基于非结构化网格气液两相流数值方法及并行计算研究与软件开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气液两相流广泛地存在于能源、动力、核能、石油、化工、制冷、冶金、航天和环境保护等许多工业领域中,研究气液两相流运动规律对工业设计具有重要指导意义。目前对气液两相流动进行很多的理论研究和实验研究,数值研究方法较少,而且主要依赖商业软件或者在结构化网格下进行,使得其应用受到限制。本文主要展开了基于非结构化网格气液两相流动数值模拟方法的研究。
     研究了基于非结构化网格通用输运方程的数值求解方法,包括输运方程的离散格式,边界条件处理方法,压力速度耦合SIMPLE求解方法,详细讨论了影响界面流量计算的重要因素。对不同物性材料耦合流场及温度场求解方法及实现方式进行了讨论。
     研究了大型稀疏线性方程求解方法。研究表明在计算流体力学(CFD)中,线性方程组的求解方法占总CPU时间的60%以上,提高线性方程组的求解速度是提高数值计算总体性能的关键所在。本文研究了一种聚合型代数多重网格方法,并开发了相应的计算程序,提高了线性方程组的求解速度,该方法的另一个特点是可以方便的实现并行处理,这也是本文所关心的另一个重要特性。
     基于非结构化网格开发了流体力学数值计算平台,在此平台上对一些经典的算例进行了验算,计算结果与理论和实验吻合很好。同时与大型商业软件计算结果进行了对比,本文开发的平台各方面性能表现良好。
     详细研究了气液两相流动的双流体模拟方法,包括气液两相流的湍流封闭模型,相间作用力模型以及相变模型。同时还对轴对称数值计算方法进行了研究,并将此模型添加到数值计算平台中,节省了计算资源,提高了计算性能。本文开发了基于MPI的并行计算模块,得到了理想的加速比,可实现对大规模实际问题设计计算或者流动细节进行理论研究,。
Gas-liquid two phase flow phenomena are present extensively in industries of energy, nuclear, oil, and chemistry. Research on two phase flows is meaningful to make guideline for industry design. There are a lot of experimental and theoretical researches in the literature. However, numerical studies are less published and reports in this area are mainly focused on applying the commercial software or within the framework of structured grids which has limited applications for two phase flows. The present thesis focuses on the development of numerical methods for gas-liquid two phase flows with unstructured grids.
     Based on the experiences in Computational Fluid Dynamics (CFD), the linear equation solver takes more than 60% CPU time of the whole process, therefore acceleration of the linear equation solver is a key element in enhancing the whole performance of CFD. An agglomeration algebraic multi-grid method is developed and implemented in the solver which accelerates the linear equation set solution. Another advantage of this linear equation solver is that it is convenient for parallel computing, which is also the purpose of this research.
     Numerical algorithm for general transport equation based on unstructured grid is presented, which includes discretization, boundary condition and velocity-pressure coupling. Some factors influencing the face flux calculation are also discussed in detail. Couple solver of multi-material is constructed and its implement is also given.
     An N-S equation solver based on unstructured grids is developed. The solver is validated in a number of classical flow problems and the results agree well with other experimental data in literature. Comparison of present solver with commercial software Fluent shows that the developed solver works well.
     Two-fluid method of gas-liquid two phase flows is discussed in detail, including turbulent enclosure model, interfacial force model and phase change model. Meanwhile the axi-symmetric model has been implemented into the solver and used to save resources and enhance the performance for axi-symmetric flows. In order to simulate detailed large scale industrial problems, the parallel computing method based on MPI has been developed and ideal speedup is achieved.
引文
[1]Wallis G B.One-dimensional two-phase flow.New York:McGraw-Hill,1969.
    [2]纪军,刘涛,郭烈锦,林宗虎.重大项目“能源动力中多相流热物理基础理论与技术研究”取得重要进展.中国科学基金,2005,1,33-34.
    [3]蔡颐年.蒸汽轮机装置.北京:机械工业出版社,1982,5-20.
    [4]蔡颐年.蒸汽轮机.西安:西安交通大学出版社,1988,3-18.
    [5]Todreas N E,Kazimi M S.Nuclear System Ⅰ Thermal Hydraulic Fundamentals.New York:Hemisphere Publishing Corp.1990,485-506,537-546.
    [6]林宗虎.气液两相流动和沸腾传热.西安:西安交通大学出版社.1987.38-61,176-179.
    [7]丁训慎,巴长喜,立式自然循环蒸汽发生器的传热特性及计算.核动力工程,1982,3(6),37-46.
    [8]Warrier G.R,Dhir V.K,and Momoda L.A,2002,Heat Transfer and Pressure Drop in Narrow Rectangular Channels,Experimental Thermal and Fluid Science,26,53-64.
    [9]Jaco Dirker and Josua P.Meyer,Heat Transfer Coefficients in Concentric Annuli,Journal of Heat Transfer,2002,vol.124:1200-1203.
    [10]姚彦贵.核电蒸汽发生器热工水力稳态.上海交通大学硕士研究生论文,2007.
    [11]王树立.鼓泡塔气液两相流动的数值模拟与实验研究.大连理工大学博士学位论文,2002.
    [12]王晓玲.精馏塔板上流体三维流场及传质的模拟.天津大学博士学位论文,2002.
    [13]侯经纬.新型塔的开发及计算流体力学与传质研究.天津大学博士学位论文,2003.
    [14]P.M.Carrica,D.Drew,F.Bonetto,R.T.Lahey Jr.A polydisperse model for bubbly two-phase flow around asurface ship International Journal of Multiphase Flow,1999,25:257-305.
    [15]B.G.M.van Wachem,A.E.Almstedt.Methods for multiphase computational fluid dynamics.Chemical Engineering Journal,2003,96:81-98.
    [16]郭烈锦.两相与多相流体动力学.西安:西安交通大学出版社,2002,2-30.
    [17]林宗虎等.气液两相流动和沸腾传热.西安:西安交通大学出版社,2003,3-15.
    [18]徐济鋆.沸腾传热和气液两相流.北京:原子能出版社,1993,1-18.
    [19]A.W.G.de Vries,A.Biesheuvel,L.van Wijngaarden.Notes on the path and wake of a gas bubble rising in pure water.International Journal of Multiphase flow,2002,28:1823-1835.
    [20]Cliff R,Grace J R,Weber M E.Bubble drops and particles.New York:Academic Press,1978.
    [21]Dvaies,R.M.and Taylor,G.I.The mechanics of large bubbles rising in an infinite liquid.J.Fluid Mechanics,1950,25:469-480.
    [22]Lord Rayleigh.On the pressure developed in a liquid during the collapse of spherical cavity.Phil.Mag.,1917,34:94-98.
    [23]Plesset,M.S.,Chapman,R.B.Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary.Journal of Fluid Mechanics,1971,47:283-290.
    [24]Yong Zhao,Hsiang Hui Tan,and Baili Zhang.A High-Resolution Characteristics-Based Implicit Dual Time-Stepping VOF Method for Free Surface Flow Simulation Unstructured Grids.Journal of Computational Physics 2002,183:233-273.
    [25]C.W.Hirt and B.D.Nichols,Volume of fluid(VOF) method for the dynamics of free boundaries.Journal of Computational Physics,1981,39:201-225.
    [26]G.Tryggvason,B.Bunner.A front tracking method for the computations of multi-phase flow.Journal of Computational Physics,2001,169:708-759.
    [27]D.Zhang,N.G.Deen,J.A.M.Kuipers.Numerical simulation of the dynamic flow behavior in a bubble column: A study of closures for turbulence and interface forces. Chemical Engineering Science 2006, 61: 7593-7608.
    [28] Lopez de Bertodano M, Lahey R T, Jones O C. Phase distribution in bubbly two-phase flow in vertical ducts. International Journal of Multiphase Flow,1994,20:805-818.
    [29] Lopez de Bertodano M, Lahey R T, Jones O C. Development of k-e model for bubbly two-phase flow. Transactions of the ASME, Journal of Fluid Engineering, 1994, 116: 128-134.
    [30] J. Chahed, V. Roig, L. Masbernat. Eulerian - Eulerian two-fluid model for turbulent gas - liquid bubbly flows. International Journal of Multiphase Flow 2003, 29: 23-49.
    
