不可压多松弛格子Boltzmann方法的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无论是燃烧还是气固两相流的计算,都有一个共同的研究领域——流体力学,对流体力学的研究是研究复杂物理现象的基础。格子Boltzmann方法(LBM)是上世纪80年代末从格子气自动机(LGCA)发展而来的一种新的计算流体数值方法。与传统数值方法的研究视角不同,LBM是从微观粒子运动的层面来对流体进行数值模拟的。LBM的描述对象是单一粒子的分布函数,分布函数的控制方程为经典Boltzmann方程。而LB方程则是Boltzmann方程在相空间的离散形式,这种离散包括粒子速度空间、时间空间的离散。通过Chapman-Enskog展开,利用物理量的守恒关系,在满足小Knudsen数和小Mach数条件下,可以将LB方程还原到描述流体运动的宏观流体力学方程。从而,我们可以通过数值模拟粒子的分布来达到描述宏观流体运动的目的。
     格子Boltzmann方法是与现代计算机匹配的高效新算法,它具有天然并行性、结构简单、易于编程的优点,在流体力学等领域得到了广泛的应用,已经成为研究非线性现象和复杂系统的重要方法之一。
     但是,格子Boltzmann方法至今还有不完善之处,比如外力的处理,不可压多松弛模型的研究。该方法虽然已经在多相流、多孔介质流、悬浮粒子流、磁流体力学等领域取得了很大的成功,但是目前在微重力流体力学中的应用研究甚少。另外,尽管LB方法程序简洁,但是随着模拟问题的复杂性和人们对模拟结果精度要求的提高,使得计算量剧增,因此对程序的优化至关重要,它直接影响着LB方法在工程实际中的应用。因此,本文就以上提出的几个方面做了有益的尝试,为相关工作的深入展开奠定了必要的基础。
     首先,我们构造了一种求解含外力项的Navier-Stokes方程的格子Boltzmann模型。不同于已有的模型,将外力的空间导数加到演化方程中,通过Chapman-Enskog(C-E)展开,不需要多余的假设可以恢复到宏观方程。详细讨论了三种离散格式,可以证明,现有的一些模型是本文提出模型的特例。数值实验结果表明,我们提出的方法具有二阶数值精度和较好的数值稳定性。
     其次,提出了二维九速和八速不可压多松弛模型,该模型基于Guo提出的LBGK模型。通过Gram-Schimidt正交化过程,构造了八速模型的线性变换矩阵,该矩阵满足Ginzburg给出的通用的格式。通过多尺度展开,两类模型都可以恢复到不可压的宏观方程,该模型消除了已有模型中存在的可压缩效应。对各种问题的数值实验结果表明,模型的数值稳定性很好。为模拟不可压流动提供一种数值稳定性较好的方法。
     第三,对于微重力流体力学中一类重要的流动——热毛细对流,我们构造了双分布的LB模型。采用非平衡态外推格式使得边界处理变得极其简单可行。对二维上表面是自由边界的矩形容器内的熔体做数值实验,验证了该模型的正确性。因此,LB在微流体力学中的应用是可行的,为研究微重力环境下的各种流体提供了一种新的介观方法。
     第四,以经典算例-方腔流为例,对格子Boltzmann方法的核心代码进行了优化,主要做了时间和空间上的优化,优化的程序计算效率提高数倍。在并行的框架下,核心演化的代码换为优化后的程序,计算效率仍然有大幅度的提高。
     总之,本文提出两个多松弛不可压LB模型,改善了单松弛LB模型的数值稳定性;进而提出一种外力处理的通用格式,并给出了严格的数学推导;研究了微重力环境下表面张力驱动的热毛细对流问题,为LB方法在该领域的应用提供很好的基础;设计的高效LB算法提升了其实际应用的空间。
Whatever computation of combusion or gas-partile flow, there is a basic research field - fluid mechanics. Lattice Boltzmann method (LBM) is a newly developed computational fluid numerical method, which is originated from lattice gas cellular automata (LGCA) at the end of 1980's last centrury. LBM simulates the fluid movement at the microscopic particle level that is absolutely different from the conventional numerical methods. Single particle distribution satisfying classic Boltzmann equation is described by LBM. The so-called LB equation is a special discrete form of continuum Boltzmann equation in discrete particle velocity, discrete spatial and temporal spaces. By using the Chapman-Enskog multi-scale analysis technique and the conservations of physical variables, the LB equation can be recovered to the fluid dynamical equation at macroscopic level with the low Knudsen number and low Mach number assumptions. As a result, we can obtain the macroscopic fluid movement through calculating the particle distribution numerically.
     LB method is a high performance computing method with notable advantages, such as fully parallelism, easy implementation and simple codes. Until now, it has been widely applied in computational fluid dynamics and has become one of the most important tools for nonlinear science and complex system.
     However, there still exist some disadvantages in LBM, such as the treatment of the force term and multi-relaxation-time LB model. The applications of LBM have achieved great success in multiphase flow, porous flow, suspending particle flow, magnetohydrodynamics, etc. But less research on the microgravity fluid is found. On the other hand, although the code of LBM is simple, the computation may be increased dramatically as the more complex problem and the needed better numerical accuracy. It is important to do some optimization in order to apply the LBM in the engineering. Therefore, we make some valuable relevant research work to remedy the gap.
