水溶性吲哚方酸菁染料的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在近红外区内,荧光分析技术在组织细胞体内应用更充分,获得检测结果更理想。菁染料光谱性能优良,可通过增加甲川链长度,获得近红外菁染料。但随着甲川链的增长,染料光稳定性下降。另外,由于被标示的基质溶在水中,有机溶剂对敏感的基质会产生有害影响,所以生物分子荧光探针应为水溶性的。为此本论文合成了一系列水溶性对称和不对称吲哚方酸菁荧光染料,研究了分子结构与染料光谱性能,尤其是稳定性之间的关系。为了性能对比,合成了非水溶性吲哚方酸菁和链状五甲川菁染料。在合成过程中发现,固相法合成水溶性不对称吲哚方酸菁染料,产率接近传统两步法的2倍,为一种更适合的不对称染料的合成方法。
     不同溶剂中,方酸菁染料最大吸收和发射波长在628~672 nm之间,Stokes位移在10~17 nm之间;链状五甲川菁染料的最大吸收和发射波长在646~687 nm之间,Stokes位移在18~27 nm之间;非水溶性对称方酸菁染料最大吸收和发射波长在621~658 nm之间,N-苄基取代染料Stokes位移在7-19 nm之间。
     本论文所合成菁染料摩尔消光系数均大于105 mol-1·cm-1·L,水中荧光量子产率低于在其它极性有机溶剂中荧光量子产率。质子性溶剂中,染料表现为负向溶剂化效应。光稳定性实验证明,染料吲哚环N位脂烷基长度增加,染料稳定性下降,N位取代基上引入羧基,稳定性提高。向甲川链上引入方酸环、向吲哚环N位引入空间体积较大的苄基,都能够提高染料的光稳定性,苄基上连有吸电子基时,染料的稳定性得到进一步改善。N-羧苄基水溶性吲哚方酸菁染料的光漂白常数k约为商品化的荧光探针N-羧戊基染料的1/3,采用重结晶方法即可获得高纯度染料,为后续生物分析的实际应用奠定了基础。
     水溶性对称吲哚方酸菁染料在阳离子和非离子表面活性剂溶液中,随着胶束的形成,染料的最大吸收和发射光谱发生红移、荧光强度和荧光量子产率大幅度增加、光稳定性提高,阳离子表面活性剂对染料的作用更明显,连有羧基的染料受影响程度最大。提出染料在表面活性剂胶束中的嵌入和吸附模型,对染料在胶束中的行为进行了解释。
     水溶性不对称吲哚方酸菁染料在强酸强碱性水溶液中吸光度明显减小,pH=4时发生较明显的聚集。非水溶性菁染料在生物标记常用的有机溶剂DMF和DMSO的水溶液中,聚集随水量的增加而增强。含羧基染料在酸性溶液中形成较强烈的聚集。非水溶性菁染料在DMF中的光稳定性高于在甲醇中的光稳定性。通过对比,非水溶性菁染料在DMF中的光稳定性比相应的水溶性方酸菁染料高,而甲醇中水溶性方酸菁染料更稳定。
Fluorescence analysis technique can be fully applied in tissue cells with acceptable experiment results in the region of near-infrared. Cyanine dyes possess excellent spectral properties. Near-infrared cyanine dyes can be obtained by increasing length of conjugated methine chain in dye molecules. However, the photo-stability of cyanine dyes could be decreased when conjugated methine chain increases. The fluorescence probes in labeling the bio-substrates should be water-soluble because bio-substrates are dissolved in water and the organic solvents could be harmful to sensitive bio-substrates. In this paper, symmetrical and asymmetrical water-soluble squarylium indocyanine dyes were synthesized, the relationship between molecular structures and their spectral properties, especially in the aspect of the stability, was studied. Water-insoluble and chainlike pentamethine indocyanine dyes were synthesized for reference.
     In the process of synthesizing of asymmetrical water-soluble squarylium indocyanine dyes, it is found that the yields of solid synthesis method are 2 times of that of traditional two-step method. Solid synthesis method is more suitable to synthesize water-soluble asymmetric squarylium indocyanine dyes.