    [31] Ishii M.Thermo-fluid dynamic theory of two-phase flow.Paris:Eyvolles,1975
    [32] Drew D A, Segel L A. Averaged equations for two-phase flows. Studies in Applied Math., 1971, 1(3): 205-231.
    [33] Delhaye J M. Space/time and time/space-averaged equations. In: Kakac S,Mayinger F, Veziroglu T N, eds. Two-phase Flow and Heat Transfer.Washington D C: Hemisphere, 1977, 91-100.
    [34] Batchelor G K. Sedimentation in a dilute dispersion of bubbles. Journal of Fluid Mechanics, 1972, 52(2): 245-268.
    [35] Zhang D Z, Prosperetti A. Averaged equations for inviscid disperse two-phase flow. Journal of Fluid Mechanics, 1994, 267: 185-219.
    [36] Arnold G S, Drew D A, Lahey R T. Derivation of constitutive equations for interfacial force and Reynolds stress for a suspension of spheres using ensemble cell averaging. Chem. Eng. Comm., 1989, 86: 43-54.
    [37] Lance M., Bataille J. Turbulence in the liquid phase of a uniform bubbly air water flow. Journal of Fluid Mechanics. 1991, 222: 95-118.
    [38] Moursali E., Marie J. L., Bataille J. An upward turbulent bubbly layer along a vertical flat plate. International Journal of Multiphase Flow 1995, 21:107-117.
    [39] Liu T. J., Bankoff S.G. Structure of air-water bubbly flow in a vertical pipe: I Liquid mean velocity and turbulence measurements. International Journal of Heat Mass Transfer 1990, 36 (4): 1049-1060.
    [40] Lopez de Bertodano M.A. Turbulent bubbly two-phase flow in a triangular duct. Ph.D. Dissertation, Rensselaer Polytechnic Institute 1992.
    [41] Sato Y., Sekoguchi K. Liquid velocity distribution in two-phase bubble flow.International Journal of Multiphase Flow 1975, 2:79-95.
    
