格子法理论及其在计算流体力学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为经典的流体力学、数值计算方法和计算机技术三者的有机结合体,计算流体力学异军突起,得到不断发展和壮大,成为科学研究和工程设计的有效手段。理论分析、实验研究和数值模拟三者相互渗透,不仅推动了流体力学理论的新发展,而且加强了流体力学的工程应用。格子法就是在此背景下孕育发展起来的一种极具魅力的数值计算方法。
     本文在广泛调研,追踪国内外研究进展及现状的基础上,针对目前格子法在工程应用中所面临的主要问题,开展了以下几方面的研究工作:
     首先运用Chapman-Enskog展开及多尺度分析技术,揭示了格子法与传统数值计算方法间的内在联系,阐述了格子模型的思想本质及其建模过程。
     其次,按照物理问题数学建模的原则,对格子法的误差进行了分析,给出了格子BGK方程再现Navier-Stokes方程时的压缩误差项,并数值验证了格子模型的声速及粘性系数等相关参数的精度,表明格子模型尽管具有时空二阶精度,能满足工程计算的要求,但随着Mach数增大,压缩误差逐渐成为主要误差,必须予以消除。
     本文第四章建立了以压力、速度为独立变量的不可压格子BGK模型。其中密度保持为常数,使得从格子BGK方程能够导出宏观不可压NS方程,理论上消除了因密度变化导致的压缩误差。通过对定常、非定常问题的数值结果的比较,证明了本文不可压模型能有效消除压缩误差。进而对方腔流的速度场和压力场进行了计算,绘制了不同雷诺数下的流线图及压力等高线图,得到的回流涡的位置和流函数的值和现有的数据十分吻合,表明本文不可压格子模型是可靠的。
     第五章考虑了数值方法另外一个方面的问题,在均匀流和剪切流两种背景流场下,运用Von Neumann线性分析法,针对d2q7、d2q9及d3q15格子模型,分析了质量分布参数、波数、松弛时间和平均流速等决定模型稳定性的主要参数对模型稳定性的影响,得到了对流场数值计算具有指导意义的一般性结论与线性稳定性标准N≥R_e~(0.58)。
     本文第六章从另一种途径改善模型的稳定性,同时结合现有格子模型受网格严重限制的实际,提出了格子模型的贴体坐标系算法。直接从离散的速
    
    武汉理工大学博士学位论文
    度Boltzmann出发,物理域离散为保持物体几何外形的贴体曲线网格,然后
    运用坐标变换,将定解问题变换到计算域中求解。首先计算了存在理论解的
    圆柱Couette流动,并针对不同数目的离散网格、不同格子模型以及不同坐标
    系算法,对结果进行了比较,不仅再次印证了本文第四章给出的不可压格子
    模型具有满意的计算精度,而且表明本章的贴体坐标算法是行之有效的。然
    后计算了圆柱绕流。得到的低雷诺数下的回流长度、分离角、阻力系数、压
    力系数和现有的试验或数值结果相比,都能良好吻合。显示出来的最高雷诺
    数为9500的流线分布,准确地描述了流动随时间的变化过程,捕捉了可能存
    在的运动模式。
     最后对本文进行了总结,并指出了今后进一步研究的主要方向。
A new force suddenly rises, the computational fluid dynamics, as the organic union of classic fluid mechanics, numerical computation methods and computer science, develops to become the efficient means of both science research and engineering design. The interaction among theoretical analysis, experimental research and numerical simulation promotes both the theoretic renovation and engineering applications of fluid mechanics. In this background, the lattice Boltzmann method comes forth and progresses rapidly as an attractive numerical computation method.
    Aiming at the key issues of lattice Boltzmann method applications in engineering design, the main work, based on the extensive inquisition and pursuing the evolution and status in quo, is presented as following:
    Firstly, the intrinsic relationship between lattice Boltzmann method and other traditional numerical methods is interpreted through the Chapman-Enskog expansion and multi-scale analytic technique. And the essential idea and foundation of lattice Boltzmann model are set forth.