     Firstly, a novel scheme of the lattice BGK (LBGK) model with a force term has been proposed. Unlike the existing models, an appropriate term was added in the evolutionary equation. Through the Chapman-Enskog (C-E) procedure the Navier-Stokes (N-S) equations with a force term can be recovered with the kinetic viscosity. Three discrete methods of the added term have been discussed in detail. It can be proved that some existing models are the special cases of the model. Numerical simulation results show that the scheme is of second numerical accuracy and better stability.
     Second, two-dimensional nine-velocity and eight-velocity lattice Boltzmann models with multi-relaxation-time are proposed for incompressible flows, in which the equilibria in the momentum space are derived from an earlier incompressible lattice Boltzmann model with single relaxation time by Guo. Via the Gram-Schimidt orthogonalization procedure the eight-by-eight transformation matrix can be constructed which satisfies the general form by Ginzburg. Through the Chapman-Enskog expansion, the incompressible Navier-Stokes equations are recovered from the two models which eliminate the compressible effect in the existed models. The results of numerical tests exhibits much better numerical stability than the single relaxation time model. These two models afford a new method for incompressible flow.
     In the third part, we constructed a two distribution function LBGK model for the thermocapillary flow in microgravity. The boundary conditions for the ther-malcapillary flow are treated using the non-equilibrium extrapolation scheme. The model is validated by simulating the thermocapillary flow in a two-dimensional square cavity with a single free surface and differentially heated side walls. It is feasible to apply the LBM to the microgravity fluid dynamics.
     Finally, We take the classical problem-cavity flow as an example and optimize the kernel codes of the LBM. The optimization include two aspects: time and space. The efficiency of the optimized code increased much more. In the parallel frame, the efficiency also increased if the kernel code is taken the optimized code.
     In conclusion, this thesis proposes two incompressible LB models which improve numerical stablity of LBGK model, and a general scheme for force term proved. Furthermore the thermocapillary flow in microgravity has been considered and this work has made many valuable efforts to accelerate the applications of LBM. At last, the high performance algorithm can broaden the applications of LBM in our subject.
引文
[1]范维澄,陈义良,洪茂玲.计算燃烧学.(第一版).合肥:安徽科学技术出版社,1987.
    [2]刘儒勋,王志峰.数值模拟方法和运动界面追踪.(第一版).合肥:中国科学技大学出版社,2001.
    [3]周力行.湍流气粒两相流动和燃烧的理论与数值模拟.(第一版).北京:科学出版社,1994.
    [4]胡文瑞,徐硕昌.微重力流体力学.(第一版).北京:科学出版社,1999.
    [5]石钟慈.第三种科学方法 计算机时代的科学计算.(第一版).北京:清华大学出版社,2000.
    [6]周光炯.流体力学(上、下册).(第一版).北京:高等教育出版社,1993.
    [7]吴望一.流体力学(上、下册).(第一版).北京:北京大学出版社,1983.
    [8]苏铭德,黄素逸.计算流体力学基础.(第一版).北京:清华大学出版社,1997.
    [9]张涵信,沈孟育.计算流体力学:差分方法的原理和应用.(第一版).北京:国防工业出版社,2003.
    [10]D.A.Wolf-Gladrow.Lattice-Gas Cellular Automata and Lattice Boltzmann Models.Springer-Verlag Berlin Heidelberg,2000.
    [11]S.Succi.The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.Oxford:Clarendon Press,2001.
    [12]李元香.格子气自动机.(第一版).北京:清华大学出版社,1994.
    [13]郭照立,郑楚光,李青等.流体动力学的格子Boltzmann方法.(第一版).武汉:湖北科学技术出版社,2002.
    [14]吴大猷.理论物理(第五册)一热力学,气体运动论及统计力学.(第一版).北京:科学出版社,1983.
    [15]B.Chopard,M.Droz.Cellular Automata Modeling of Physical Systems.Beijing:Tsinghua University Press,2003.
    [16]H.Chen,S.Chen,H.Matthaeus.Recovery of the Navier-Stokes equations using a lattice gas Boltzmann method.Phys.Rev.A,1992,45:R5339-R5342.
    [17]Frish U,Hasslacher B,Pomeau Y.Lattice-gas automata for the Navier-Stokes equations.Phys.Rev.Letter,1986,56:1505-1508.
    [18] Y. H. Qian, D. D'Humieres, P. Lallemand. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 1992, 17(6):479-484.
    