    [42] Troshko A.A., Hassan Y. A. A two-equation turbulence model of turbulent bubbly flows. International Journal of Multiphase Flow 2001, 27:1965-2000.
    [43] Ishii, M., Zuber, N., 1979. Drag coefficient and relative velocity in bubbly,droplet or particulate flows. A.I.Ch.E. Journal 25, 843-855.
    [44] Tomiyama, A. Struggle with computational bubble dynamics. Third International Conference on Multiphase Flow, ICMF, Lyon, France 1998.
    [45] Tomiyama, A., Celata, G.P., Hosokawa, S., Yoshida, S. Terminal velocity of single bubbles in surface tension force dominant regime. International Journal of Multiphase Flow 2002 28, 1497-1519.
    [46] Luo R, Pan X-H, Yang X-Y.Laminar light particle-liquid flows in a vertical pipe. International Journal of Multiphase Flow,2003, 29: 603-620.
    [47] Tomiyama A, Tamai H, Zun I, et al. Transverse migration of single bubbles in simpleshear flows. Chemical Engineering Science, 2002, 57: 1849-1858.
    [48] Serizawa A, Kataoka I, Michiyoshi I. Turbulence Structure of air-water bubbly flow- II .Local properties.Int. J. Multiphase Flow, 1975, 2: 235-246.
    [49] Cherukat P, McLaughlin J B.Wall-induced lift on a sphere. International Journal of Multiphase Flow, 1990, 16(5): 899-907.
    