     The wavelengths of absorption and fluorescence emission maximum of the squarylium indocyanine dyes are from 628 to 672 nm. The Stokes shifts of the squarylium indocyanine dyes in the range of 10~17 nm are smaller than those of the chainlike pentamethine indocyanine dyes, which are in the range of 18~27 nm. Chainlike pentamethine indocyanine dyes display the absorption and fluorescence emission maximum from 646 to 687 nm. Water-insoluble symmetrical squarylium indocyanine dyes exhibit absorption and emission maximum from 621 to 658 nm. The Stokes shifts of these water-insoluble dyes with N-benzyl are in the range of 7~19 nm.
     All dyes synthesized in this paper show a high molar absorption coefficientsεat least 105 mol-1·cm-1·L and lower values of fluorescence quantum yields in the aqueous medium compared with that in organic solvents. The absorption spectra of these dyes exhibit negative solvatochromism in protonic solvents.
     The results of photo-stability tests demonstrate that photo-stability increases when shortening the length of alkyl group on N-position and introducing carboxyl groups on the alkyl group, squaric acid ring on conjugated methine chain or large benyzl ring in the N-substituents. Furthermore, the electron-withdrawing groups on the benzyl group improve the photo-stability compared with electron-donating groups. Photo-fading constant k of the squarylium indocyanine dye with N-carboxyl benzyl which is obtained with high purity only by recrystallizing is less than one-third of that of the squarylium indocyanine dyes with N-carboxyl pentyl that is commercially available. This lays the groundwork for subsequent bio-analytical applications of the dye with N-carboxyl benzyl.
     In cationic and non-ionic surface active agents, water-soluble squarylium indocyanine dyes exhibit a red shift on their absorption and emission maximum, a significant increase in their fluorescence yields, and an enhancement on photo-stabilities along with the formation of micelles especially to the dye with carboxyl. The interaction between non-ionic surfactant and the dyes is weaker than that between cationic surfactant and the dyes. Embeding model and adsorption model were presented in this paper to explain the behaviors of dyes in surface active agents.
     In aqueous solution with pH=2 and pH=12, absorption peak values of asymmetrical water-soluble sqarylium indocyanine dyes are reduced significantly. In aqueous solution with pH=4, aggregation of dyes molecules is apparent.
     The aggregation of water-insoluble symmetrical squarylium indocyanine dyes can be enhanced with the increasing of water content in DMF and DMSO-aqueous medium. Only the dye with carboxyl could be influenced by pH value and exhibit obvious aggregation in acidic medium. The photo-stabilities of water-insoluble dyes in DMF are better compared with that in methanol. By contrast, the water-insoluble squaraylium indocyanine dyes express better photo-stabilities than that of water-soluble squaraylium indocyanine dyes in DMF, and opposite in methanol.
引文
[1]刘飞.五甲川菁染料的合成与光谱性质研究[D]:(硕士学位论文).大连:大连理工大学,2008.
    [2]Spitler M T, Ehret A, Kietzmann R, et al. Electron Transfer Threshold for Spectral Sensitization of Silver Halides by Monomeric Cyanine Dyes[J]. J. Phys. Chem.:B,1997, 101(14):2552-2557.
    [3]Guo M, Diao P, Ren Y J, et al. Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes[J]. Solar Energy Materials and Solar Cells,2005, 88(1):23-35.
    [4]Tyutyulkov N, Dietz F, Ivanova A, et al. Structure and properties of new classes of coupled polymethine dyes[J]. Dyes and Pigments,1999,42(3):215-222.
    [5]Anatoliy L T, Irina A F, Ewald T, et al. Synthesis of novel squaraine dyes and their intermediates[J]. Dyes and Pigments,2005,64(2):125-134.
    [6]Umezawa K, Morita S, Takazawa K, et al. Optical disk, information recording method, and information reproducing method[P]. EP 1863026,2007.