    According to the mathematic modeling principle of physical problem, the error of lattice Boltzmann model is analyzed in Chapter 3. The nonlinear deviation term from the Navier-Stokes equation is given, and the main model coefficients, such as speed of sound, viscosity and so on, are verified by numerical computation, the results show that the lattice Boltzmann method has second order precision in space and in time which satisfy the engineering application, whereas, the compressible effect can't be neglected along with Mach number increasing, and must be reduced or eliminated.
    Chapter 4 proposes an incompressible lattice BGK model, in which the velocity and pressure instead of the mass density that is a constant are the independent dynamic variables. And the incompressible Navier-Stokes equations are exactly derived from this incompressible LBGK model, thus the compressible effect due to the density fluctuation is theoretically eliminated. The results of steady or unsteady flow show that the incompressible lattice BGK model is validate in reducing the compressibility error. And then, the cavity flow is simulated, and the streamline and pressure contour at different Reynolds
    
    
    
    number are plotted, the stream function and location of vortex centers are agree well with the previous results, which indicate the incompressible lattice BGK model is reliable.
    Numerical stability, the other issue of the lattice Boltzmann method, is discussed in Chapter 5. Corresponding to the uniform and shear background flow, the stability of d2q7 d2q9 and d3ql5 model is analyzed through the Von Neumann linear stability theory, both the conclusion about the mass distribution parameters, the wave number, the relaxation time
    and the uniform velocity, and the linear stability criterion N R0.58 are instructive to
    numerical simulation of flow.
    Chapter 6 presents the lattice Boltzmann algorithm on body-fitted coordinates system, which not only avoids the restriction of uniform regular mesh, but also enhances the stability. After the coordinate transformation, the discrete velocity Boltzmann equation is solved directly in computational domain to preserve the geometry of body. The results comparison of cylindrical couette flow at different size meshes, different lattice BGK models and different algorithms shows that, not only the precision of the incompressible lattice BGK model is satisfactory, but also the curvilinear coordinate algorithm is efficient. Therefore, the circular cylinder flow is simulated. And the results of the wake length, separation angle, and drag or pressure coefficient for low Reynolds number are excellent agreement with previous experimental and numerical results. Furthermore, the streamlines for Reynolds numbers up to 9500 display the evolution with time of flow, and capture the possible flow pattern at different times.
    Finally, the whole paper is summarized and the further research interests are put forward in Chapter 7.
引文
[1] Chen Y G, Yang J D, Suo L S. A general boundary conditions for the lattice Boltzmann method. Proceeding of the Fourth International Conference on Hydrodynamics. (2000'ICHD), Japan. 2000.9
    [2] 胡心旅,郭照立,郑楚光.格子Boltzmann模型的边界条件分析.水动力学研究与进展(A辑).2003.18(2):127~134
    [3] Chen Y G, Suo L S. New boundary treatment methods for lattice Boltzmann method. Wuhan Univ. J. Natural Sciences. 2003.8 (1A): 77~85
    [4] Chen J H, Xiong S W, Li Y X. Simulation of hydrodynamic phenomena by the lattice-Boltzmann method. Wuhan Uinversity Journal of Natural Sciences. 1996. 1(3/4): 696~700
