haemolymph. The highest specific activities of AChE in SSB was detected in gut, and relatively low specific activities in haemolymph, integument and fat body. The AChE activities of fat body in PSB was highest among the tissues tested, and the lowest was found in haemolymph.On the subcellular distribution, results showed that the major portions (>90%) of MFOs in both SSB and PSB located in cell nucleus and cell debris fraction, microsome fraction and mitochondrion fraction, and a little (<10%) with cytosol fraction. It revealed that MFOs was distributed mostly in membraneous subcells. The highest GSTs in SSB and PSB were found in cytosol fraction, relatively low level of GSTs in other subcellular fractions. The major portion (46.24%) of CarE in SSB located in the cytosol fraction, whereas the highest specific activity was found in the mitochondrion fraction. Result showed the great mass of of AChE in both SSB and PSB all located in membraneous subcells, include cell nucleus and cell debris fraction, microsome fraction and mitochondrion fraction.4 The sublethal effect of insecticides on the insecticide-resistance related enzymes in SSB and PSBThe sublethal effects of fipronil and triazophos on the insecticide-resistance related enzymes in SSB and PSB was investigated. The results indicated The CarE specific activities of SSB and PSB were induced by the sublethal dose of fipronil, whereas depressed by the sublethal dose of triazophos.No distinct changes were observed in GSTs activities after treatment with fipronil and triazophos in SSB and PSB, suggesting that there were no significant effects on the specific activities of GSTs by these two insecticides.The specific activities of MFOs in both SSB and PSB were induced significantly by the sublethal dose of fipronil. However, there were some differences in the effects on MFOs after treated with the sublethal dose of triazophos between SSB and PSB. Compare with the control, the MFOs activities in SSB induced obviously within 12h, but depressed slightly after 24h treatment. The MFOs activities in PSB treated with triazophos were higher than the control during the experiment, revealling that the MFOs was induced by triazophos.
    Results showed that the AChE activities varied little after treatment with the sublethal dose of fipronil in SSB, but depressed significantly in PSB. AChE activities were depressed obviously by the sublethal dose of triazophos.There were no significant differences in the specific activities of superoxide dismutase (SOD) and peroxidase (POD) between the group treated by fipronil and the control in SSB and PSB.5 Penetration of fipronil through the cuticles of larvae of SSB and PSBResults showed that the rates of fipronil penetration through the cuticle of larvae of SSB were higher than that of PSB within 4h, while no significant difference was observed after 6h treatment. The fitting cures of the rates of fipronil penetration to SSB and PSB were y=83.0594e"°0823 /x) (R2=0.9850) and y=9.3523x10124 (R2=0.9287), respectively. It was deduced that the median penetration times of fipronil to SSB and PSB were 2.1h and 5.2h, respectively. Therefore, it is obvious that the velocity of fipronil penetration through the cuticular of SSB was much faster than that of PSB.6 In vivo and in vitro metabolism of fipronil by larvae of SSB and PSBResults of in vivo metabolism indicated that fipronil-sulfone and fipronil-sulfide were detected in both SSB and PSB after topical application, and the amounts of fipronil-sulfone were much higher than that of fipronil-sulfide. Thus, it was concluded that fipronil oxidation to its sulfone metabolite is the major route of metabolic conversion in these two rice stem borers. The results of in vitro metabolism showed that fipronil-sulfone and fipronil-sulfide were also detected, further confirming that fipronil was degraded by oxidation and reduction in SSB and PSB. Comparably, the residue of fipronil-sulfone in SSB enzyme preparation was significantly higher than that of PSB, inferring that the level of fipronil oxidation in SSB enzyme preparation was higher than that of PSB. On the tissue distribution study, it was found that fipronil and fipronil-sulfone accumulated in the haemolymph of SSB, but not in PSB, suggesting that there was some difference in rates of fipronil transfer and conversion between SSB and PSB.7 Molecular detection of insecticide resistance-associated mutations in GABA receptor of rice stem borers by PCRGene fragment of the GABA receptor were amplified by PCR method from two populations of SSB and one population PSB. The fragment length of them were 152bp, 152bp and 145bp, respectively. The nucleotide sequences of conservative region fragments
    share high similarity (100%) between the two populations of SSB, but only about 70.8 % similarity between SSB and PSB. It revealed that there was nucleotide polymorphisms among species. However, the deductive sequences of amino acid share high similarity (>88%) with GABA receptor genes from various insects. It was found that there was a amino acid substitution in SSB, which is homologous to Ala302~*-Ser mutation in Drosophila, but not in PSB. Therefore, Ala302—Ser point mutation was not suitable to be a molecular marker to detect frequency of insecticide-resistant gene in rice stem borers. Meanwhile, this point mutation also was not responsible for the differential susceptibility to fipronil between SSB and PSB.
引文
曹明章,沈晋良,张金振,吕梅,刘晓宇,周威君.二化螟抗药性监测和对三唑磷抗性的遗传分析.中国水稻科学,2004,18(1):73-79.
    曹明章,沈晋良,张绍明,周威君,张金振,吕梅.2002年江苏省二化螟抗药性检测及治理.植物保护,2003,29(5):34-37.
    曹明章,沈晋良.二化螟对杀虫单抗性现实遗传力与遗传方式.中国水稻科学,2005,19(5):447-452。
    曹明章.二化螟抗药性监测、对三唑磷和杀虫单抗性遗传分析及对氟虫腈抗性风险评估.博士论文.南京农业大学,2004.
    陈峰,郑本欣,陈业荣,李云珍,李睦增,李锦良.锐劲特防治稻瘤蚊的药效及应用研究.广东农业科学,1998,(5):30-31.
    陈常铭,阮义理,雷惠质,邓国荣,陈琇.中国主要害虫综合防治.北京:科学出版社,1979,123-191.
    陈复斌,刘福海,魏义平.水稻大螟为害规律的调查与研究.植保技术与推广,2001,21(9)18-20.
    陈万义,薛振祥,王能武.新农药研究与开发.北京:化学工业出版社,1995.
    陈伟平,虞皓,朱天圣,包华理.5%锐劲特悬浮剂防治豆荚螟试验.广东农业科学,2001,(1):45-46.
    陈之浩,裴华,刘小涛,李凤良.水稻二化螟抗药性研究初报.西南农业学报,1990,3(2):100-102.
    成其仓,李平良,李美娥,陈桂华.5%锐劲特悬浮剂防治二化螟试验.农药,1998,37(5):28-29.
    褚柏,苏建坤,朱锦清,谭福杰,尤子平.六省(市)水稻二化螟对常用杀虫剂敏感度的调查.农药,1990,29(6):6-8.
    单正军,王连生,蔡道基,龚瑞忠,朱忠林,俞飞.新型杀虫剂锐劲特农药对甲壳类水生生物影响研究.中国农业科学,2002,35(8):949-952.
    邓碧玉,袁勤生.改良的连苯三酚自氧化测定定超氧化物岐化酶活性的方法.生物化学和生物物理进展,1991,19:163.
    董向丽,李保华,王思芳,高希武,郑炳宗.芸香苷与甲基对硫磷对棉铃虫解毒酶的影响.莱阳农学院学报,1998,15(1):37-40.
    杜正文.走向21世纪的中国昆虫学.北京:中国科学技术出版社,2001,704-706.
    范仰东,莫小平,陈经定.锐劲特防治水稻二化螟的效果及技术.昆虫知识,1999,36(3):161-164.
    范仰东.虫无影防治水稻二化螟效果及技术探讨.农药,1999,38(11):41.