    [7]Jian G C, De Y H, Yuan L. Synthesis and properties of near-infrared absorbing asymmetric pyrylium-squarylium dyes containing tertiary butyl groups[J]. Dyes and Pigments,2000, 46(2):93-99.
    [8]Kuthanapillil J, Rekha R A, Danaboyina Ramaiah. Synthesis of New Cholesterol-and Sugar-Anchored Squaraine Dyes:Further Evidence of How Electronic Factors Influence Dye Formation[J]. Org. Lett.,2006,8(1):111-114.
    [9]Zhao H L, Yuan H H, Lan M B. Application of cyanine dyes and related compounds as fluorescent probes and photodynamic therapy [J]. Photograph. Science Photochem.,2003, 21(3):212-222.
    [10]Zhou X, Zhou J. Improving the Signal Sensitivity and Photostability of DNA Hybridizations on Microarrays by Using Dye-Doped Core-Shell Silica Nanoparticles[J]. Anal. Chem.,2004,76(18):5302-5312.
    [11]施锋,李宏洋,彭孝军等.生物分析用近红外荧光染料研究进展[J].精细化工,2003,20(5):268-272.
    [12]范芳丽,乔泽邦,陈沁闻等.2-取代吡啶半菁染料的无溶剂微波合成及光谱性质的理论研究[J].有机化学,2006,26(10):1389-1393.
    [13]Chang C C, Chua J F, Kuo H H, et al. Solvent effct on photophysical properties of a fluoroscence probe:BMVC[J], J. lumin,2006,119-120(1):84-90
    [14]谢普会,郭丰启,董兰芬.几种半菁染料的合成、光物理性质及在pH检测中的应用研究[J].河南科学,2009,27(2):164-168.
    [15]Shishkina S V, Baumer V N, Shishkin O V, et al. Molecular and crystal structure of 3-butoxy-4-(1,3,3-trimethyl-2,3-dihydro-1H-2-indolylidenemethyl)-3-cyclobutene-1, 2-dione and its thio analog[J]. J. Structural Chem.,2005,46(1):154-158.
    [16]Ewald T, Joseph R L. Synthesis and characterization of unsymmetrical squaraines:A new class of cyanine dyes[J]. Dyes and Pigments,1993,21(3):227-234.
    [17]Dietmar K, Horst H. Synthesis and characterization of a new class of unsymmetrical squaraine dyes[J]. Dyes and Pigment,2001,49(3):161-179.
    [18]Zbigniew R, Grabowski, Rotkiewicz K. Structural Changes Accompanying Intramolecular Electron Transfer:Focus on Twisted Intramolecular Charge-Transfer States and Structures[J]. Chem. Rev.,2003,103(10):3899-4031.
    [19]Lipowska M, Patonay G, Strekowski L. New Near-Infrared Cyanine Dyes for Labelling of Proteins[J]. Synthetic Commun,1993,23:3087.
    [20]Narayanan N, Patonay G. A New Method for the Synthesis of Heptamethine Cyanine Dyes: Synthesis of New Near-Infrared Fluorescent Labels[J]. J. org. Chem.,1995,60(8): 2391-2395.
    [21]陈秀英,赵小琴,李芒.功能性三甲川菁染料的合成及其光电性质研究[J].广东化工,2008,35(1): 25-29.
    [22]Oswald B, Patsenker L, Duschl J. Synthesis, spectral properties, and detection limits of reactive squaraine dyes, a new class of diode laser compatible fluorescent protein labels[J]. Bioconjugate Chem.,1999,10(6):925-931.
    [23]袁德其,鄢家明,谢如刚.不对称方酸菁的合成、性质和应用[J].化学研究与应用,1996,8(2): 165-166.
    [24]Jun H Y, Pablo W, Simon H, et al. Efficient Far Red Sensitization of Nanocrystalline TiO2 Films by an Unsymmetrical Squarylium Dye[J]. J. Am. Chem. Soc.,2007,129(34): 10320-10321.
    [25]Anatoliy L, Tatarets I A, Fedyunyayeva T S. Synthesis of water-soluble, ring-substituted squaraine dyes and their evaluation as fluorescent probes and labels [J]. Analytica Chimica Acta.,2006,570(2):214-223.