    [5] Sun C H, Xu Z J, Wang B G, et al. Lattice-Boltzmann models for heat transfer. Communications in Nonlinear Science & Numerical Simulation. 1997.2(7): 212~216
    [6] Yan G W, Yuan L. Lattice Boltzmann solver of Rossler equation. Communications in Nonlinear Science & Numerical Simulation. 2000.5(2): 64~68
    [7] Yan G W, Yuan L. Lattice Boltzmann simulation for the spiral waves in the excitable medium. Communications in Nonlinear Science & Numerical Simulation. 2000.5(4): 147~150
    [8] Xue Y, Dong L Y, Dai S Q. Study on one-dimensional model of traffic flow with stochastic deceleration via lattice Boltzmann method. Journal of Shanghai University. 2001.5(2): 104~106
    [9] Xu Y S, Liu C Q, Yu H D. New studying of lattice Boltzmann method for two-phase driven in porous media. Applied Mathematics and Mechanics. 2002.23(4): 387~393
    [10] Liu Y W, Zhou F X, Yan G W. Lattice Boltzmann simulations of the Klinkenberg effect in porous media. Chinese Journal of Computational Physics. 2003.20(2): 157~160
    [11] Chen Y G, Suo L S. Lattice Boltzmann scheme to simulate two-dimensional fluid transients. Journal of Hydrodynamics (Ser. B). 2003.2:19~23
    [12] Sun C H, Wang B G, Shen M Y. Adaptive lattice Boltzmann model for compressible flows. Tsinghua Science and Technology. 2000.5(1): 43~46
    
    
    [13]俞慧丹,赵凯华.高Mach数格子Boltzmann模型的改进.物理学报.2001.49(4):816~818
    [14]阎广武,胡守信.可压缩格子Boltzmann模型的启示性稳定理论.高等学校计算数学学报.1999.3:219~227
    [15]郭照立,郑楚光,柳朝晖.基于Lattice Boltzmann方法的圆柱绕流大涡模拟.工程热物理学报.2002.23(4):479~481
    [16]郭照立,施保昌,王能超.基于区域分裂的非均匀Lattice Boltzmann方法.计算物理.2001.18(2):181~184
    [17]李明秀,陶文铨,何雅玲,等.格子-Boltzmann方法非均分网格的实施.工程热物理学报.2003.24(1):73~75
    [18]Nourgaliev R R, Dinh T N, Theofanous T G, et al. The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. International Journal of Multiphase Flow.2003.29:117~169
    [19]Frisch U, D'Humières D, Hasslacher B, et al. Lattice gas hydrodynamics in two and three dimensions. Complex System. 1987.1: 649~707
    [20]Rothman D H. Cellular-automaton fluids: a model for flow in porous media. Geophysics. 1988.53:509~518
    [21]Rothman D H, Keller J M. Immiscible cellular-automaton fluids. J.Stat.Phys. 1988.52: 1119~1129
    [22]Hardy J, de Pazzis O, Pomeau Y. Molecular dynamics of a classical latticegas: transport properties and time correlation functions. Phys.Rev.A. 1976.13:1949~1961
    [23]Frisch U, Hasslacher B, Pomeau Y. Lattice-gas automata for the Navier-Stokes equations. Phys. Rev.Lett. 1986.56:1505~1508
    [24]D'Humieres D, Lallemand P, Frisch U. Lattice gas model for 3D hydrodynamics. Europhys.Lett. 1986.2: 291~297
    [25]Higuera F J, Succi S. Simulating the flow around a circular cylinder with a lattice Boltzmann equation. Europhys.Lett. 1989.8:517~521
    [26]Higuera F J, Jeménez J. Boltzmann approach to lattice gas simulations. Europhys.Lett. 1989.9:663~668
    [27]Chen S, Chen, H D, Martinez D, et al. Lattice Boltzmann model for simulation of magnetohydrodynamics. Phys.Rev.Lett. 1991.67: 3776~3779
    [28]Chen H, Chen S, Matthaeus W H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys.Rev.A. 1992.45:R5339~R5342
    
    
    [29] Qian Y H, d'Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhys.Lett. 1992.17:479~484
    [30] Qian Y H, Orszag S A. Lattice BGK models for the Navier-Stokes equation: nonlinear deviation in compressible regimes. Euophys.Lett. 1993.21:255-259