    [50] Antal S P, Lahey R J, Flaherty J E. Analysis of phase distribution in fully developed laminar bubbly two-phase flow. International Journal of Multiphase Flow, 1991, 17(5): 635-652.
    
    [51] Tomiyama, A., Sou, A., Zun, I., Kanami, N., Sakaguchi, T., 1995. Effect of Eotvos number and dimensionless liquid volumetric flux on lateral motion of a bubble in a laminar duct flow. In: Proceedings of the Second International Conference on Multiphase Flow. Kyoto, Japan.
    [52] Tomiyama, A. Drag lift and virtual mass forces acting on a single bubble.Third International Symposium on Two-Phase Flow Modeling and Experimentation, Pisa, Italy, 22-24 September 2004.
    [53] G. Hetsroni, L.P. Yarin, D. Kaftori. A mechanistic model for heat transfer form wall to a fluid. International Journal of Heat Mass Transfer, 1996,39(7):1475-1478.
    [54] J.W.Stevens, L.C.Witte. Destabilization of vapor file boiling around spheres. International Journal of Heat and Mass Transfer, 1973, 16: 669-678.
    [55] Chang Y. P. A theoretical analysis of heat transfer in natural convection and in boiling. Trans. ASME, 1957, 79: 1501.
    [56] Zuber N. Hydrodynamics of boiling heat transfer. AEC Rept. No.AECU-4439, Physics and Mathematics June 1959.
    [57] J.H.Lienhard, V.K. Dhir. On the prediction of the minimum pool boiling heat flux. Trans. ASME Journal of Heat Transfer, 1980, 102: 457-460.
    [58] L.C.Witte, J.H. Lienhard. On the existence of two transition boiling curves.International Journal of Heat and Mass Transfer, 1982, 25(6): 771-779.
    [59] Chin Pan, J.Y. Hwang and T.L.Lin. The mechanism of heat transfer in transition boiling. International Journal of Heat and Mass Transfer, 1989,32(7): 1337-1349.
    [60] W. M .Rohsenow. A method of correlating heat transfer data for surface boiling of liquids. Transaction of the ASME, 1952, 74: 969-976.
    [61] Jing Yang, Liejin Guo, Ximin Zhang. A numerical simulation of pool boiling using CAS model. International Journal of Heat and Mass Transfer, 2003,46: 4789-4797.
    [62] J.S. Mathur, N.P. Weatherill. The simulation of inviscid, compressible flows using an upwind kinetic method on unstructured grids. International Journal for Numerical Methods in Fluids, 1992, 15: 59-82.
    [63] J.Peraire, M. Vahdati, K Morgan. Adaptive remeshing for compressible flow computations. Journal of Computational Physics, 1987, 72: 229-466.
    [64]S.Wille.A structured Tri-Tree search method for generation of optimal unstructured finite element grids in two and three dimensions.International Journal for Numerical Methods in Fluids,1992,14:861-881.
    [65]王平.非结构网格技术研究及复杂流场的数值模拟.博士学位论文,北京:北京航空航天大学,2000.
    [66]成娟.非结构网格粘性流动计算研究.博士学位论文,南京:南京航空航天大学,2001.
    [67]王刚,叶正寅.三维非结构混合网格生成与N-S方程求解.航空学报,2003,24(5):385-390.
    [68]陶文铨.数值传热学(第二版).西安:西安交通大学出报社,2001,1-24.
    [69]Thom A.The flow past circular cylinder at low speeds.Proceeding of Royal Society of London,1933,A141:652-666.
    [70]F.Moukalled,M.Darwish,B.Sekar.A pressure-based algorithm for multi-phase flow at all speeds.Journal of Computational Physics,2003,190:550-571.
    [71]郑春雷,胡寿根,陈康民.基于CFD的三维轿车车身流场的数值计算与应用分析.力学季刊,2001,22(4):416-419.
    [72]黄国平,梁德旺.一种快速的有约束气动CFD优化方法.南京航空航天大学学报,2005,37(2):151-154.
    [73]刘君,徐春光,郭正.多级火箭级间分离流动特性的数值模拟.推进技术,2002,23(4):265-267.
    [74]张淑君,吴锤结,王惠民.单个三维气泡运动的直接数值模拟.河海大学学报,2005,33(5):534-537.