    方继朝,杜正文,程遐年.水稻螟害上升态势与控害减灾对策分析.昆虫知识,1998,35(4):193-197.
    甘建登,曹福根,邝迎牯.5%锐劲特防治稻纵卷叶螟试验简报.江西植保,1996,2:29-30.
    高希武,赵颖,王旭,董向丽,郑炳宗。杀虫药剂和植物次生性物质对棉铃虫羧酸酯酶的诱导作用.昆虫学报,1998,41(增):5-10.
    高希武,周序国,王荣京,郑炳宗.棉铃虫乙酰胆碱酯酶(AchE)的体躯分布及部分纯化.昆虫学报,1998,41(增):19-45.
    高希武.乙酰胆碱酯酶(ACHE)的毒理学、生物化学和分子生物学.见:冷欣夫,唐振华,王荫长.杀虫药剂分子毒理学及昆虫抗药性.北京:中国农业出版社,30-33.
    顾卫中,梁文斌,姜舂义.苏北沿海大螟种群变动原因及防治对策.植物医生,1999,12(4):6-7.
    郭慧芳,方继朝,束兆林,夏华兴,王林贵.氟虫腈对水稻害虫的作用特点及应用.植物保护学报,2001,28(3):259-264.
    韩英,刘建华,成洪泉,周艳丽.锐劲特防治甜菜象虫试验初报.中国糖料,1999,(3)29-30.
    韩启发,庄佩君,唐振华.抗杀螟硫磷二化螟的抗性遗传力研究.昆虫学报,1995,38(4):402-406.
    韩启发,庄佩君,唐振华.二化螟对杀螟硫磷产生抗性的机理.昆虫学报,1995,38(3):266-272.
    韩招久,韩召军,王荫长,陈长琨.二化螟抗杀虫单和甲胺磷品系的生化特性.昆虫学报,2003,46(2):161-170.
    胡仕孟,谢士杰,徐善刚,毛国孟.浙江慈溪水稻二化螟抗药性研究初报.浙江农业学报,2001,13(1):38-41.
    姜卫华,韩召军,张国华.氟虫腈对二化螟抗、感种群的亚致死效应.南京农业大学学报, 2004,27(2):51-54.
    蒋学辉,章强华,胡仕孟,谢士杰,徐喜刚.浙江省水稻二化螟抗药性现状与治理对策.植保技术与推广,2001,21(3):27-29.
    蒋学辉,章强华.浙江省二化螟种群回升原因浅析及治理对策.植保技术与推广,1997,17(6):15-17.
    蒋志胜,尚稚珍,万树青,徐汉虹,赵善欢.光活化杀虫剂α-三噻吩的电子自旋共振分析及其对库蚊保护酶系统活性的影响.昆虫学报,2003,46(1):22-26.
    焦晓国,宣维健,盛承发.性信息素大面积诱捕法防治东北越冬代水稻二化螟.昆虫学报,2005,48(3)370-374.
    金凤如.5%锐劲特SC防治梨小食心虫药效试验.现代农药,2004,3(6):43.
    李安祥,李慈厚.二化螟及其防治.北京:中国农业科技出版社,1996,1-276.
    李洪山,李慈厚,李红阳,赵阳,陈洪新.苏北稻区水稻大螟种群消长特点及在寄主间的转换规律植.植保技术与推广,2002,22(10):13-16.
    李洪山,李慈厚.大螟治理对策及其化防药剂选择.中国稻米,2003,(3):34.
    李会仙,郝赤,王利英,魏波.高效氯氰菊酯和溴氰菊酯对棉铃虫的亚致死效应.山西农业大学学报,2005,25(3):231-233.
    李家发,赵龙,王家立,苏军军,胡克英.20%三唑·辛硫磷EC防治水稻二化螟和三化螟试验.湖北农业科学,2005,2:46-47.
    李权生,徐进才,汪朋春,詹李根,黄结桥,计壮志.沿江地区水稻二化螟的抗药性测定.安徽农业科学,2002,30(6):928.
    李腾武,高希武,郑炳宗,崔建州.小菜蛾不同亚细胞层羧酸酯酶的性质研究.农药学学报,1999,1(2):47-53.
    李伟群,贤振华,邓国荣,曾东强.5%锐劲特SC田间防治荔枝蒂蛀虫的药效试验.广西植保,2002,15(3):12-13.
    李馨宇,沈晋良,曹明章,任立凯,孙传祥,何月平.连云港市水稻二化螟抗药性监测.江苏农业学报,2005,21(3):234-237.
    李秀峰,韩召军,陈长琨,李国清,王荫长.二化螟对杀虫单等4种杀虫剂的抗药性.南京农业大学学报,2001,24(1):43-46.
    李仲惺.温州市第三代二化螟大发生原因分析.昆虫知识,2000,37(5):260-262.
    李周直,沈惠娟,蒋巧银,嵇保中.几种昆虫体内保护酶系统活力的研究.昆虫学报,1994, 37(4):399-403.
    梁沛,夏冰,石泰,高希武.阿维菌素和高效氯氰菊酯亚致死剂量对小菜蛾谷胱甘肽S-转移酶的影响.中国农业大学学报,2003,8(3):65-68.
    林文彩,郭世俭.不同种类杀虫剂对小菜蛾的防治效果.中国蔬菜,1998,(5):23-26.
    刘爱芝,茹桃勤,李素娟,李世功.防治蔬菜菜青虫高效、低毒、无公害农药的筛选.农药,2001,40(9):26.
    刘光杰,秦厚国.我国稻螟研究新进展(二).昆虫知识,1997a,34(4):239-242.
    刘光杰,秦厚国.我国稻螟研究新进展(一).昆虫知识,1997b,34(4):171-174.
    刘光杰,沈君辉,钱兰华,桂良强.防治水稻二化螟高效、低蚕毒药剂的筛选.植物保护,1999,25(4):17-19.
    刘华林,刘梦泽,李星洲,李望军.孝感市水稻二化螟抗药性治理对策研究.湖北植保,2005,4:32-34.
    刘永杰,沈晋良.甜菜夜蛾对氯氟氰菊酯抗性的表皮穿透机理.昆虫学报,2003,46(3):288-291.
    陆瑞星,颜文好,黎斌基,潘翠花.5%锐劲特拌种剂防治三化螟试验.广西植保,1997(1):37.
    陆贻通,周培,吴银良,林丽君.锐劲特在菜地生态系统中的残留动态研究.环境污染与防治,2001,23(5):219-221,231.
    陆玉荣,徐广和,苏建坤,刘琴,吉春明,张春梅,刘怀阿.扬州地区二化螟抗药性监测.安徽农业科学,2003,31(1):123-124.
    吕旭健,夏万青,方勇军, 郑雪浩,吴建.0.3%锐劲特颗粒剂防治稻水象甲及兼治螟虫试验.农药,1999,38(9):15-16.
    潘欣葆.湖北稻区二、三化螟1996~1997年大发生原因与综合治理对策.昆虫知识,2000,37(3):134-136.
    彭宇,陈长琨,韩召军,王荫长,田子华.江苏省水稻二化螟的抗药性测定及对甲胺磷抗性机理的研究.植物保护学报,2001a,28(20):172-177.
    彭宇,陈长琨,韩召军,王荫长,李国清.二化螟对3种杀虫剂的抗性测定及增效作用研究.湖北大学学报(自然科学版),2001b,23(3):265-268.
    彭宇,王荫长,韩召军,陈长琨,李国清.二化螟体内乙酰胆碱酯酶的分布及纯化方法.昆虫学报,2002,45(2):209-214.
