ITO导电基板与有机光电器件的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1986年美国柯达公司的邓青云博士等人首次成功制备有机双层异质结器件以来,有机光电器件由于具有广泛的应用前景受到科研院所和公司的广泛关注。有机小分子器件,如有机电致发光器件(Organic light-emitting diodes,OLEDs)、有机场效应管(Organic thin film transistor,OTFT)、有机光伏器件(Organic photovoltaic cells,OPVs)及有机激光器(Organic laser)都得到了研究。其中,可用作照明和信息显示的OLEDs也称有机电致发光器件,具有自发光、响应快、全固态、制备工艺简单、宽视角、超薄、耐高低温、柔性等优点,被誉为最理想和最有潜力的下一代显示技术。而有机光伏器件,与无机的器件相比,具有可大面积制备、可弯折、低成本等优点。
     但是,目前高的制造成本、有待于提高的器件效率、器件工作机理认识的不足,大大影响了有机光电器件的产业化进程。针对上述问题,本论文在刚性和柔性OLEDs的制备工艺和高效有机光伏器件方面进行了一系列的探索性的工作,具体包括:
     1.采用直流加水磁控溅射法,制备了具有良好导电性和高透过率的氧化铟锡(ITO)薄膜。通过L_(18)(3~5)的正交实验,系统性地研究了材料工艺参数(水分压、工作气压、基片温度、氧气流量和溅射功率等)对ITO薄膜光电性能的影响。采用了方阻标定、透过率、AFM(Atomic force microscopy)、XRD(X-ray diffraction)等方法对ITO进行了测试和表征,并获得了优化的工艺参数。按优化工艺参数制备出的ITO导电基板在可见光区域的平均透过率为83%,方阻达到53Ω/□。采用该方法制备的ITO薄膜制备了结构为Mg:Ag/Alq(40 nm)/NPB(15 nm)/CuPc(x nm)/ITO(100 nm)的倒置型OLED器件,并对CuPc的厚度进行了优化。当CuPc厚度为15 nm时,驱动电压为14 V下发光亮度达到了526 cd/m~2。
     2.在低温条件下,采用加水直流磁控溅射法制备了基于柔性衬底的ITO导电薄膜。详细地研究了衬底温度、溅射功率和溅射压强等工艺参数对柔性衬底上ITO薄膜光电性能的影响。在导电薄膜厚度为100 nm条件下,获得的最佳工艺参数如下:衬底温度50℃、溅射功率100 W和溅射压强2 mTorr。为了解决导电薄膜附着性差的问题,在柔性基板和ITO导电薄膜间加入一层紫外固化胶作为改性层。制备了结构为PET/buffer layer/ITO/NPB/Alq/Mg:Ag的柔性有机电致发光器件,器件在12 V电压下亮度达到了3286 cd/m~2。
     3.对透明阴极结构及制备工艺进行了研究,在此基础上,制备了有机电致发光器件。根据矩阵光学理论,采用Matlab编程的方法计算了光学匹配层的参数。制备了结构为ITO/CuPc(20 nm)/NPB(30 nm)/Alq(40 nm)/LiF(1 nm)/Al(1 nm)/Ag(24 nm)/Alq(50 nm)的透明有机电致发光器件。结果表明,当驱动电压为15V时,器件亮度达到了4536 cd/cm~2。
     4.研究了CuPc、C_(60)厚度对单异质结有机太阳能电池性能的影响。选用BCP、Alq、CuPc作为激子阻挡层制备了结构为ITO/CuPc/C_(60)/EBL/Ag双异质结OPV器件,从原理上分析了激子阻挡层在提高器件性能上发挥的作用。
     5.将磷光材料bis[2-(4-tertbutylphenyl)benzothi azolato-N,C2,]iridiumm(acetylacetonate)[(t-bt)_2Ir(acac)]加入有机光伏器件,用于提高器件的转换效率。制备了结构为ITO/CuPc:x%(t-bt)_2Ir(acac)/C_(60)/BCP/Ag、ITO/(t-bt)_2Ir(acac)/CuPc/C_(60)/BCP/Ag和ITO/CuPc/(t-bt)_2Ir(acac)/C_(60)/BCP/Ag的OPV器件,分析了三线态材料对于提高OPV效率所起到的作用。
     综上所述,本工作通过ITO透明基板的制作,尤其是柔性基板的制作,为柔性光电器件的进一步研究,打下了坚实的工艺和理论基础;同时,在有机太阳能电池领域,也进行了有益的探索,为高效器件的研制做了前期的铺垫。
Since Tang et al at Eastmank Kodak firstly demonstrated an organic bilayerheterojunction (HJ) cell with high performance in 1986,organic optoelectronic deviceshave attracted great interest in academic and industrial field as a result of their highlypotential applications.So far,many organic small molecular devices have been studied,e.g.organic light-emitting diodes (OLEDs),organic thin film transistor (OTFT),organic photovoltaic (OPV) cell and organic laser.OLEDs as illumination source andbacklight for fiat panel display,possess many advantages,e.g.,self-emission,fastresponse,full solid device,easy fabrication,high efficiency,wide view-angle,ultrathinthickness.Therefore,OLEDs are considered as the most ideal and potential displaytechnology in 21~(st) century.Compared to inorganic PV cell,OPVs have beenrecognized for their potential use in large-area,flexible,and low cost photovoltaicapplications asa renewable energy source.