    [75]张曙光,雷磊,何国威.均匀各向同性湍流的频率波数能量谱.力学学报,2003,35(3):317-320.
    [76]朱国林,徐庆新.计算流体力学并行计算技术研究综述.空气动力学学报,2002,20(增刊):1-6.
    [77]罗俊,雷咏梅.基于集群SPMD算法及演化计算并行研究.计算机工程与设计,2005,26(10):2610-2613.
    [78]Rafael Van Driessche and Dirk Roose.Load Balancing Computational Fluid Dynamics Calculationson Unstructured Grids.AGARD-R-807 2,1-257 RUE ANCELLE,92200 NEUILLY-SUR-SEINE,FRANCE.
    [79]周春华.并行计算中一种非结构网格分割方法.航空学报,2004,25(13):229-232.
    [80]H.A.Van der Vorst.Parallel Interative Solution Methods for Linear Systems arising from Discretized PDE's.AGARD-R-807,3,1-39.
    [81]徐晓文 莫则尧.一种新的并行代数多重网格粗化算法.计算数学,2005,27(3):325-336.
    [82]陈军,王正华,李晓梅.CFD并行应用程序的可扩展性分析.空气动力学学报,2002,12(增刊):21-26.
    [83]Patanka S.V.,Spalding D.B.A calculation procedure for heat,mass and momentum transfer in three dimensional parabolic flows.International Journal of heat and mass transfer,1972,15:1787-1796.
    [84]Rhie C.M.,Chow W.L.Numerical study of the turbulent flow past an airfoil with trailing edge separation.AIAA Journal,1983,21(11):1525-1532.
    [85]S.Majumdar.Role of Under-relaxation in Momentum Interpolation for Calculation of Flow with Nonstaggered Grids.Numerical Heat Transfer,1988,13:125-132.
    [86]S.K.Choi,Note on the Use of Momentum Interpolation Method for Unsteady Flows.Numerical Heat Transfer A,1999,36:545-550.
    [87]C.Y.Gu.Computation of flows with large body forces,in:C.Taylor,J.H.Chin(Eds.),Numerical Methods in Laminar and Turbulent Flow,Pineridge Press,Swansea,1991,pp.294-305.
    [88]Bo Yu,Kasuo Kawaguchi,WenQuan Tao,Hiroyuki Ozoe.Checkerboard pressure prediction due to the under-relaxation factor and time step size for a nonstaggered grid with momentum interpolation method.Numerical Heat Transfer,Part B,2002,41:85-94.
    [89]陶文铨.计算传热学的近代进展.北京:科学出版社,2001,264-331.
    [90]Hestenes M R.Iterative method for solving linear equations,NANL report No59-9,National Bureau of Standards,Washington,D.C.1951(Later published in JOTA,1973,1:322-334).
    [91]Stiefel E L,U bet einige Methodern der Relationsrechnung,Zeitschrifit fur Angewandte Mathematik under Physik 3,1952.
    [92]Joppich W.Grundlagen der Mehrgittermethode.Kursunterlagen,1996.
    [93]刘顺隆,郑群.计算流体力学.哈尔滨:哈尔滨工程大学,1998:72-94.
    [94]徐树方,高立,张平文.数值线性代数.北京:北京大学出版社,2000,90.
    [95]Hestenes M R.,Stiefel E L.Methods of conjugate gradient for solving linear systems,J Res Nat Bur Standards Sect.1952,5(49):409-436.
    [96]K.Stuben.A review of algebraic multigrid.Journal of Computational and Applied Mathematics,2001,128:281-309.
    [97]刘学强.基于混合网格和多重网格上的N-S方程求解及应用研究.博士学位论文,南京:南京航空航天大学,2001.
    [98]刘超群 多重网格方法及其在计算流体力学中的应用.北京:清华大学出版社,1995,1-10.
    [99]A.Brandt.Algebraic Multigrid theory:the symmetric case.App.Math.Comp.,1986,19:23-56.
    [100]Yao-Hsin Hwang.Unstructured additive correction multigrid method for the solution of matrix equation.Numerical Heat Transfer,Part B,1995,27:195-212.
    [101]Fedorenko R.P.A relaxation method for solving elliptic difference equations.USSR comp.Math.and Math.Phys.,1962,1(5):1092-1096.
    [102]A.Brandt.Multi-level adaptive technique for fast numerical solution to boundary value problems.Pro.3rd Int.Conf.Numerical Methods in Fluid Mechanics(Paris,1972).Lecture Notes in Physics,18,Springer-Verlag,Berlin,82-89.