    [19] M. G. Ancona. Fully-Lagrangian and lattice-Boltzmann methods for solving systems of conservation equations. Journal of Computational Physics, 1994, 115(1):107-120.
    
    [20] Chen S., Doolen G. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech., 1998, 30:329-364.
    
    [21] Hou S, Zou Q, Chen, Doolen G D, et al. Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys., 1995, 118:329-347.
    
    [22] Guo W B, Shi B C, Wang N C,et al. Lattice Bhatnagar-Gross-Krook simulation of stratified backward-facing step flow. Chin. Phys. Lett., 2002, 19:1831-1834.
    
    [23] Wagner L, Hayot F. Lattice Boltzmann simulations of flow past a cylindrical obstacle. J. Stat. Phys., 1995, 81:63-68.
    
    [24] D. H. Rothman. Cellular-automaton fluids: a model for flow in porous media. Geophysics, 1988, 53(4):509-518.
    
    [25] S. Succi, E. Foti,F. Higuera, Three-dimensional flows in complex geometries with the lattice Boltzmann method. Europhysics Letters, 1989, 10(5):433-438.
    
    [26] A. Adrover, M. Giona. Predictive model for permeability of correlated porous media. Chemical Engineering Journal, 1996, 64(1):7-19.
    
    [27] M. Singh, K. K. Mohanty. Permeability of spatially correlated porous media. Chemical Engineering Science, 2000, 55(22):5393-5403.
    
    [28] Kim Jeenu, Lee Jysoo, Lee Koo-Chul. Nonlinear correction to Darcy's law for a flow through periodic arrays of elliptic cylinders. Physica A, 2001, 293(1-2):13-20.
    
    [29] O. Dardis, J. McCloskey. Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media. Physical Review E, 1998, 57(4):4834- 4837.
    
    [30] M. A. A. Spaid, F. R. Phelan, Jr. Lattice Boltzmann methods for modeling mi- croscale flow in fibrous porous media. Physics of Fluids, 1997, 9(9):2468-2474.
    
    [31] M. A. A. Spaid, F. R. Phelan, Jr. Modeling void formation dynamics in fibrous porous media with the lattice Boltzmann method. Composites Part A (Applied Science and Manufacturing), 1998, 29A(7):749-755.
    