    钱冬兰.稻螟发生演变及防治对策探讨.植保技术与推广,1999,19(5):12-14.
    秦厚国,罗任华,叶正襄,汪笃栋,付志飞.二化螟大发生原因及控制对策.华东昆虫学报,2005,14(1):91-93.
    秦玉金,鞠国钢.阿维菌素在水稻螟虫无害化治理中的应用.安徽农业科学,2004,32(5):916.
    邱星辉,冷欣夫.棉铃虫幼虫加单氧酶活性的组织分布.生态学报,2000,20(2):299-303.
    曲明静,韩召军,许新军,邵晓玲,田学志,符明龙.二化螟对三唑磷的抗性发生动态与风险评估.南京农业大学学报,2005,28(3):38-42.
    尚稚珍,王银淑,邹永华.二化螟饲养方法的研究.昆虫学报,1979,22(2):164-167.
    邵士忠.水稻螟虫变化趋势及防治对策.安徽农学通报,2003,9(3)42,44.
    申继忠,钱传范,张书芳.亚致死剂量苏云金杆菌蜡螟亚种对大蜡螟幼虫酯酶活力的影响.生物防治通报,1994,10(2):72-75.
    盛承发,王红托,高留德,宣维健.我国水稻螟虫大发生现状、损失估计及防治对策.植物保护,2003,29(1):37-39.
    盛承发,宣维健,焦晓国,苏建伟,邵庆春,宋凤斌.我国稻螟暴发成灾的原因、趋势及对策.自然灾害学报,2002.11(3):103-108.
    盛承发,杨辅安,韦永保,祝春强,熊延文.性诱剂诱杀二化螟的田间效果试验.植物保护,2000,26(5):4-5.
    束兆林,汪智渊,潘以楼,方继朝,郭慧芳.锐劲特对稻田主要蜘蛛的安全性研究.江苏农业科学,2000,(5):31-33.
    束兆林,汪智渊,赵来成,方继朝,郭慧芳.锐劲特对水稻白背飞虱的防效及对稻田主要蜘蛛的安全性研究.农药,2000,39(10):22-24.
    苏建坤,褚柏.扬州地区水稻二化螟对杀虫单的抗药性研究.扬州大学学报(农业与生命科学版).2004,25(1):76-78.
    苏建坤,刘怀阿,徐健.江苏里下河地区水稻二化螟抗药性监测.南京农业大学学报,1996,19(增):28-32.
    苏建伟,盛承发,宣维健,唐蛟龙,唐振定.二化螟性诱剂和诱盆设置技术的研究.植物保护,1999b,4:1-3.
    苏建伟,宣维健,王红托,盛承发.应用二化螟性诱剂大面积诱捕越冬代雄蛾.植物保护,1999a,25(2):1-3.
    孙俊铭,韦刚,夏,林善长,陈永广,计玉龙.三化螟、二化螟防治药剂筛选试验研究.农药,2001,40(12):29-31.
    邰德良,杨秋萍,李瑛,何永垠,梅爱中,钱爱林.水稻二化螟抗药性监测与治理对策.植保技术与推广,2001,21(6):24-25.
    谭福杰.农业害虫抗药性测定方法.南京农业大学学报,1987,4(增刊):107-122.
    谭维嘉,梁革梅,郭予元,王武刚.B.t杀虫剂预处理缓解棉铃虫对化学农药抗性及机理的研究.中国农业科学,1997,30(5):13-19.
    汤富彬,胡国文.50%锐·乙酰可湿性粉剂防治二化螟、稻飞虱、稻纵卷叶螟药效.农药,2002,41(11):25-27.
    唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社,2002.
    唐振华,毕强.杀虫剂作用的分子行为.上海:上海远东出版社,2003.
    唐振华,吴士雄.昆虫抗药性的遗传与进化.上海:上海科学技术文献出版社,2000.
    唐振华.昆虫抗药性及其治理.北京:农业出版社,1993.
    田学志,高保宗,石家胜,尤子平,谭福杰.安庆地区水稻二化螟抗药性研究.安徽农业科学,1991,47(1):61-66.
    王强,谭富杰,尤子平.二化螟对六类杀虫剂的抗药性及增效剂的增效作用研究.南京农业大学学报,1987,4(增):44-55.
    王搞文,张建平,邓志勇,司华.锐劲特防治稻蝗试验.陕西农业科学,1999,(3):20-21.
    王庆森,曾明森,吴光远.应用锐劲特防治茶丽纹象甲的效果试验.福建茶叶,2002,(3:6-7.
    王泉章,李瑛,邰德良,梅爱中,钱爱林.锐劲特等农药防治水稻穗期灰飞虱田间药效.现代农药,2005,4(1):46-47.
    韦永保,黄奇,黄正清.防治水稻害虫的高效药剂—锐劲特.安徽农业,2002(4):22.
    韦永保,施守华,周群芳.广德县单季稻大螟发生规律及上升原因.安徽农业科学,2004,32(1):55-56。
    邬祥光.广东三化螟的发生预测.北京:农业出版社,1959,1-166.
    吴福泉,张志祥.5%锐劲特悬浮剂防治二化螟田间药效试验.安徽农业科学,2000,28(4):473.
    吴青君,张文吉,张友军,徐宝云,朱国仁.表皮穿透和GABA_A受体不敏感性在小菜蛾对阿维菌素抗性中的作用.昆虫学报,2002,45(3):336-340.
    吴全聪.锐劲特、卡死克防治小菜蛾效果试验.浙江农业科学,2000,(1)44-45.
    吴益东,沈晋良,谭福杰,尤子平.棉铃虫对氰戊菊酯抗性机理研究.南京农业大学学报,1995,18(2):63-68.
    夏冰,石泰,梁沛,高希武.杀虫剂亚致死剂量对小菜蛾羧酸酯酶的影响.农药学学报,2002,4(1):23-27.
    项志强,郑再武,范向阳.“稻鸭共育”对水稻田主要病虫草害控制作用的试验报告.湖北植保,2004,5:14-15.
    辛文,张志涛.二化螟种群动态及管理研究进展.昆虫知识,2001,38(4):241-246.
    熊件妹,朱杏芬,程丽霞.南昌地区二化螟抗药性现状与治理对策.江西植保,2004,27(1):3-4.
    徐劲峰,吴彩玲,肖满开,方海维.50%锐劲特浓悬浮剂防治不同种稻飞虱和褐飞虱的药效试验.安徽农业科学,1999,27(3):250-251.
    徐心植,邓小强.江西省二化螟抗药性及其防治对策.江西农业学报,1992,4(1):42-50.
    徐学农,王刚,高仕朋.杀螨王的亚致死浓度处理桃叶对山楂叶螨雌成螨生殖的影响.安徽农业大学学报,1998,25(4):352-355.
    许小龙,顾中言,韩丽娟,苏建坤,刘琴,张红梅.小菜蛾对菊酯类农药抗性水平及高效农药应用研究.华东昆虫学报,2001,10(2):86-90.
    杨辅安,韦永保,祝春强.用二化螟性诱剂代替测报灯进行二化螟发生期预测.植物保护,2000,26(2):14-16.
    姚洪渭,蒋彩英,叶恭银,程家安.白背飞虱羧酸酯酶与乙酰胆碱酯酶的体躯与亚细胞分布特征.浙江大学学报(农业与生命科学版),2001,27(1):5-10.
    易光辉,胡子宜,周社文,李绍石.三唑磷刺激褐飞虱产卵.植保技术与推广,1995(1):4-5.
    易华明,张夕林,张谷丰,孙雪梅.锐劲特在防治棉花盲蝽象上的应用.江苏农药,1999,(2):34.