    [103]Brandt A.,McCormick S.F.,Ruge J.Algebraic multigrid for automatic multigrid solution with application to geodetic computations.Inst.for Computational Studies,POB 1852,Fort.Collins,Colorado,I982.
    [104]Ruge J.W.,Stuben K.Algebraic Multigrid.In:S.F.McCormick(ed.),Multigrid Methods,Frontiers in appl.Math.,SIAM Philadelphia,1987,5:73-130.
    [105]Joel H.Ferziger,M.Petit.Computational Methods for Fluid Dynamics[M].Third edition,Springer Press.2002:107-112.
    [106]Schreiber R,Keller H B.Driven cavity flows by efficient numerical techniques.Journal of Computational Physics,1983,49:310-333.
    [107]Jun Z.Numerical simulation of 2D square driven cavity using fourth2order compact finite difference schemes.Computers andMathematicswith App lications,2003,45:43-52.
    [108]刘百仓,黄社华.二阶迎风有限体积法方腔流数值模拟.应用基础与工程科学学报,2006,14(4):557-565.
    [109]Ghia U,Ghia K N,Shin C T.High-Resolutions for incompressible flow using the Navier2Stokes equations and a multigrid method.Journal of Computational Physics,1982,48:387-411.
    [110]Taylor A,Whitelaw J H,Yianneskis M.Curved ducts with strong secondary motion:velocity measurements of developing laminar and turbulent flow.J.Fluid Eng.,1982,104:350-359.
    [111]丁珏,翁培奋.90°弯管内流动的理论模型及流动特性的数值研究.计算力学学报,2004,21(3):314-321.
    [112]Fluent help.
    [113]J.Kim,D.Kim,H.Choi,An immersed boundary finite volume method for simulations of flow in complex geometries.Journal of Computational Physics 2001;171:132-150.
    [114]D.Calhoun,A Cartesian grid method for solving the two-dimensional stream function-vorticity equations in irregular region.Journal of Computational Physics 2002;176:231-275
    [115]D.Russell,Z.J.Wang,A Cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow.Journal of Computational Physics 2003;191:177-205.
    [116]Jung-Il Choi,Roshan C.Oberoi,Jack R.Edwards,Jacky A.An immersed boundary method for complex incompressible flows.Journal of Computational Physics 2007;224:757-784.
    [117]ASHTON D,GROPP W,and LUSK E.Installation and User's Guide to MPICH,a Portable Implementation of MPI Version 1.2.5[EB/OL].http://www.mcs.anl.gov/mpi/mpich,1999-08-011.
    [118]都志辉.高性能计算并行编程技术--MPI并行程序设计.北京:清华大学出版社,2001:96-107,126-139.
    [119]KARYPIS G,KUMAR V.A software package for partitioning unstructured graphs,partitioning meshes,and computing fill-reducing orderings of sparse matrices version 4.0.[EB/OL].http://www.cs.umn.edu/~karypis,1998-09-20.
    [120]Golub G H,Von L C.Matrix computation.Baltimore:Johns Hopkins Univ.Press,1990.
    [121]TAYLOR C,THOMAS C E,MARGAN K.Modeling flow over a backward-facing step using the FEM and the two equation model of turbulence.Int.J.Numer.Meth.Fluids,1981(1):295-304.
    [122]王小华,樊洪明,何钟怡.后台阶流动的数值模拟.计算力学学报,2003,20(3):361-365.
    [123]邹建锋,任安禄,邓见.圆球绕流场的尾涡分析和升阻力研究.空气动力学学报,2004,22(3):303-308.
    [124]L.Schiller and A.Nauman.VDI Zeits.,1933,77:318-325.
    [125]D.M.Wang.Modelling of bubbly flow in a sudden pipe expansion.Technical Report,BRITE/EURAM Ⅱ(BE 4098),1994,Ⅱ-34.
    [126]Saffman P G,Turner J S.On the collision of drops in turbulent clouds.Journal of Fluid Mechanics,1956,16-30.
    [127]Bromely k.A.Heat Transfer in a Stable Film Boiling.Chem.Eng.Prog.,1950,46:221-227.
    [128]I.L.Pioro,W.Rohsenow,S.S.Doerffer.Nucleate pool-boiling heat transfer.Ⅰ:review of parametric effects of boiling surface.Int.J.Heat and Mass Transfer, 2004, 47: 5033-5044.
    