    [31] Rakotomalata N, Salin D, Watzky P. Simulations of viscous flows of complex fluids with a Bhatnagar, Gross and Krook lattice gas. Phys.Fluids.1996.8:3200~3202
    [32] Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases.Ⅰ. Small amplitude processes in charged and neutral one-component system. Phys.Rev. 1954.94: 511~525
    [33] Cali A, Succi S, Cancelliere A, et al. Diffusion and hydrodynamic dispersion with the lattice Boltzmann method. Phys.Rev.A. 1992.45:5771~5774
    [34] Succi S, Nannelli F. The finite volume formulation of the lattice Boltzmann equation. Transp. Theory Stat. Phys. 1994.23:163~171
    [35] He X, Luo L -S, Dembo M. Some progress in lattice Boltzmann method. Part Ⅰ. Nonuniform mesh grids. J. Comp.Phys. 1996.129:357~363
    [36] Buick J M, Greated C A. Investigation of a lattice gas model for surface gravity waves. Phys.Fluids. 1997.9:2585~2597
    [37] Chen S, Doolen G D. Lattice Boltzmann method for fluid flows. Ann.Rev.Fluid Mech. 1998:329~364
    [38] Klar A. Relaxation scheme for a lattice-Boltzmann type discrete velocity model and numerical Navier-Stokes limit. J.Comp.Phys. 1999.148:416~432
    [39] Mieussens L. Discrete-velocity models and numerical scheme for the Boltzmann-BGK equation in plane and axisymmertric geometries. J.Comp.Phys.2000.162:429~466
    [40] Gallivan M A, Noble D R, Georgiadis J G, et al. An evaluation of the bounce-back boundary condition for lattice Boltzmann simulations. Int.J.Num.Meth.Fluids.1997.25: 249~263
    [41] Chen J H, Xiong S W, Li Y X. Simulation of Hydrodynamic phenomena by the lattice Boltzmann method. Wuhan Univ. J. Natural Sciences.1996.1:696~701
    [42] Noble D R, Chen S, Georgiadis J G, et al. A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Phys.Fluids. 1995.7:203~209
    [43] Noble D R, Georgiadis J G, Buckius R O. Comparison of accuracy and performance for lattice Boltzmann and finite difference simulations of steady viscous flow. Int. J. Numer. Method in Fluids. 1996.23: 1~18
    
    
    [44] Noble D R, Georgiadis J G, Buckius R O. Direct assessment of lattice Boltzmann hydrodynamics and boundary conditions for recirculating flows. J.Stat.Phys. 1995.81: 17~33
    [45] Chen S, Martinz D, Mei R. On boundary conditions in lattice Boltzmann methods. Phys.Fluid. 1996.8:2527~2536
    [46] Maier R S, Bernard R S, Grunau D W. Boundary conditions for the lattice Boltzmann method. Phys.Fluids. 1996.8:1788~1801
    [47] Zou Q, He X. On pressure and boundary conditions for the lattice Boltzmann BGK model. Phys.Fluids. 1997.9:1591~1598
    [48] He X, Zou Q, Luo L, et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J.Stat.Phy.1997.87: 115~136
    [49] Henon M. Implementation of the FCHC lattice gas model on the connection machine. J.Stat.Phys. 1992.68:253~377
    [50] Adler C, Boghosian B, Flekk φ y E G, et al. Simulating three-dimensional hydrodynamics on cellular automata machine. J.Stat.Phys. 1995.81:105~127
    [51] Satofuka N, Nishioka T. Parallelization of lattice Boltzmann method for incompressible flow computations. Comput.Mech. 1999.23:164~171
    [52] Skordos P A. Initial and boundary conditions for the lattice a Boltzmann method. Phys.Rev.E. 1993.48:4823~4842
    [53] Inamuro T, Yoshino M, Ogino F. A non-slip boundary condition for lattice Boltzmann simulations. Phys.Fluids. 1995.7:2928~2930
    [54] Hayot F, Wagner L. A non-local modification of a lattice Boltzmann model. Europhys.Lett. 1996.33:435~440
    [55] 程永光.Lattice Boltzmann方法及其在流场分析中应用的研究:[博士学位论文].武汉:武汉水利电力大学,1998