    [26]Song F L, Peng X J. Syntheses, spectral, properties and photostabilities of novel water-soluble near infrared cyanines[J]. J. Photochem. Photobiology A:Chem.,2004, 168(1-2):53-57.
    [27]Stephen J M, Shankar B. Solid-Phase Catch, Activate and Release Synthesis of Cyanine Dyes[J]. Org. Lett.,2002,4(24):4261-4264.
    [28]Jiang L L, Dou L F, Li B L. An efficient approach to the synthesis of water-soluble cyanine dyes using poly (ethylene glycol) as a soluble support [J]. Tetra. Lett.,2007, 48(33):5825-5829.
    [29]Zhao X Y, Schanze K S. Meta-Linked Poly(phenylene ethynylene) Conjugated Polyelectrolyte Featuring a Chiral Side Group:Helical Folding and Guest Binding[J]. Langmuir,2006,22(10):4856-4862.
    [30]Iqbal A, Wang L H, Thompson K C, et al. The Structure of Cyanine 5 Terminally Attached to Double-Stranded DNA:Implications for FRET Studies[J]. Biochem.,2008,47(30): 7857-7862.
    [31]杨祥宇,宋健,冯荣.荧光标记染料[J].化学通报,2003,(9):615-621.
    [32]Ewald T, Joseph R L. Synthesis and characterization of unsymmetrical squaraines:A new class of cyanine dyes[J]. Dyes and Pigments,1993,21(3):224-234.
    [33]王丽秋.水溶性3H-吲哚菁型生物荧光标示染料的研究[D]:(博士学位论文).大连:大连理工大学,2003.
    [34]陈秀英.新型3H-吲哚荧光菁染料的合成与性能研究[D]:(博士学位论文).大连:大连理工大学,2005.
    [35]Rekha R A, Kuthanapillil J, Danaboyina R. Dual-mode semisquaraine-based sensor for selective detection of Hg2+ in a micellar medium[J]. Org. Lett.,2007,9 (1):121-124.
    [36]Mark V.R. New glycoconjugated cyanine dyes as fluorescent labeling reagents[J]. J. Chem. Soc. Perkin Trans.,1998,1:143-147.
    [37]舒凡.近红外中位氨基酸取代Cy7的合成及生物运用[D]:(博士学位论文).大连:大连理工大学,2006:15-19.
    [38]Waggoner A S. Method for labeling and detecting materials employing arylsulfonate cyanine dyes[P]:U. S Patent 5 486 616.1996.
    [39]杨松杰,田禾.菁染料光稳定性研究进展[J].感光科学与光化学,1999,17(3):275-283.
    [40]曾万学,陈萍,郑德水等.多甲川链菁染料光氧化机理研究[J].感光科学与光化学,1995,13(2):136-143.
    [41]陈欣,姚祖光.N-苄基吲哚三碳菁染料的合成及性能[J].高等学校化学学报,1996,17(10):1613-1616.
    [42]Mader O, Reiner K, Egelhaaf H J, et al. Structure property analysis of pentamethine indocyanine dyes:Identification of a new dye for life science applications[J]. Bioconjugate Chem.,2004,15(1):70-78.
    [43]王伟,姚祖光.含N-烷基吲哚环方酸菁染料的合成及性能[J].感光科学与光化学,1997,15(4):321-324.
    [44]Guether R, Reddington M V. Photostable Cyanine Dye β-cyclodextrin Conjugates[J]. Tetra. Lett.,1997,38(35):6167-6170.
    [45]Mcrae E G, Kasha M. J. Enhancement of Phosphorescence Ability upon Aggregation of Dye Molecules[J]. Chem. Phys.,1958,28:721-727.
    [46]Kasha, M, Rawis H R, E1-Bayoumi M A. The exciton model in molecular spectroscopy[J]. Pure Appl. Chem.,1965,11:371-375.