    [32] N. S. Martys. Improved approximation of the Brinkman equation using a lattice Boltzmann method. Physics of Fluids, 2001, 13(6):1807-1810.
    [33] Guo Zhaoli, Zhao T.S. Lattice Boltzmann model for incompressible flows through porous media. Physical Review E, 2002, 66(3):36304/1-36304/9.
    [34] A. J. C. Ladd. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. 1. Theoretical foundation. Journal of Fluid Mechanics, 1994, 271:285-309.
    [35] A. J. C. Ladd. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. 2. Numerical results. Journal of Fluid Mechanics, 1994, 271:311-339.
    [36] C. K. Aidun, Lu Yannan. Lattice Boltzmann simulation of solid particles suspended in fluid. Journal of Statistical Physics, 1995, 81(1-2):49-61.
    [37] C. K. Aidun, Y. Lu, E. J.Ding. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. Journal of Fluid Mechanics, 1998, 373:287-311.
    [38] D. Qi. Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows. Journal of Fluid Mechanics, 1999, 385:41-62.
    [39] M. W. Heemels, M. H. J. Hagen, C. P. Lowe. Simulating solid colloidal particles using the lattice-Boltzmann method. Journal of Computational Physics, 2000, 164(1) :48- 61.
    [40] Qi Dewei. Lattice-Boltzmann simulations of fluidization of rectangular particles. International Journal of Multiphase Flow, 2000, 26(3):421-433.
    [41] A. J. C. Ladd. Short-time motion of colloidal particles: numerical simulation via a fluctuating lattice-Boltzmann equation. Physical Review Letters, 1993, 70(9): 1339- 1342.
    [42] P. N. Segre, O. P. Behrend, P. N. Pusey. Short-time Brownian motion in colloidal suspensions: experiment and simulation. Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics), 1995, 52(5B):5070-5083.
    [43] Anthony J. C. Ladd. Sedimentation of homogeneous suspensions of non-Brownian spheres. Physics of Fluids, 1997, 9(3):491-499.
    [44] R. Benzi, S. Succi. Two-dimensional turbulence with the lattice Boltzmann equation. Journal of Physics A, 1990, 23(1):l-5.
    [45] S. Succi, D. d'Humieres, Y. H. Qian et al. On the small-scale dynamical behavior of lattice BGK and lattice Boltzmann schemes. Journal of Scientific Computing, f 993, 8(3):219-230.
    [46] Chen S., Wang Z., Shan X. et al. Lattice Boltzmann computational fluid dynamics in three dimensions. Journal of Statistical Physics, 1992, 68(3-4):379-400.
    [47] D. O. Martinez, W. H. Matthaeus, S. Chen et al. Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics. Physics of Fluids, 1994, 6(3):1285-1298.
    [48] R. Benzi, M. V. Struglia, R. Tripiccione. Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence. Physical Review E, 1996, 53(6A):R5565-R5568.
    [49] G. Amati, S. Succi, R. Piva. Massively parallel lattice-Boltzmann simulation of turbulent channel flow. International Journal of Modern Physics C, 1997, 8(4):869-877.
    [50] Giorgio Amati, Sauro Succi, Roberto Benzi. Turbulent channel flow simulations using a coarse-grained extension of the lattice Boltzmann method. Fluid Dynamics Research, 1997, 19(5):289-302.
    [51] Jack G. M. Eggels. Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme. International Journal of Heat and Fluid Flow, 1996, 17(3):307-323.
    [52] Gabor Hazi. Bias in the direct numerical simulation of isotropic turbulence using the lattice Boltzmann method. Physical Review E, 2005, 71(3):l-7.
    [53] Huidan Yu, Sharath S, Girimaji, Li-Shi Luo. Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence. Physical Review E, 2005, 71(1):l-5.
    [54] Succi S, Amati G, Benzi R. Challenges in lattice Boltzmann computing. J. Stat. Phys., 1995, 81:5-16.
    [55] Terxeira C M. Incorporating turbulence models into the lattice-Boltzmann method. Int. J. Mod. Phys. C, 1998, 9:1159-1175.
    [56] O. Filippova, S.Succi, et al. Multiscale lattice Boltzmann schemes with turbulence modeling. J. Comp. Phys., 2001, 170:812-829.
    [57] A. K. Gunstensen, D. H. Rothman, S. Zaleski et al. Lattice Boltzmann model of immiscible fluids. Physical Review A, 1991, 43(8):4320-4327.
    [58] A. K. Gunstensen, D. H. Rothman, Lattice-Boltzmann studies of immiscible two-phase flow through porous media. Journal of Geophysical Research, 1993, 98(B4):6431-6441.
    [59] A. K. Gunstensen, D. H. Rothman. Microscopic modeling of immiscible fluids in three dimensions by a lattice Boltzmann method. Europhysics Letters, 1992, 18(2):157-161.
    [60] D. Grunau, S. Chen, K. Eggert. A lattice Boltzmann model for multiphase fluid flows. Physics of Fluids A (Fluid Dynamics), 1993, 5(10):2557-2562.
    [61] K. Kono, T. Ishizuka, H. Tsuda et al. Application of lattice Boltzmann model to multiphase flows with phase transition. Computer Physics Communications, 2000, 129:110-120.
    [62] U. D'Ortona, D. Salin, M. Cieplak et al. Interfacial phenomena in Boltzmann cellular automata. Europhysics Letters, 1994, 28(5):317-322.
    [63] Shan X., Chen H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Physical Review E, 1994, 49:2941-2948.
    [64] Shan X.,Chen H., Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993, 47(3):1815-1819.
    [65] Shan X., G. Doolen. Multicomponent lattice-Boltzmann model with interparticle interaction. Journal of Statistical Physics, 1995, 81:379-393.
    [66] Y.Qian, S.Succi, S.Orszag. Recent advances in lattice Boltzmann computing. Annual Review of Computational Physics, 1995, 3:195-242.
    