    [56] Mei R W, Luo L -S, Shyy W. An accurate curved boundary treatment in the lattice Boltzmann method. J.Comp.Phys. 1999.155:307~330
    [57] Mei R W, Shyy W, Yu D Z, et al. Lattice Boltzmann method for 3-D flows with curved boundary. J. Comp.Phys.2000.161:680~699
    [58] McNamara G R, Alder B J. Analysis of the lattice Boltzmann treatment of Hydrodynamics. Physica A. 1993.194:218~228
    
    
    [59] Reider M. B, Sterling J D. Accuracy of discrete-velocity BGK models for the simulation of incompressible Navier-Stokes equations. Computers&Fluids.1995.24: 459~467
    [60] Zou Q, Hou S, Chen S, et al. An improved incompressible lattice Boltzmann model for time-independent flows. J.Stat.Phys. 1995.81:35~48
    [61] Guo Z, Shi B, Wang N. Lattice BGK model for incompressible Navier-Stokes equation. J. Comp.Phys.2000.65: 288~306
    [62] Sun C H. Adaptive lattice Boltzmann model for compressible flows: Viscous and conductive properties. Phys.Rev.E.2000.61(3): 2645~2656
    [63] McNamara G R, Garcia A L, Alder B J. Stabilization of thermal lattice Boltzmann models. J.Stat.Phys. 1995.81:395~408
    [64] Sterling J D, Chen S. Stability analysis of lattice Boltzmann methods.J. Comp. Phys. 1996.123: 196~206
    [65] Rodney A, Mozer J, Seeley G. Stability of lattice Boltzmann methods in hydrodynamic regimes. Phys.Rev.E. 1997.56: 2243~2253
    [66] Trevo C, Higuera F. Lattice Boltzmann and spectral simulations of non-linear stability of Kolmogorov flows. Rev.Mex.Fis. 1994.40:878~890
    [67] Martinez D O, Matthaeus W H, Chen S, et al. Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics. Phys.Fluids. 1994.6: 1285~1298
    [68] Hou S, Zou Q, Chen S, et al. Simulation of cavity flow by the lattice Boltzmann method. J.Comp.Phys. 1995.118:329~347
    [69] Elton B H. Comparison of lattice Boltzmann and finite-difference methods for a 2-dimensional viscous Burgers equation. SIAM J.Sci.Comp. 1996.17:783~813
    [70] Abe T. Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation. J. Comp.Phys. 1997.131: 241~254
    [71] Eggels J G M, Somers J A. Numerical simulation of free convective flow using the lattice-Boltzmann scheme, Int.J.Heat and fluid Flow. 1995.16: 357~364
    [72] Osborn W R, Orlandini E, Swift M R, et al. Lattice Boltzmann study of hydrodynamics spinodal decomposition. Phys.Rev.Lett. 1995.75:4031~4034
    [73] Rybka R B, Cieplak M, Salin D. Boltzmann cellular-automata studies of the spinodal decomposition. Physica A. 1995.222:105~118
    
    
    [74] Eggels J G M. Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme, Int.J.Heat and fluid Flow. 1996.17:307~323
    [75] Maier R S, Kroll D M, Kutsovsky Y E, et al. Simulation of flow through bead packs using the lattice Boltzmann method. Phys.Fluids. 1998.10:60~74
    [76] Sman R G M. Solving the vent hole design problem with a convection-diffusion lattice Boltzmann scheme, Int.J.Comp.Fluid Dynam. 1999.16 (3-4): 237~248.
    [77] Sun C H. Simulations of compressible flows with strong shocks by an adaptive lattice Boltzmann model. J. Comp.Phys.2000.161: 70~84
    [78] Yan G W. A lattice Boltzmann equation for waves. J.Comp.Phys.2000.161:61~69
    [79] Miller W. Flow in the driven cavity calculated by the lattice Boltzmann method. Phys.Rev.E. 1995.51:3659~3669
    [80] Hou S, Sterling J, Chen S, et al. A lattice Boltzmann subgrid model for high Reynolds Number flows. Fields Institute Communications. 1996.6:151~166
    [81] Luo L. Symmetry Breaking of flow in 2-D symmetric channels: simulations by lattice Boltzmann method. Int.J.Mod.Phys.C. 1997.