    [129]I. L. Pioro, W. Rohsenow, S.S.Doerffer. Nucleate pool boiling heat transfer.II: assessment of prediction methods. Int. J. Heat and Mass Transfer, 2004,47: 5045-5057.
    
    [130]B. B. Mikic and W. M. Rohsenow. A new correlation of pool boiling data including the effect of geating surface characteristics. J. Heat Transfer, Trans.ASME, 1969,91:245-250.
    
    [131]Launder, B.E., Spalding, D.A. The numerical computation of turbulent flows.Computer Methods in Applied Mechanics and Engineering, 1974, 3:269-289.
    
    [132]Hanjalic, K., Launder, B.E. Contribution towards a Reynolds-stress closure for low Reynolds number turbulence. Journal of Fluid Mechanics, 1976, 74:593-610.
    [133]A. Serizawa and I. Kataoka. Turbulence suppression in bubbly two-phase flow. Nuclear Engineering and Design, 1991.
    
    [134] Wang, D.M., Bayyuk, S. and Lowry, S. A. Self-Consistent Higher Order Accurate Scheme for the VOF Methodology for Multi-phase Flows. The 20th Int. Conf Of the Int Union of Theoretical and Applied Mechanics, 2000,Sept, Chicago, USA.
    
    [135]Liu T J, Bankoff S G. Structure of air-water bubbly flow in a vertical pipe—I.liquid mean velocity and turbulence measurement. Int. J. Heat and Mass Transfer. 1993, 36(4): 1049-1060.
    
    [136]Liu T J, Bankoff S G. Structure of air-water bubbly flow in a vertical pipe—II. Void fraction, bubble velocity and bubble size distribution. Int. J. Heat and Mass Transfer. 1993,36(4): 1061-1072.
    
    [137]M.S. Politano, P.M. Carrica, J. Converti. A model for turbulent polydisperse two-phase flow in vertical channels. International Journal of Multiphase flow,2003,29: 1153-1182.
    
    [138]A. Behzadi, R.I. Issa, H. Rusche. Modelling of dispersed bubble and droplet flow at high phase fractions. Chemical Engineering Science, 2004, 59: 759 -770.
    [139]Deming Wang.Numerical Modeling of Quenching Using Eulerian Two-fluid Method.Proceeding of IMECE2002.New Orleans:ASME.2002:17-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700