    [67] M. R. Swift, W. R. Osborn, J. M. Yeomans. Lattice Boltzmann simulation of non- ideal fluids. Physical Review Letters, 1995, 75(5):830-833.
    [68] M. R. Swift, S. E. Orlandini, W. R. Osborn et al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Physical Review E, 1996, 54(5):5041-5052.
    [69] Takaji Inamuro, Nobuharu Konishi, Fumimaru Ogino. Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Computer Physics Communications, 2000, 129(1):32-45.
    [70] Luo L.S. Unified theory of lattice Boltzmann models for nonideal gases. Physical Review Letters, 1998, 81(8):1618-1621.
    [71] Luo L.S. Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases. Physical Review E, 2000, 62(4):4982-4996.
    
    [72] X. He, X. Shan, G.D. Doolen. Discrete Boltzmann equation model for nonideal gases. Physical Review E, 1998, 57:R13-R16.
    
    [73] X. He, S. Chen, R. Zhang. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. Journal of Computational Physics, 1999, 152(2) :642-663.
    
    [74] Z. L. Guo,T. S. Zhao. Discrete velocity and lattice Boltzmann models for binary mixtures of nonideal fluids. Physical Review E, 2003, 68:35302/1-35302/4.
    
    [75] S. Succi, G. Bella, F. Papetti. Lattice kinetic theory for numerical combustion. Journal of Scientific Computing, 1997, 12(4):395.
    
    [76] K. Yamamoto. LB simulation on combustion with turbulence. International Journal of Modern Physics B, 2003, 17(1-2):197.
    
    [77] K. Yamamoto. Simulation of combustion field by lattice Boltzmann method. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2002, 68(674):2908.
    
    [78] K. Yamamoto, X. He, G. D. Doolen. Simulation of combustion field with lattice Boltzmann method. Journal of Statistical Physics, 2002, 107(l-2):367.
    
    [79] K. Yamamoto, X. He, G. D. Doolen. Combustion simulation using the Lattice Boltzmann method. JSME International Journal, Series B: Fluids and Thermal Engineering, 2004, 47(2):403.
    
    [80] Martinez D O, Chen S et al. Lattice Boltzmann magnetohydrodynamics. Phys. Plasmas, 1997, 1:1850-1867.
    
    [81] Chen Xing-Wang, Shi Bao-Chang. A new lattice Boltzmann model for incompressible nagnetohydrodynamics. Chinese Phys., 2005, 17(7):1398-1406.
    
    [82] McLennan J. A. Introduction to non-equilibrium statistical mechanics. Prentice- Hall, 1988, 369.
    
    [83] Nourgaliev R. R., Dinh T. N., Theofanous T. G. et al. The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. Int. J. Multiphase Flow, 2003, 29:117-169.
    
    [84] Bhatnagar P.L., Gross E.P., Krook, M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one- component systems. Phys.Rev., 1954, 94:511-525.
    
    [85] He, X., Luo L.-S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E. 1997, 56:6811-6817.
    
    [86] He, X., Luo L-S. A priori derivation of the lattice Boltzmann equation. Phys. Rev. E, 1997, 55:R6333-R6336.
    
    [87] Cornubert R., d'Humieres D., Levermore D. A Knudsen layer theory for lattice gases. Physics D, 1991, 47:241-259.
    
    [88] Ziegler D. Boundary conditions for lattice Boltzmann simulations. Journal of Statistical Physics, 1993, 71:1171-1177.
    
    [89] X. He, Q. Zou, L.S. Luo et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. Journal of Statistical Physics, 1997, 87:115-136.
    
    [90] Q. Zou, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics Fluids, 1997, 9:1591-1597.
    
    [91] Noble D, Chen S, Georgiadis JG et al. A consistent hydrodynamic boundary conditions for lattice Boltzmann method. Physics Fluids, 1995, 7:203-205.
    
    [92] Noble D, Georgiadis JG, Buckius RO. Direct assessment of lattice Boltzmann hydrodynamics and boundary conditions for recirculating flows. J. Stat. Phys., 1995, 81:17.
    