    [82] Qian Y H, Succi S, Massaioli F, et al. A benchmark for lattice BGK model: flow over a backward-facing step. Fields Institute Communications. 1996.6:207~215
    [83] He X, Doolen G. Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder. J. Comp. Phys. 1997.134:306~315
    [84] Wagner L, Hayot F. Lattice Boltzmann simulations of flow past a cylindrical obstacle. J.Stat.Phys. 1995.81:63~70
    [85] He X, Doolen G D. Lattice Boltzmann method on curvilinear coordinates system: vortex shedding behind a circular cylinder. Phys.Rev.E. 1997.56:434~440
    [86] Wagner L. Pressure in lattice Boltzrnann simulations of flow around a cylinder. Phys. Fluids. 1994.6:3516~3518
    [87] Ziegler D P. Boundary conditions for lattice Boltzmann simulations. J.Stat.Phys. 1993.71:1171~1189
    [88] Succi S, Foti E, Higuera F. Three-dimensional flows in complex geometries with the lattice Boltzmann method. Europhys.Lett. 1989.10:433~438
    [89] Lavallée P, Boon J P, Noullez A. Boundaries in lattice gas flows. Physica D. 1991.47: 233~240
    [90] Flekk φ y E G, Feder J, J φ ssang T. Lattice gas simulations of osmosis. J.Stat.Phys. 1992.68:515~532
    
    
    [91] Ferreol B, Rotnman D H. Lattice-Boltzmann simulations of flow-through Fontainebleau sandstone. Transport in Porous Media. 1995.20:3~20
    [92] Agouzoul M, Reggio M, Camarero R. Calculation of turbulent flows in a hydraulic turbine draft tube. J.Fluid Engrg. 1990.112:257~263
    [93] Benzi R, Succi S. Two-dimensional turbulence with the lattice Boltzmann equation. J.Physics A. 1990.23:L1~L5
    [94] Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids. 1991 .A 3:1760~1765
    [95] Chen S, Wang Z, Shan X W, et al. Lattice Boltzmann computational fluid dynamics in three dimensions. J.Stat.Phys. 1992.68: 379~400
    [96] Benzi R, Succi S, Vergassola M. The lattice Boltzmann equation-theory and applications. Phys. Rep. 1992.222: 145~197
    [97] Benzi R, Struglia M V, Tripiccione R. Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence. Phys.Rev.E.1996.53: R5565~R5568
    [98] Amati G, Succi S, Benzi R. Turbulent channel flow simulation using a coarse-grained extension of the lattice Boltzmann method. Fluid Dyn.Res. 1997.19:289~302
    [99] Succi S, Amati G, Benzi R. Challenges in lattice Boltzmann computing. J.Stat.Phys. 1995.81:5~16
    [100] Gunstensen A K, Rothmann D H. Lattice Boltzmann studies of immiscible two phase flow through porous media. J. Geophys.Res. 1993.98:6431~6441
    [101] Gunstensen A K, Rothmann D H, Zaleski S, et al. Lattice Boltzmann model of immiscible fluids. Phys.Rev.A. 1991.43: 4320~4327
    [102] Grunau D, Chen S, Eggert K. A lattice Boltzmann model for multiphase fluid flows. Phys.Fluids A. 1993.5:2557~2562
    [103] Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys.Rev.E.1993.47:1815~1819
    [104] Shan X, Chen H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys.Rev.E. 1994.49:2941~2949
    [105] Shan X, Doolen G. Multicomponent lattice-Boltzmann model with interparticle interaction. J.Stat.Phys. 1995.81:379~393
    [106] Shan X. Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method. Phys. Rev.E. 1997.55:2780~2788
    
    
    [107] Martys N, Chen H D. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys.Rev.E.1996.53: 743-750
    [108] Swift M R, Otlandini S E, Osborn W R, et al. Lattice Boltzmann simulations of liquid-gas and binary-fluid systems. Phys.Rev.E.1995.54:5041~5053
    [109] Ginzbourg I, D'Humieres D. Local second-order boundary methods for lattice Boltzmann models. J.Stat.Phys. 1996.84:927~971
    [110] Rothman D H, Zaleski S. Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow. Rev. Modern Phys.1994.66:1417~1479