    [47]Katoh T, Inagaki Y, Okazaki R. Linear and Stack Oligostreptocyanines. Effects of Relative Orientation of Chromophores on Redox Potentials of Dye Aggregates[J]. Chem. Soc. Jpn.,1997,70:2279-2284.
    [48]Maskasky J E. Molecular orientation of individual J aggregates on gelatin-grown AgBr tabular microcrystals[J]. Langmuir,1991,7(2):407-421.
    [49]Sheppard S E. Cyanine Dyes:Self Aggregation and Behaviour in Surfactants A Review[J]. Proc. R. Soc.,2007,1:1-31.
    [50]陈国珍.荧光分析法[M].第二版.北京:科学出版社,1990.
    [51]田茂忠BODIPY和罗丹明类阳离子荧光分子探针的研究:(博士学位论文).大连:大连理工大学.2007,3-5.
    [52]Achilefu S I, Dorshow R B, Bugaj J, et al. Non-covalent Bioconfugates Useful for Diagnosis and Therapy[P]. WO 9 951 284,2001.
    [53]Williams R J. Copparison of Covalent and Noncovalent Labeling with Near-infred Dyes for the High-performance Liquid Chromatographic Determination of Human Serum Albumin[J]. Anal. Chem.,1993,65(5):601-605.
    [54]Waggoner A S. Method for Labeling and Detecting Materials Employing Arylsulfonate Cyanine Dyes[P]. US patent,5 486 616,1996.
    [55]C.赖卡特[联邦德国].有机化学中的溶剂效应[M].北京:化学工业出版社,1987.
    [56]赵红莉,袁慧慧,蓝闽波.菁染料在荧光探针及光动力疗法中的应用[J].感光科学与光化学,2003,21(5):47-52.
    [57]高志宇,刘燕刚.生物荧光标记菁染料的研究进展[J].影像技术,2001,(2):10-16.
    [58]Williams R J, Peralta J M, Tsang V C W, et al. Near-infrared heptamethine cyanine dyes: A new tracer for solid-phase immunoassays[J]. Appl. Spectrosco,1977,51 (6):836-843.
    [59]门金凤,程海峰,陈朝辉等.吲哚七甲川菁染料的研究进展[J].材料导报,2008,22(9):4-7.
    [60]郑洪,李东辉,吴敏.新型近红外试剂的合成及其现场二聚体与DNA作用的研究[J].高等学校化学学报,1999,20(7):1026-1030.
    [61]Chen X Y, Peng X J, Cui A J, et al. Photostabilities of novel heptamethine 3H-ndolenine cyanine dyes with different N-substituents[J]. Journal of Photochemistry and Photobiology A-Chemistry,2006,181(1):79-85.
    [62]Dorshow R B. Indocyanine dyes[P]:US patent,6 264 919,1997.
    [63]Mujumdar R B, Earnt L A, Mujumdar S R, et al. Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters[J]. Bioconjugate Chem.,1993,4(2):105-111.
    [64]王丽秋,李秋荣,闫丽等.水溶性菁染料荧光标示剂的合成及其光谱性能[J].燕山大学学报,2006,30(1):91-94.
    [65]Zhang Z, Achilefu S. Synthesis and Evaluation of Polyhydroxylated Near-Infrared Carbocyanine Molecular Probes[J]. Org. Lett.,2004,6(12):2067-2070.
    [66]De Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Signaling Recognition Events with Fluorescent Sensors and Switches[J]. Chem. Rev.,1997,97(5):1515-1566.
    [67]Gude C, RettigW. Radiative and nonradiative excited state relaxation channels in squaric acid derivatives bearing differently sized donor substituents:a comparison of experiment and theory[J]. J. Phys. Chem. A,2000,104(34):8050-8057.
    [68]Law K Y. Squaraine chemistry:absorption, fluorescence emission and photophysics of unsymmetrical squaraines[J]. J. Phys. Chem.,1995,99(24):9818-9824.
    [69]Wang L Q, Peng X J. Syntheses and spectral properties of fluorescent trimethine sulfo-3H-indocyanine dyes[J]. Dyes and Pigments,2002,54(2):107-111.