    [93] Maier R S, Bernard R D, Grunau D W. Boundary condition for lattice Boltzmann simulations. Physics Fluids, 1996, 8:1788-1801
    
    [94] Inamuro T, Yoshino M, Ogino F. A non-slip boundary condition for lattice Boltzmann simulations. Phys. Fluids, 1995, 7:2928-22930.
    
    [95] Skordos P A. Initial and boundary conditions for the lattice Boltzmann method. Phys. Rev. E, 1993, 48:4823-4842.
    
    [96] S. Chen, D. Martinez, R. Mei. On boundary conditions in lattice Boltzmann methods. Physics of Fluids, 1996, 8(9):2527-2536.
    
    [97] Z.L. Guo, C.G. Zheng, B.C. Shi. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chinese Physics, 2002, 11(4): 366-374.
    [98] 胡心膂,郭照立,郑楚光.格子Boltzmann模型的边界条件分析.水动力学研究与进展,2003,18:127-134.
    [99] O. Fillipova, D. Hanel. Grid refinement for lattice-BGK models. J. Comp. Phys., 1998, 147:219-228.
    [100] R. Mei, Luo L S, W. Shyy. An accurate curved boundary treatment in the lattice Boltzmann method. J. Comp. Phys., 1999, 155:307-330.
    [101] M. Bouzidi, M. Firdaouss, P. Lallemand. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids, 2001, 13(11):3452-3459.
    [102] P. Lallemand, Luo L S. Lattice Boltzmann method for moving boundaries. J. Compt. Phys., 2003, 184:406-421.
    [103] Guo Z L, Zheng C G, Shi B C. An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. of Fluids, 2002, 14:2007-2010.
    [104] 杜睿,施保昌.格子Boltzmann方法中的曲边界处理.计算物理,2006,23(4):405— 411.
    [105] Z.L. Guo, C.G. Zheng, B.C. Shi. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E, 2002, 65:046308.
    [106] N.S. Martys, X. Shan, H. Chen. Evolution of the external force term in the discrete Boltzmann equation. Phys. Rev. E, 1998, 58:6855.
    [107] L.S. Luo. Unified theory of lattice Boltzmann models for nonideal gases. Phys. Rev. Lett., 1998, 81:1618-1621.
    [108] L.S. Luo. Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases, Phys. Rev. E, 2000, 62:4982-4996.
    [109] Buick J.N., Greated C.A. Gravity in a lattice Boltzmann model. Phys. Rev. E, 2000, 61:5307-5316.
    
    [110] Martys N, Shan X, Chen H. Simulation of multicomponent fluids in complex three- dimensional geometries by the lattice Boltzmann method. Phys. Rev. E, 1996,53:742.
    [111] X. Shan, G. Doolen. Diffusion in a multicomponent lattice Boltzmann equation model. Physical Review E, 1996, 54(4):3614-3620.
    [112] U. Frisch, D. d'Humieres, B. Hasslacher et al. Lattice gas hydrodynamics in two and three dimensions. Complex Systems, 1987, 1:649.
    [113] Ginzbourg I., PM Alder LPTM. Boundary flow condition analysis for the three- dimensional lattice Boltzmann model. J. Phys. II France, 1994, 4:191-214.
    
    [114] A.J.C. Ladd, R. Verberg. Lattice-Boltzmann simulations of particle-fluid suspensions. Journal of Statistical Physics, 2001, 104:1191-1251.
    
    [115] Deng Bin, Shi Baochang, Wang Guangchao. A new lattice Bhatnagar-Gross-Krook model for the convection-diffusion equation with a source term. Chin. Phys. Lett., 2005, 22:267-270.
    
    [116] P. Nithiarasu, K.N. Seetharamu, T. Sundararajan. Natural convection heat trandfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transfer, 1997, 40:3955-3967.
    
    [117] K. Vavafi. Convective flow and heat transfer in variable-porosity media. J. Fluid Mech., 1984, 147:233-242.
    
    [118] Dominique d'Humieres. Generalized lattice -Boltzmann equations, in rarefied gas dynamics: theory and simulations. Progress in Astronautics and Aeronautics edited by B. D. Shizgal and D. P.Weaver AIAA, Washington, DC, 1992, 159:450-458.
    
    [119] Pierre Lallemand, Li-shi Luo. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance and stability. Phys. Rev. E, 2000, 61:6546- 6562.
    
    [120] Irina Ginzburg. Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Advances in Water Resources, 2005, 28:1171-1195.
    