    [111] Holme R, Rothmann D H. Lattice-gas and lattice-Boltzmann models of miscible fluids. J.Stat.Phys. 1992.68:409~429
    [112] Flekk φ y E G, Herrmann H J. Lattice Boltzmann models for complex fluids. Physica A.1993.199: 1~11
    [113] Genevaux J M, Bernardin D. The lattice gas method and interaction with an elastic solid. J.Fluids&Structures. 1996.10:873~892
    [114] Alvarez-Ramirez J, Nieves-Mendoza S, Gonzalez-trejo J. Calculation of the effective diffusivity of heterogeneous media using the lattice Boltzmann method. Phys. Rev.E. 1996.53:2298~2303
    [115] Hu H H. Direct simulation of flows of solid-liquid mixtures, Int.J.Multiphase flow. 1996.22:335~352
    [116] Vangenabeek O, Rothman D H. Macroscopic manifestations of microscopic flows through porous-media phenomenology from simulation. Ann.Rev.Earth and Planetary Sci. 1996.24:63~87
    [117] Spaid M A A, Phelan, Jr F R. Lattice Boltamann methods for modeling microscale flow in fibrous porous media. Phys.Fluids. 1997.9:2468~2474
    [118] Ladd A J C. Short-time motion of colloidal particles: numerical simulation via a fluctuating lattice-Boltzmann equation. Phys.Rev.Lett. 1993.70:1339~1342
    [119] Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. theoretical foundation. J.Fluid Mech. 1994.271:285~309
    [120] Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J.Fluid Mech. 1994.271:311~339
    [121] Behrend O. Solid-fluid boundaries in particle suspension simulations via the lattice Boltzmann method. Phys. Rev. E. 1995,52:1164~1175
    
    
    [122] Aidun C K, Lu Y -N. Lattice Boltzmann simulation of solid particles suspended in fluid. J.Stat.Phys. 1995.81:49~61
    [123] Tan M -L, Qian Y H, Goldhirsch L, et al. Lattice-BGK approach to simulating granular flows. J.Stat.Phys. 1995.81:87~103
    [124] Qian Y H. Simulating thermohydrodynamics with lattice BGK models. J. Sci. Comp. 1993.8:231~241
    [125] Chen Y, Ohashi H, Akiyama M. Heat transfer in lattice BGK modeled fluid. J.Stat.Phys. 1994.81:71~85
    [126] Chen Y, Ohashi H, Akiyama M. Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations. Phys.Rev.E. 1994.50: 2776~2783
    [127] Chen Y, Ohashi H, Akiyama M. Prandtl number of lattice Bhatnagar-Gross-Krook fluid. Phys.Fluids. 1995.7:2280~2282
    [128] Hou S, Chen S, Doolen G. A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comp.Phys. 1998.146:282~298
    [129] McNamara G R, Garcia A L, Alder B J. A hydrodynamically correct of thermal lattice Boltzmann model. J.Stat.Phys. 1997.87: 1111~1121
    [130] 熊盛武,李元香,康立山,等.热动力学格子Boltzmann模型.计算物理.1998.4:439~444
    [131] Massaioli F, Beni R, Succi S. Exponential tails in two-dimensional Reyleigh-Bénard convection. Europhys.Lett. 1993.21:305~310
    [132] Dawson S P, Chen S, Doolen G D. Lattice Boltzmann computations for reaction-diffussion equations. J. Chem.Phys. 1993.98:1514~1523
    [133] Chen S, Dawson S P, Doolen G D, et al. Lattice methods and their applications to reacting systems. Comp. and Chem.Eng. 1995.19:617~646
    [134] Boghosian B M, Coveney P V, Emerton A N. A lattice-gas model for miscroemulsions. Proc.Roy.Soc.of London. A. 1996.452:1221~1250
    [135] Boghosian B M, Yepez J, Alexander F J, et al. Integer lattice gas lattice-gas model for miscroemulsions. Phys. Rev. E. 1997.55:4137~4147
    [136] Palmer B J, Rector D R. Lattice Boltzmann algorithm for simulating thermal flow in compressible fluids. J.Comp.Phys.2000.161:1~20
    [137] Chen S, Martinz D, Matthaeus W H, et al. Magnetohydrodynamics computations with lattice gas automata. J.Stat.Phys. 1992.68:533~556
    
    
    [138] Martinez D O, Chen S, Matthaeus W H. Lattice Boltzmann magnetohydrodynamics. Phys.Plasmas. 1994.1:1850~1867