    于彩虹,高希武,郑炳宗.2-十三烷酮对棉铃虫细胞色素P450的诱导作用.昆虫学报,2002,45(1):1-7.
    占志雄,陈元洪,王长方,卢学松,傅建炜.锐劲特拌种处理防治晚稻早期害虫研究初报.福建农业学报,1998,13(3):21-24.
    张爱华.三唑磷引发晚稻稻飞虱种群猖獗增长.植保技术与推广,1997,17(4):36.
    张常忠,高希武,郑炳宗.棉铃虫谷胱甘肽S-转移酶的活性分布和发育期变化及植物次生物质的诱导作用.农药学学报,2001,3(1):30-35.
    张克位.5%锐劲特种衣剂防治豆杆黑潜蝇的初步试验.广西植保,2002,15(4):9-10.
    张天才,黄丕娇.频振式杀虫灯对水稻二化螟的诱杀效果.中国农技推广,2005,2:47-48.
    张雪燕,何捷.小菜蛾对阿维菌素B1抗药性选育及交互抗性.植物保护学报,2001,28(2):163-168.
    张友军,王光锋,吴青君,徐宝云,柏连阳,朱国仁,张文吉.多杀菌素对不同发育阶段甜菜夜蛾的毒力及其体内超氧化物歧化酶、过氧化氢酶和过氧化物酶的影响.农药学学报,2003,5(3):31-38.
    赵建周,朱国仁,徐宝云,剧正理,钱洪,吴士雄,姜辉.两种新型杀虫剂对抗拟除虫菊酯小菜蛾的毒力和田间药效.中国蔬菜,1995,(2):25-27.
    赵学平,王强,吴长兴,戴芬,冯克强.二化螟对杀虫剂的敏感性及抗药性研究.浙江农业学报,2000,12(6):382-386.
    赵学平,王强,吴长兴,冯克强.锐劲特防治稻纵卷叶螟与二化螟试验.植物保护,1999,(1):37-38.
    周培,陆贻通,吴银良.新型杀虫剂锐劲特在水稻上的残留动态研究.农业环境保护,2001,20(5):360-362,365.
    周圻.防治稻螟四十年.昆虫知识,1990,27(3):178-181.
    周圻.水稻螟虫及其防治.上海:上海科学技术出版社,1964,1-151.
    周真,孙芙蓉,于建美,韩冰,李飞.13种不同种类杀虫剂防治甜菜夜蛾试验初报.农药,2000,39(12):25-26.
    朱国念,吴金涛,刘乾开,孙锦荷.氟虫腈在模拟稻田生态系中降解途径的研究.农药学学报,2000,2:52-56.
    朱文达,万中义,郭嗣斌.氟虫腈(锐劲特)对水稻害虫防治效果及增产效应.植物保护学报,2002,29(3):265-271.
    祝春强,刘明熙,韦永保,杜桂丽.锐劲特和三唑磷混用防治单季稻主要害虫的效果与技术.安徽农业科学,2002,30(1):57-59.
    祝春祥.5%锐劲特悬乳剂对水稻苗期生长刺激作用的试验.农药,1999,35(4):30-31.
    庄永林,沈晋良,陈峥.三唑磷对不同翅型稻褐飞虱繁殖力的影响.南京农业大学学报,1999,22(3):21-24.
    Ahmad M, McCafery A R. Elucidation of detoxification mechanisms involved in resistance to insecticides in the third instar larvae of a field-selected stain of Helicoverpra armigera with the use of synergists. Pestic. Biochem. Physiol., 1991,41:41-52.
    Aldridge W N. Some properties of specific cholinesterase with particularm reference to mechanism of inhibition by diethyl p-nitrophenyl thiophosphate (E605) and analogues. Biochem J, 1950,46:451 -460.
    Anthony N, Unruh T, Ganser D, ffrench-Constant R H. Duplication of the Rdl GABA receptor subunit gene in an insecticide-resistant aphid, Myzus persicae. Mol. Gen. Genet, 1998, 260(2-3): 165-175.
    Araujo F R, Silva M P, Lopes A A, Ribeiro O C, Pires P P, Carvalho C M, Balbuena C B, Villas A A, Ramos J K. Severe cat flea infestation of dairy calves in Brazil. Vet Parasitol, 1998, 80(1):83-86.
    Ayad H, Georghiou G P. Resistance to organophosphates and carbamate in Anopheles albimanus based on reduced sensitivity of aceltylcholinesterase. J. Econ. Entomol, 1975, 68 (3):295-297.
    Balanca G, Visscher M N. Effects of very low doses of fipronil on grasshoppers and non-target insects following field trials for grasshopper control.Crop Protection., 1997., 16 (6): 553-564
    Benke G M, Wilkinson C F, Telford J N. Microsomal oxidases in a cockroach, Gromphadorhina portentosa. J. Econ. Entomol, 1972,65:1221-1229.
    Benke G M, Wilkinson C F. Microsomal oxidiation in the house cricket, Acheta domesticus (L.). Pestic. Biochem. Physiol, 1971, 1:19-31.
    Bloom R A, Matheson III. Environmental assessment of avermectin by the US food and drug administration. Vet. Parasitd. ,1993,48 (1 - 4) :281-294.
    Bloomquist J R, Soderlund D M. Neurotoxic insecticides inhibit GABA-dependent chloride uptake by mouse brain vesicles. Biochem. Biophys. Res. Commun, 1985,133 (1): 37-43.
    Bloomquist J R. Cyclodiene resistance at the insect GABA receptor/chloride channel complex confers broad cross resistance to convulsants and experimental phenylpyrazole insecticides. Arch. Insect Biochem. Physiol, 1994,26 (1): 69-79.
    Bobe A, Cooper J F, Coste C M, Muller M A. Behaviour of fipronil in soil under Sahelian plain field conditions. Pestic. Sci, 1998, 52 (3):275-281.
    Bobe A, Meallier P, Cooper J F, Coste C M. Kinetics and mechanisms of abiotic degradation of fipronil (hydrolysis and photolysis). J. Agric. Food Chem., 1998, 46 (7): 2834-2839.
    Bormann J. The 'ABC' of GABA receptors. Trends Pharmacol. Sci., 2000, 21 (1): 16-19.
    Bowery N G, Duble A, Hill D R, Hudson A L, Shaw J S, Turnbull M J, Warrington R. Bicucullin-insensitive GABA-receptors on peripheral autonomic nerve terminals. Eur. J. Pharmacol., 1981, 71:53-70.
    Bowery N G, Pratt G D, Knott C. GABA_B receptor: Past, Present and Future. In: Bowery N G. ed. GABA_b receptor in mammalian function. Chichester: John Willey & Sons Ltd, 1990, 3-28.
    Bradford M M. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anaytical Biochemistry, 1976, 72:248-254.
    Brattsten L B, Price S L, Gunderson C A. Microsomal oxidases in midgut and fat body tissues of abroadly herbivorous insect larvae, Spedoptera eridania Cramer (Noctuidae). Comp. Biochem. Physiol., 1980, 66C:231-237.
    Brooke B D, Hunt R H, Coetzee M. Resistance to dieldrin + fipronil assorts with chromosome inversion 2La in the malaria vector Anopheles gambiae. Med. Vet. Entomol., 2000,14 (2): 190-194.
    Brookhart G, Bushey D. Tissue distribution and metabolism of fipronil administered orally to the Southern armyworm, Spodoptera eridania, in Eighth IUPAC Internat Congr Pestic Chem, Washington, DC, 1994.