    [121] Irina Ginzburg. Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations. Advances in Water Resources, 2005, 28:1196-1216.
    
    [122] D.d'Humieres, M. Bouzidi, P. Lallemand. Thirteen-velocity three-dimensional lattice Boltzmann model. Phys. Rev. E, 2001, 63:066702.
    
    [123] D. d'Humieres, I. Ginzburg, M. Krafczyk et al. Multiple-relation-time lattice Boltzmann models in three dimensions. Phil Trans T Soc Lond A, 2002, 360:437-451.
    
    [124] Michael E. McCracken, John Abaham. Multiple-relaxation-time lattice-Boltzmann model for multiphase flow. Phys. Rev. E, 2005, 71:036701.
    
    [125] Z-L Guo, B-C Shi, N-C Wang. Lattice BGK model for incompressible Navier-Stokes equation.J.Comput.Phys.,2000,165:288-306.
    [126]David L.Brown,Michael L.Minion.Performance of under-resolved two-dimensional incompressible flow simulations.J.Comput.Phys.,1995,122:165-193.
    [127]U.Ghia,K.N.Ghia,C.T.Shin.High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method.J.Comput.Phys.,1982,48:387-411.
    [128]E.Erturk,T.C.Corke,C.G(o|¨)kc(o|¨)l.Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers.Int.J.Numer.Meth.Fluids,2005,48:747-774.
    [129]Shuling Hou.Lattice Boltzmann method for incompressible viscous flow.in Kansas State University.1995.
    [130]D.Schwabe.Marangoni effects in crystal growth melts.Physico Chem.Hydrodyn.,1981,2:263-280.
    [131]A.Zebib,G.M.Homsy,E.Meiburg.High Marangoni number convection in a square cavity.Phys.Fluids,1985,28:3467-3476.
    [132]B.Carpenter,G.Homsy.High Marangoni number convection in a square cavity:Part Ⅱ.Phys.Fluids,1990,2:137-149.
    [133]M.Mundrane,J.Xu,A.Zebib.Thermocapollary convection in a rectangular cavity with a deformable interface.Adv.Space Res.1995,16(7):41-53.
    [134]Z.Zeng,H.Mizuseki,K.Shimamura et al.Usefullness of experiments with model fluid for thermocapollary convection-effect of prandtl number on two-dimensional thermocapillary convection.J.Crystal Growth,2002,234:272-278.
    [135]朱丽红.矩形容器内熔体热毛细对流研究.in中国科学院力学研究所.2001.
    [136]L.Zhu,Q.Liu,W.Hu.Thermocapillary convection in low-Prandtl fluid in an open rectangular cavity under microgravity condition.Chinese J.Semiconductors,2001,22:580-586.
    [137]Z.Guo,B.Shi,C.Zheng.A coupled lattice BGK model for the Bouessinesq equation.Int.J.Num.Fluids.,2002,39:325.
    [138]B.Shi,Z.Guo.Thermal lattice BGK simulation of turbulent natural convection due to internal heat generation,Int.J.of Modern Physics B,2003,17:173.
    [139]Jens Wilke.Cache optimizations for the lattice Boltzmann method in 2D.in In- stitute F(u|¨)r Informatik(MATHEMATICSHE NASCHINEN UND DATENVERAT-BEITUNG).
    [140]Thomas Pohl,Markus Kowarschik,Jens Wilke et al.Optimization and profiling of the cache performance of parallel lattice Boltzmann code in 2D and 3D.in Institute F(u|¨)r Informatik(MATHEMATICSHE NASCHINEN UND DATENVERAT-BEITUNG).
    [141]C.Shyam Sunder,G.Baskar,V.Babu.Parallel performance of the interpolation supplemented lattice Boltzmann method,in Department of Mechanical Engineering,Indian Institute of Technology.
    [142]Silmon Hausmann.Optimization and performance analysis of the lattice Boltzmann method on x86-64 based architectures.Bachelor thesis,in FRIENDRICH ALEXANDER-UNIBERSITY ERLANGER-NURNBERG.
    [143]Klaus Iglberger.Cache optimizations for the lattice Boltzmann Method in 3D.Bachelor thesis,in FRIENDRICH ALEXANDER-UNIBERSITY ERLANGER-NURNBERG.
    [144]http://www.lstm.uni-erlangen.de/lbm2001/download/
    [145]都志辉.高性能计算并行编程技术:MPI并行程序设计.(第一版).北京:清华大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700