    [139] Aharonov E, Rothman D H. Non-Newtonian flow (through porous media): a lattice Boltzmann method. Geophys.Res.Lett. 1993.20:679~682
    [140] Filippova O, Hanel D. Lattice Boltzmann simulation of gas-particle flow in filters. Comp. & Fluids. 1997.26:697~712
    [141] 李元香,康立山.线性和拟线性抛物型方程的格点模型.计算物理.1997.5:587~589
    [142] 邹秀芬.对流扩散方程的格点模型.计算物理.1996.3:310~314
    [143] 阎广武,胡守信,施卫平.Euler方程的二速度三熵级格子Boltzmann模拟.计算物理.1997.5:584~586
    [144] 阎广武,胡守信,施卫平.Euler方程的双分布函数格子Boltzmann Godunov方法.计算物理.1998.2:193~198
    [145] 程永光,张师华.Lattice Boltzmann方法应用实例——水电站水击计算.武汉水利电力大学学报.1998.5:22~26
    [146] 熊盛武,李元香.一类非线性数学物理方程的格子BGK模型.武汉汽车工业大学学报.1997.1:85~89
    [147] McNamara G R, Zanetti G. Use of the lattice Boltzmann equation to simulate lattice-gas automata. Phys.Rev.Lett. 1988.61:2331~2335
    [148] 吴大猷.热力学、气体运动论及统计力学.北京:科学出版社,1983
    [149] Cao N, Chen S, Jin S, et al. Physical symmetry and lattice symmetry in lattice Boltzmann method. Phys.Rev.E. 1997.55:R21~R24
    [150] Chorin A. A numerical method for solving incompressible viscous flow problems. J.Comp.Phys. 1967.2 (1): 12~26
    [151] He X, Luo L. Lattice Boltzmann model for incompressible flow using the Navier-Stokes equation. J.Stat.Phys. 1997.88:927~944
    [152] Ghia U, Ghia K N, Shin C Y. High-Re solution for incompressible flow using the Navier-Stokes equations and a multigrid method. J.Comp.Phys. 1982.48:387~394
    [153] Vanka S P. Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. J.Comp.Phys. 1986.65:138~155
    [154] Schreiber R, Keller H B. Driven cavity flow by efficient numerical techniques. J. Comp.Phys. 1983.49:310~321
    
    
    [155] Qian Y H, D'Humieres D, Lallemand P. in Advances in Kinetic Theory and Continuum Mechanics. Berlin: Springer, 1991
    [156] Olga F, Dieter H. Grid refinement for lattice-BGK models. J.Comp.Phys.1998.147: 219~228
    [157] Sman R G M, Ernst M H. Diffusion lattice Boltzmann scheme on an orthorhombic lattice. J.Stat.Phys. 1999.94 (1/2): 766~782
    [158] Sman R G M, Ernst M H. Convection-diffusion lattice Boltzmann scheme for irregular lattices. J.Comp.Phys.2000.160: 766~782
    [159] Filippova O, Hanel D. Acceleration of Lattice-BGK schemes with grid refinement. J.Comp.Phys.2000.165: 407~427
    [160] Chen H. Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concepts. Phys.Rev.E. 1998.58 (3): 3955~3964
    [161] Mei R, Shyy W. On the Finite Difference-Based Lattice Boltzmann Method in Curvilinear Coordinates. J.Comp.Phys. 1998.143:426~448
    [162] Peng G, Xi H, Duncan C, et al. Finite volume scheme for the lattice Boltzmann method on unstructured meshes. Phys.Rev.E. 1999.59 (4): 4675~4682
    [163] Xi H, Peng G, Chou S. Finite volume lattice Boltzmann method. Phys.Rev.E. 1999.59 (5): 6202~6205
    [164] Xi H, Peng G, Chou S. Finite-volume lattice in two and three dimensions. Phys.Rev.E. 1999.60 (3): 3380~3388
    [165] Dennis S C R, Chang G Z. Numerical solution for steady flow past a circular cylinder at Reynolds number up to 100. J.Fluid.Mech. 1970.42: 471~487
    [166] Nieuwstadt F, Keller H B. Viscous flow past circular cylinders. Comput.& Fluid. 1973.1:59~76
    [167] Coutanceau M, Bouard R. Experimental determination of the main feature of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1.Steady flow. J. Fluid Mech. 1977.79:231~243
    [168] Fornberg B. A numerical study of steady viscous flow past a circular cylinder. J.Fluid Mech. 1980.98:819~832
    [169] Phuoc Loc Ta. Numerical analysis of unsteady secondary vortices generated by an impulsively started circular cylinder: A comparison with experimental visualization and measurement. J.Fluid Mech. 1985.160:93~104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700