    Bull D L, Lindquist D A. Cholinesterase in bollweevils Anthonomus grandis: I. Distribution and some properties of the etude enzyme. Comp. Biochem.Physiol., 1968, 25:639-649.
    Casida J E. Insecticide action at the GABA-gated chloride channel: recognition, progress, and prospects. Arch. Insect Biochem. Physiol., 1993, 22(1-2): 13-23.
    Chang C K, Clark A G. A fields, S. Pound some properties of glutathione S-transferases from the larvae of Galleria mellonella. Insect Biochemistry, 1981, 11:179-186.
    Chareyazie B, Alinia F, Menguito C A. Enhanced resistance to two stem borers in an atomic rice containing a synthetic crylAB gene. Mol. Breed, 1997,3:401-403.
    Chen W, Sun C N. Purification and characterization of carboxylerases of a rice brown planthopper Nilaparvata lugens Stal. Insect Biochem. Mol. Biol., 1994, 24:347-355.
    Chien C, Dauterman W C. Studies on glutathione S-transferases in Helicoverpa zea. Insect Biochemistry, 1991, 21:857-864.
    Cole L M, Nicholson R A, Casida J E. Action of phenylpyrazole insecticides at the GABA gated chloride channel. Pestic. Biochem. Physiol., 1993, 46: 47-54.
    Cole L M, Roush R T, Casida J E. Drosophila GABA-gated chloride channel: modified [~3H]EBOB binding site associated with ala-ser or gly mutants of Rdl subunit. Life Science, 1995, 56: 757-765
    Cole, L. M., and Casida, J. E. GABA-gated chloride channel: binding site for 4-ethynyl-4-n-[2,3-~3H_2]propylbicycloorthobenzoate ([~3H]EBOB) in vertebrate brain and insect head. Pestic. Biochem. Physiol. 1992, 44:1-8.
    Cole, L. M., Nicholson, R. A., and Casida, J. E. Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pestic. Biochem. Physiol., 1993, 46: 47-54.
    Colliot F, Kukorowski K A, Hawkins D W, Roberts D A. Fipronil: a new soil and foliar broad spectrum insecticide. In: Brighton Crop Protection Conference-Pests and Diseases, British Crop Protection Council, Famham, U.K, 1992, 1: 29-34.
    Cooper P R, Penaliggon J. Use of fipronil to eliminate recurrent infestation by Trichodectes canis in a pack of bloodhounds. Vet. Rec., 1996, 139: 95.
    Costa E, Guidotti A. Recent studies on the mechanism whereby benzodiazepines facilitate GABA-ergic transmission. Adv. Exp. Med. Biol., 1979, 123:371-378.
    Daborn P, McMart C, Woods D, Ffrench-Constant. Detection of insecticide resistance-associated mutations in cat flea Rdl by TaqMan-allele specific amplification. Pesticide Biochemistry and Physiology, 2004, 79:25-30.
    Davey R B, Ahrens E G, George J E, Hunter J S, Jeannin P. Therapeutic and persistent efficacy of fipronil against Boophilus microplus (Acari: Ixodidae) on cattle. Vet. Parasitol., 1998, 74 (2-4): 261-76.
    Delorme R, Foumier D. Esterase metabolism and reduced penetration are cause of resistance to deltamethrin in Spodoptera exigua (Hubner) (Lepidoptera: Noctuoidea). Pestle. Biochem. Physiol., 1988, 32: 240-246.
    Downs A M, Stafford K A, Coles G C. Susceptibility of British head lice, Pediculus capitis, to imidacloprid and fipronil. Med. Vet. Entomol., 2000, 14 (1): 105-107.
    Durham E W, Scharf M E, Siegfried B D. Toxicity and neurophysiological effects of fipronil and its oxidative sulfone metabolite on European corn borer larvae (Lepidoptera: Crambidae). Pestic. Biochem. Physiol, 2001,71:97-106.
    Durham E W, Siegfried B D, Scharf M E. In vivo and in vitro metabolism of fipronil by larvae of the European corn borer Ostrinia nubilalis. Pest Management Science, 2002,58:799-804.
    Elzen G W. Lethal and sublethal effects of insecticide residues on Orius insidiosus (Hemiptera: Anthocoridae) and Geocoris punctipes (Hemiptera: Lygaeidae)J. Econ. Entomol, 2001.,94(1): 55-59.
    Environmental Protection Agency, New Pesticide Fact Sheer, EPA-737-F-96 005, Office of Pesticide Programs, Washington, DC, 1996.
    Fenet H, Beltran E, Gadji B, Cooper J F, Coste C M. Fate of a phenylpyrazole in vegetation and soil under tropical field conditions. J. Agric. Food Chem., 2001,49(3): 1293-1297.
    Feng Q L, Davey K G, Pang A S D, Ladd T R, Retnakaran A, Romkins B L, Zhang S, Palli S R. Developmental expression and stress induction of glutathione S-transferases in the spruce budworm, Choristoneura funiferana. J. Insect Physiol., 2001,47(1):1-10.
    Feng R, Isman M B. Tissue distribution and developmental changes in detoxication enzyme activities in the migratory grasshopper, Melanoplus sanguinipes (Acrididea). Pestic. Biochem. Physiol, 1994,48:48-55.
    Ffrench-Constant R H, Daborn P J, Le Goff G. The genetics and genomics of insecticide resistance. Trends in Genet, 2004,20 (3): 163-170.
    Ffrench-Constant R H, Mortlock D P, Shaffer C D, MacIntyre R J, Roush R T. Molecular Cloning and Transformation of Cyclodiene Resistance in Drosophila: An Invertebrate γ-Aminobutyric Acid Subtype A Receptor Locus. Proc. Natl. Acad. Sci. USA, 1991, 88: 7209-7213.
    Ffrench-Constant R H, Rocheleau T A. Drosophila gamma-aminobutyric acid receptor gene Rdl shows extensive alternative splicing. J. Neurochem.,1993, 60:2323-2326.
    Ffrench-Constant R H, Steichen J C, Rocheleau T A, Aronstein K, Roush R T. A single amino acid substitution in a gamma-aminobutyric acid subtype A receptor locus is associated with cyclodiene insecticide resistance in Drosophila populations. Proc Natl Acad Sci U S A, 1993, 90:1957-1961.
    Forgash A J, Cook B J, Riley R C. Mechanisms of resistance in diazinon-selected multi-resistant Musca domestica. J. Econ. Entomol, 1962, 60:1241-1247.
    Fujimoto H, Itoh K, Yamamoto M. Insect resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Bio/Technology, 1993,11:1151-1155.
    Gant D B, Chalmers A E, Wolff M A, et al. Fipronil: action at the GABA receptor. Rev. Toxicol,1998,2:147-156
    Gant D B, Chalmers A E.Wolff M A, Hoffman H B, Bushey D F. Fipronil: action at the GABA receptor. Rev. Toxicol., 1998,2: 147-156.
    Gant D B, Eldefrawi M E, Eldefrawi A M. Cyclodiene insecticides inhibit GABAA receptor- regulated chloride transport. Toxicol. Appl. Pharmacol, 1987, 88: 313-321.
    Gant D B, Eldefrawi M E, Eldefrawi A T. Action of organophosphates on GABAa receptor and voltage-dependent chloride channels. Fundam. Appl. Toxicol, 1987, 9 (4): 698-704.
    Gil D L, Rose H H, Yang R S H, et al. Enzyme induction by phenobarbital in the Madagascar cockroach, Gromphadorhina portentosa. Comp. Biochem. Physiol, 1974,47B: 657 -662.