    [70]Murphy S, Schuster G B. Electronic Relaxation in a Series of Cyanine Dyes:Evidence for Electronic and Steric Control of the Rotational Rate[J]. J. Phys. Chem.,1995, 99(21):8516-8518.
    [71]Sabat e R, Estelrich J. Determination of micellar microenvironment of pinacyanol by visible spectroscopy[J]. J. Phys. Chem.,2003,107(17):4137-4142.
    [72]Sidorowicz A, Mora C, Jablonka S, et al. Spectral properties of two betaine-type cyanine dye in surfactant micelles and in the presence of phospholipids[J]. J. Molecular Structure,2005,747:711-716.
    [73]杨文胜,姜月顺,柴向东等.含有识别基团的两亲性给-受体型分子的聚集行为[J].中国科学:B辑,2001,31(2):161-166.
    [74]刘娟,于宏伟,郭祥峰等.酯型双子阳离子表面活性剂与甲基橙的相互作用[J].日用化学工业,2004,34(1):5-7.
    [75]赵国玺.表面活性剂物理化学[M].修订版.北京:北京大学出版社,1991:165-167.
    [76]伍炯如,田永驰,梁映秋.一种花菁染料-表面活性剂水溶液体系的电子吸收光谱和荧光光谱的研究[J].化学学报,1990,48(2):148-152.
    [77]Mishra A, Behera R K, Behera P K et al. Cyanines during the 1990s:a review. Chemical Reviews,2000,100(6):1973-2011.
    [78]宫永宽,魏永锋,党高潮等.一种菁染料在溶液中的聚集状态研究.西北大学学报,1997,27(1):49-51.
    [79]Arun T K, Ramaiah D. Near-infrared flourescent probes:synthesis and spectroscopic investigation of a few amphiphilic squaraine dyes[J]. J. Phys. Chem.:A,2005,109(25): 5571-5578.
    [80]Song B, Zhang Q, Ma W H, et al. The synthesis and photostability of novel squarylium indocyanine dyes[J]. Dyes and Pigments,2009,82(3):396-400.
    [81]Chen H, FarahatM S, Law K Y, et al. Aggregation of Surfactant Squaraine Dyes in Aqueous Solution and Microheterogeneous Media:Correlation of Aggregation Behavior with Molecular Structure[J]. J. Am. Chem. Soc.,1996,118(11):2584-2594.
    [82]Law K Y. Squaraine Chemistry Absorption, Fluorescence Emission, and Photophysics of Unsymmetrical Squaraines[J]. J. Phys. Chem.,1995,99(24):9818-9824.
    [83]Jiang L L, Dou L F, Li B L. An efficient approach to the synthesis of water-soluble cyanine dyes using poly (ethylene glycol) as a soluble suppors[J]. Tetrahe-droLett, 2007,48(48):5825-5829.
    [84]Steven A S, Quincy L. M. Steady-State and Picosecond Laser Fluorescence Studies of Nonradiative Pathways in Tricarbocyanine Dyes:Implications to the Design of Near-IR Fluorochromes with High Fluorescence Efficiencies[J]. J. Am. Chem. Soc.,1994,116(9): 3744-3752.
    [85]Patonay G, Kim J S, Kodagahally R, et. al. Spectroscopic study of a novel bis (heptamethine cyanine) dye and its interaction with human serum albumin[J]. Applied Spectroscopy,2005,59(5):682-90.
    [86]Kashida H, Asanuma H, Komiyama M. Alternating hetero H aggregation of different dyes by interstrand stacking from two DNA-dye conjugates[J]. Angewandte Chemie International Edition,2004,43(47):6522-5.
    [87]张茜.水溶性吲哚方酸菁染料的合成及光谱性能研究[D]:(硕士学位论文).齐齐哈尔:齐齐哈尔大学,2006.
    [88]宋锋岭.近红外中位硫、氮取代七甲川菁类荧光染料的合成及光谱性能研究[D]:(博士学位论文).大连:大连理工大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700