    Gunning R V, Easton C S, Balfe M E. Pyrethroid resistance mechanism in Australian Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Pesticide Science, 1991, 33: 473-490.
    Habibulla M, Newburgh R W. Studies of acetylcholinesterase of the central nervous system of Galleria mellonella. Insect Biochem., 1973, 3:231-242.
    Hainzl D, Casida J E. Fipronil insecticide: novel photochemical desulfinylation with retention of neurotoxicity. Proc. Natl Acad. Sci. U.S.A. 1996,93: 12764-12767.
    Hainzl D, Cole L M, Casida J E. Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chem. Res. Toxicol, 1998, 11 (12):1529-1535.
    Hansen L G, Hodgson E. Biochemical characteristics of insect microsomes: N-and O-demethylation. Biochem. Phamacol, 1971,20:1569-1572.
    Harvey R G, Penaliggon E J, Gautier P. Prospective study comparing fipronil with dichlorvos/fenitrothion and methoprene/pyrethrins in control of flea bite hypersensitivity in cats. Vet. Rec, 1997, 141: 628 - 629.
    Haynes K F. Sublethal effects of neurotoxic insecticides on insectbehavior. Ann. Rev. Entonol.,1988,33:149-168.
    Hemingway J. The molecular basis of two contrasting metabolic mechanism of insecticide resistance. Insect Biochemistry and Molecular Biology, 2000, 30:1009-1015.
    Henderson J E, Soderlund D M, Knipple D C. Biochem. Biophys. Res. Commun, 1993, 193:474-482.
    Hodgoson E. Microsomal mono-oxygenases. In: Kerkut G A and Gilbert, Lleds. Comprehensive Insect Physiology, Biochemistry and Pharmacology, Oxford, England: Pergamonpress,1985:225-321.
    Holbrook G L, Roebuck J, Moore C B, Waldvogel M G, Schal C. Origin and extent of resistance to fipronil in the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae). J. Econ. Entomol, 2003, 96 (5): 1548-1558.
    Hooper-Bui L M, Rust M K. Oral toxicity of abamectin, boric acid, fipronil, and hydramethylnon to laboratory colonies of Argentine ants (Hymenoptera: Formicidae). J. Econ. Entomol,2000,93 (3): 858-864.
    Hosie A M, Baylis H A, Buckingham S D, Sattelle D B. Actions of the insecticide fipronil, on dieldrin-sensitive and- resistant GABA receptors of Drosophila melanogaster. Br. J. Pharmacol, 1995, 115 (6): 909-912.
    Hurley P M. Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents. Environ. Health Perspect, 1998, 106 (8): 437-445.
    Hutchinson M J, Jacobs D E, Fox M T, Jeannin P. Evaluation of flea control strategies using fipronil on cats in a controlled simulated home environment. Vet. Rec, 1998,4:142(14):356-357.
    Ikeda T, Nagata K, Kono Y, Yeh J Z, Narahashi T. Fipronil modulation of GABAA receptor single-channel currents. Pest Manag. Sci., 2004, 60 (5): 487-492.
    Ikeda T, Zhao X, Kono Y,Yeh J Z, Narahashi T. Fipronil modulation of glutamate-induced chloride currents in cockroach thoracic ganglion neurons. Neurotoxicology, 2003,24 (6):807-815.
    Kaakeh, W., Reid, B. L., and Bennett, G. W. Toxicity of fipronil to German and American cockroaches. Entomol Exp. Appl, 1997, 84:229-237.
    Kaku K, Matsumura F. Identification of the site of mutation within the M2 region of the GABA receptor of the cyclodiene-resistant German cockroach.Comp Biochem Physiol C Pharmacol Toxicol Endocrinol, 1994,108 (3): 367-376.
    Kao C H, Cheng F Y. Insecticide resistance in Plutella xylostella L. Ⅺ. Resistance to newly introduced insecticides in Taiwan (1990-2001). Journal of Agricultural Research of China, 2001, 50:4, 80-89.
    Karunaratne S. Insecticide resistance in insects: a review. Ceylon J. Sci. (Bio. Sci.), 1998, 5:72-99.
    Kolaczinsdi J, Curtis C. Laboratory evaluation of fipronil, a phenylpyrazole insecticide, against adult Anopheles (Diptera: Culicidae) and investigation of its possible cross-resistance with dieldrin in Anopheles stephensi. Pest Management Science., 2001, 57 (1): 41-45.
    Konno Y, Domon K. Fenitrothion resistance and carboxylesterase isozyme pattern in the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae), collected from Yamagata Prefecture. Annual Report of the Society of Plant Protection of North Japan, 1998, 49: 105-108.
    Konno Y, Shishido T, Tanaka F. Structure-resistance relationship in the organophosphrusresistance rice stem borer, Chilo suppressalis. Journal of Pesticide Science, 1986, 11: 393-399.
    Konno Y, Shishido T. Binding protein, a factor of fenitroxon detoxificationin OP-resistant rice stem borers. Journal of Pesticide Science, 1989, 14:359-362.
    Konno Y, Shishido T. Inheritance of resistance to fenitrothion and pirimiphos-methyl in rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Appl. Entomol. Zool, 1991, 26(4): 535-541.
    Konno Y, Shishido T. Metabolism of fenitrothion in the organophosphorus-resistant andsusceptible strains of rice stem borers, Chilo suppressalis. Journal of Pesticide Science, 1987, 12:469-476.
    Konno Y, Shishido T. Resistance mechamism of the rice stem borer to organophosphorus insecticides. Journal of Pesticide Science, 1985, 10:285-287.
    Kormo Y, Tanaka F. Aliesterase isozymes and insecticide susceptibility in rice-feeding and wateroat-feeding strains of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Appl. Entomol. Zool, 1996, 31 (2):326-329.
    Kormo Y. Carboxylesterase of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae), responsible for fenitrothion resistance as a sequestering protein. Journal of Pesticide Science, 1996, 21 (4): 425-429.
    Konno Y. Studies on resistance mechanism and synergism in the OP-resistant rice stem borer, Chilo suppressalis Walker. Journal of Pesticide Science, 1989, 14: 373-381.
    Korytko P J, Scott J G. CYP6D1 protects thoracic ganglia of houseflies from the neurotoxic insecticide cypermethrin. Arch. Insect Biochem. Physiol, 1998, 37 (1): 57-63.
    Kostaropoulos I, Papadopoulos A I, Metaxakis A, Boukouvala E, Papadopoulos-Mourkidou E. Glutathione S-transferases in the defence against pyrethroids in insects. Insect Biochem. Mol. Biol, 2001,31:313-319.
    Krieger R I, Wilkinson C F, Hicks L J, Taschenberg E F. Aldrin epoxidation, dihydroisodrin hydroxylation and p-chloro-N-methylaniline demethylation in six species of saturniid larvae. J. Econ. Entomol, 1976, 69:1-5.
    Kristensen M, Hansen K K, Jensen K M. Cross-resistance between dieldrin and fipronil in German cockroach (Dictyoptera: Blattellidae). J. Econ. Entomol, 2005,98 (4): 1305-1310.
    Kristensen M, Jespersen J B, Knorr M. Cross-resistance potential of fipronil in Musca domestica. Pest Manag. Sci, 2004, 60 (9): 894-900.
    Ku C C, Chiang F M, Hsin C Y, Yao Y E, Sun C N. Glutathione transferases isozymes involved in insecticide resistance of diamondback moth larvae. Pestic. Biochem. Physiol., 1994,50:191-197.
    Kuhr R J. Metabolism of carbamate insecticide chemicals in plants and insects. J. Agric. Food Chem.,1970,18:1023-1030.
    Kumamoto E. The pharmacology of amino-acid responses in septal neurons. Prog. Neurobiol.,1997,52(3): 197-259.
    Kumari A P P, Phoeela A, Mehrotra K N. Permeability of cuticle of Helicoverpra armigera (Habner) larvae to deltamethrin. Current Sci, 1995,69 (5): 464-466.
    Lagadic L, Cuany A, Berge J B, Echaubard M. Purification and partial characterization of glutathione S-transferases from insecticide-resistant and lindane-induced susceptible Spodoptera littoralis (Biosd.) larvae. Insect Biochem. Mol. Biol, 1993, 23 (4):467-474.
    Le Goff G, Hamon A, Berge J B, Amichot M. Resistance to fipronil in Drosophila simulans:influence of two point mutations in the RDL GABA receptor subunit. J. Neurochem., 2005,92 (6): 1295-1305.
    Lee S S T , Scott J G. Tissue distribution of microsomal cytochrome P450 monooxygenases and their inducibility by Phenobarbital in housefly, Musca domestica L. Insect Biochem. Molec. Biol, 1992,22:699-711.
    Liu N, Yue X. Insecticide resistance and cross-resistance in the house fly (Diptera: Muscidae). J. Econ. Entomol, 2000, 93 (4): 1269-1275.
    Lopez R, Held D W, Potter D A. Management of a mound-building ant,Lasius neoniger Emery, on golf putting greens and tees using delayed-action baits or fipronil. Crop Protection., 2000.,40 (2):511-517
    McCord J M,Fridovich I. Superoxide Dismutase. An enzymic function for erythrouprein (hemecuprein). J. Biol. Chem., 1969,244: 6049-6055.
    Melanson S W, Yun C H, Pezzementi M L. Characterization of acetylcholinesterase activity from Drosophila melanogaster. Comp. Biochem. Physiol, 1985, 81C: 87-96.
    Mohan M, Gujar G T. Local variation in susceptibility of the diamonback moth Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes. Crop protection, 2003,22:495-504.
    Moore A, Tabashnik B E, Rethwisch M D.Sublethal effects of fenvalerateon adults of the diamondbackmoth (Lepidoptera:Plutellidae). J. Econ. Entomol, 1992,85 (5): 1624-1627.
    Motogoyama L R, Kao P, Lin T, et al. Dual role of esterases in insecticide resistance in the green rice leafhopper. Pestic. Biochem. Physiol, 1984, 32:139-147.
    Mulrooney J E, Goli D. Efficacy and degradation of fipronil applied to cotton for control of Anthonomus grandis grandis (Coleoptera: Curculionidae). J. Econ. Entomol, 1999, 92 (6): 1364-1368.
    Mulrooney J E, Wolfenbarger D A, Howard K D, Goli D. Efficacy of ultra low volume and high volume applications of fipronil against the boll weevil. Journal of Cotton Science., 1997, 2(3):110-116.
    Nakamatsu Y, Tanaka T. Venom of ectoparasitoid, Euplectrus sp. Near plathypenae (Hymenoptera: Eulophidae ) regulates the physiological state of Pseudaletia separate (Lepidoptera: Noctuidae) host as a food resource. Journal of insect physiology, 2003,49:149-159.
    Narahashi T, Carter D B, Frey J, Ginsburg K, Hamilton B J, Nagata K, Roy M L, Song J H, Tatebayashi H. Sodium channels and GABAA receptor-channel complex as targets of
     environmental toxicants. Toxicol. Lett., 1995, 82-83: 239-245.
    Nemoto H. Mechanism of resurgence of the diamondback moth Plutella xylostella (L.) (Lepidoptera:Yponomentidae). Japan Agricultural Research Quarterly, 1993, 27 (1):27-32.
    Ngim K K, Mabury S A, Crosby D G. Elucidation of fipronil photodegradation pathways. J. Agric. Food. Chem., 2000, 48 (10):4661-4665.
    Noppun V, Saito T, Miyata T. Cuticular penetration of S-fenvalerate in fenvalerate-resistant and susceptible strains of the diamondback moth, Plutella xylostella (L.) Pestic.Biochem.Physiol., 1989, 33 (1): 83-87.
    Nuttall T J, French A T, Cheetham H C, Proctor F J. Treatment of Trombicula autumnalis infestation in dogs and cats with a 0.25 per cent fipronil pump spray. J. Small Anim. Pract., 1998, 39 (5): 237-239.
    Pollmeier M, Pengo G, Longo M, Jearmin P, Soll M. Evaluation of the efficacy of fipronil formulations in the treatment and control of biting lice, Trichodectes canis (De Geer, 1778) on dogs. Vet. Parasitol., 2002, 107 (1-2): 127-136.
    Pollmeier M, Pengo G, Longo M, Jeannin P. Effective treatment and control of biting lice, Felicola subrostratus (Nitzsch in Burmeister, 1838), on cats using fipronil formulations. Vet Parasitol, 2004, 121 (1-2): 157-165.
    Qu M J, Han Z J, Xu X J, Yue L N. Triazophos resistance mechanism in the rice stem borer (Chilo suppressalis Walker). Pesticide Biochemistry and Physiology, 2003, 77:99-105.
    Ramesh A, Balasubramanian M. Kinetics and hydrolysis of fenamiphos, fipronil, and trifluralin in aqueous buffer solutions. J. Agric. Food Chem., 1999, 47 (8):3367-3371.
    Ranasinghe C, Headlam M, Hobbs A A. Induction of the mRNA for CYP6B2, a pyrethroid inducible eytochrome P450 in Helicoverpa armigera (Hubner) by dietary monoterpenes. Arch. Insect Biochem. Physiol., 1997, 34:99-109.
    Ratra G S, Casida J E. GABA receptor subunit composition relative to insecticide potency and selectivity. Toxicology Letters, 2001, 122:215-222.
    Rauh J J, Limmis S C R, Sattelle D B. Pharmacological and biochemical properties of insect GABA receptors. Trends Pharmacol. Sci., 1990, 11 (8): 325-329.
    Reidy G F, Rose H A, Visetson S, Murray M. Increased glutathione S-transferase acivity and glutathione content in an insecticide-resistant strain of Tribolium castaneum (Herbst). Pestic. Biochem. Physiol, 1990, 36: 269-276.
    Rose R L, Barbhaiya L, Roe R M, Rock G C, Hodgson E. Cytochrome P450-associated insecticide and the development of biochemical diagnostic assays in Heliothis virescens. Pesticide Biochemistry and Physiology, 1995, 51:178-191.
    Roush R T, Croft B A. Experimental population genetics and ecological studies of pesticide resistance in insects and mites. In: National Research Council ed. Pesticide resistance: Strategies and Tactics for Management. Washington, DC: National Academy Press, 257-270.
    Rudolph U, Crestani F, Mohler H. GABAA receptor subtypes: dissecting their pharmacological functions. Trends in Pharmacological Sciences, 2001, 22: 188-194.
    Saidy M F, Auda M, Degheele D. Detoxification mechanisms of diflubenzuron and teflubenzuron in the larvae of Spodoptera lottoralis. Pestic. Biochem. Physiol.,1989, 35 (3):211-222.
    Sayyed A H, Attique M N, Khaliq A, Wright D. Inheritance of resistance and cross-resistance to deltamethrin in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan. J.Pest Manag. Sci., 2005, 61 (7): 636-642.
    Sayyed A H, Wright D J. Fipronil resistance in the diamondback moth (Lepidoptera: Plutellidae): inheritance and number of genes involved. J. Econ. Entomol., 2004, 97 (6): 2043-2050.
    Scharf M E, Siegfried B D, Meinke L J, Chandler L D. Fipronil metabolism, oxidative sulfone formation and toxicity among organophosphate- and carbamate-resistant and susceptible western corn rootworm populations. Pest Management Science, 2000,56:757-766.
    Schlenk D, Huggett D B, Allgood J, Bennett E, Rimoldi J, Beeler A B, Block D, Holder A W, Hovinga R, Bedient P. Toxicity of fipronil and its degradation products to Procambarus sp.: field and laboratory studies. Arch. Environ. Contam. Toxicol, 2001,41 (3): 325-332.
    Scott J G, Wen Z M. Toxicity of fipronil to susceptible and resistant strains of German cockroaches (Dictyoptera: Blattellidae) and house flies (Diptera: Muscidae). J. Econ. Entomol, 1997,90:1152-1156.
    Scott J G, Liu N, Wen Z M. Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comparative Biochemistry and Physiology, 1998, C 121:147-155.
    Shang C, Soderlund D M. Monooxygenase activity of tobacco budworm (Heliothis virescens F.) larvae: Tissue distribution and optimal assay conditions for the gut activity. Comp. Biochem. Physiol, 1984, 79B:407-411.
    Shaw R, Yang H S, Rowe B K, Smith H R, Deeter B. Summary of research results with fipronil for control of plant bugs on cotton. Proc. Beltwide Cotton Conf., 1997,1043-1046.
    Shimada T, Nemoto H. Effects of sublethal concentrations of permethrin of the fecundity of the diamondback moth [Plutella xylostella (L.) ]. Proceedings of the Kanto Tosan Plant Protection Society, 1993,40:207-208.
    Siegfried B D, Scott J G. Properties and inhibition of acetylcholinesterase in resistant and susceptible German cockroaches (Blattella germanica L.). Pestic. Biochem. Physiol., 1990, 38:122-129.
    Sieghart W. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev., 1995;47(2): 181-234.
    Simon L M, Fatrai Z, Jonas D E, et al. Study of peroxide metabolism enzymes during the development of Phaseolus vulgris. Biochem. Physiol., 1974, 166: 387-392.
    Smith K E, Wall R, Howard J J, Strong L, Marchiondo A A, Jeannin P. In vitro insecticidal effects of fipronil and beta-cyfluthrin on larvae of the blowfly Lucilia sericata. Vet. Parasitol, 2000,88 (3-4): 261-268.
    Stenersen J, Kobro S, Bjerke M, Arend U. Glutathione transferases in aquatic and terrestrial animals from nine phyla. Comp. Biochem. Physiol., 1987, C86 (1): 73-82.
    Terriere L C. Induction of detoxication enzymes in insects. Annu. Rev. Entomol, 1984, 29: 71-88.
    Tilak R, Tilak V W, Yadav J D, Gupta K K. Efficacy of Fipronil and Propoxur in the control of German cockroaches (Dictyoptera: Blatellidae). J. Commun. Dis., 2002,34 (1): 65-69.
    Tingle C C, Rother J A, Dewhurst C F, Lauer S, King W J. Fipronil: environmental fate, ecotoxicology, and human health concerns. Rev. Environ. Contam. Toxicol., 2003,176: 1-66.
    Tsukamoto M. Methods of genetic analysis of insecticide resistance. In: Georgiou GP, Saito T eds. Pesticides. New York and London: Plenum Press, 225-235.
    Turnquist R L , Brindley W A. Microsomal oxidase activities in relation to age and chlorcyclizine fat body, midgut and hindgut. Pestic. Biochem. Physiol, 1975,5:211-220.
    Vinson S B, Law P K. Cuticular composition and DDT resistance in the tobacco budworm. J. Econ. Entomol, 1971,64:1387.
    Vontas J G, Small G J, Nikou D C, Ranson H, Hemingway J. Purification, molecular cloning and heterologous expression of a glutathione S-transferases involved in insecticide resistance from the rice brown planthopper, Nilaparoata lugens. Biochem. J., 2002, 362: 329-337.
    Wafford K A, Lummis S C, Sattelle D B. Block of an insect central nervous system GABA receptor by cyclodiene and cyclohexane insecticides. Proc R Soc Lond B Biol Sci, 1989, 237(1286): 53-61.
    Wang X P, Hobbs A A. Isolation and sequence analysis of a cDNA clone for pyrethroid inducible cytochrome P450 from Helicoverpa armigera. Insect Biochem. Molec. Biol, 1995, 25:1001-1009.
    Wei Y, Appel A G, Moar W J, Liu N. Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica (L). Pest Manag. Sci., 2001, 57 (11): 1055-1059.
    Wen Z M , Scott J G. Genetic and biochemical mechanisms limiting fipronil toxicity in the LPR strain of house fly,Musca domestica. Pestic. Sci., 1999, 55:988-992.
    Whiting P I. The GABAA receptor gene family: new targets for the rapeutic intervention. Neurochem Int.,1999, 34 (5):387-390.
    Whiting P J, Bonnert T P, Mckernan R M, et al. Molecular and Functional Diversity of the Expanding GABA-A Receptor Gene Family. Ann. N.Y. Acad. Sci., 1999, 868: 645-653.
    Wojtasek H, Leal W S. Degradation of an alkaloid pheromone from the pale-brown chafer, Phyllopertha diversa (Coleoptera: Scarabaeidae), by an insect olfactory cytochrome P450. FEBS Letters, 1999,458 (3): 333-336.
    Wood E, Casabe N, Melgar F, Zerba E. Distribution and properties of glutathione S-transferase from T. infestans. Comp. Biochem. Physiol. , 1986, B84 (4): 607-617.
    Wu C, Fan Y, Zhang C. Transgenic fertile japonic rice plants expressing a modified cryl AB gene resistance to yellow stem borer. Plant Cell Rep., 1997,17 (2): 129-132.
    Wunn J, Kloti A, Burkhardt P K. Transgenic indica rice breeding line IR58 expressing a synthetic crylAB gene from Bacillus thuringinensis provides effective insect pest control. Bio/Technology, 1996,14:171-176.
    Xu G, Bull D L. Acetylcholinesterase from the hornfly (Diptera:Muscidae): distribution and purification.J. Econ. Entomol, 1994, 87:20-26.
    Yu S J. Tissue-specific expression of glutathione transferase isozymes in fall armyworm larvae. Pestic. Biochem. Physiol., 1995, 53:164-171.
    Zhao X, Salgado V L, Yeh J Z, Narahashi T. Differential Actions of Fipronil and Dieldrin Insecticides on GABA-Gated Chloride Channels in Cockroach Neurons. Journal of Pharmacology And Experimental Therapeutics (JPET), 2003, 306:914-924.
    Zhao X, Yeh J Z, Salgado V L, Narahashi T. Sulfone Metabolite of Fipronil Blocks γ-Amino- butyric Acid- and Glutamate-Activated Chloride Channels in Mammalian and Insect Neurons. Journal of Pharmacology And Experimental Therapeutics (JPET) ,2005, 314:363-373.
    Zhong H, Hastings F L, Hain F P, et al. Rate of penetration and residual toxicokinetices of carbaryl on southern pinebeetle and spruce beetle (Coleoptera: Scolytidae). J. Econ. Entomol., 1995, 88 (3): 543-550.
    Zhu K Y, Brindley W A, Hsiao T H. Isolation and partial purification of acetylcholinesterase from Lygus Hesperus Knight (Hemiptera:Miridae). J. Econ. Entomol.,1991, 84:790-794.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700