     However,currently there are also several shortcomings to prevent organicoptoelectronic devices from large scale commercial application such as highfabrication cost,low power efficiency and indistinct understanding about devicemechanism.Aiming at those problems,in this word,some basic and systematic workshave been performed to focus on the fabrication process to obtain high performancerigid and flexible OLED and high efficiency OPVs.The main works in this thesis areas following:
     1.ITO thin films with high optical transparency and electrical conductivity werefabricated by DC magnetron sputtering method with the assistance of tiny water vaporduring deposition process.The parameters of water partial pressure,total pressure,substrate temperature,oxygen flow rate and sputtering power were scrutinized withrespect to their role in the texturing process,and orthogonal test table L_(18) (3~5) wasdesigned to carried out the systematic study.Sheet resistance,transmittance,atomicforce microscope,and X-ray diffraction were employed to characterize the ITO films.The results showed that the transmission of 100 nm ITO conductive substrate wasaround 83% and square resistivity was below 53Ω/□.The film was used as the transparent anode to fabricate an inverted top-emitting organic light-emitting device(IT-OLED) with a structure of Mg:Ag/Alq (40 nm)/NPB (15 nm)/CuPc (x nm)/ITOanode (100 nm),where the film thickness of CuPc was optimized.It was found that theluminance of IT-OLED with 15 nm of CuPc layer was 526 cd/m~2 at 14 V.
     2.ITO films were fabricated on flexible substrate using a DC magnetronsputtering process at low temperature with the introducing of tiny water vapor.Thecorrelation of deposition condition and ITO film properties was systematicallyinvestigated.The optimized parameters of sputtering ITO film with thickness of 100nm are as follows:substrate temperature 50℃,DC power 100 W,and depositionpressure 2 mTorr.To enhance the adhesion of ITO film on flexible substrate,aUV-curable resin was introduced as a buffer layer between polymeric plastic substrateand ITO film.Flexible OLED with a structure of PET/buffer layer/ITO/NPB/Alq/Mg:Ag was fabricated.A maximum luminance of 3286 cd/m~2 at 12 V was achieved.
     3.The structure and fabrication process of transparent cathode for transparentOLED were investigated.Computer aided design using Matlab based on matrix opticstheory was developed for the optimization of index match layer.The FOLED with astructure of ITO/CuPc (20 nm)/NPB (30 nm)/Alq (40 nm)/LiF (1 nm)/Al (1 nm)/Ag(24 nm)/Alq (50 nm) was fabricated.A maximum luminance of 4536 cd/m~2 at 15Vwas obtained.
     4.The influence of film thickness of CuPc and C_(60) layer in single heterojunctionorganic solar cell was systematically investigated.Three different exciton blockingmaterials including BCP,Alq and CuPc were used in organic solar cell with a structureof ITO/CuPc/C_(60)/EBL/Ag.The influence of exciton blocking materials on deviceefficiency was discussed in detail.
     5.A novel phosphor of bis[2-(4-tertbutylphenyl) benzothi azolato-N,C2,]iridiumm (acetylacetonate) [(t-bt)_2Ir(acac)] was doped in CuPc as a donor to fabricate amore efficient organic solar cell.The device with a structure of ITO/CuPc:x%(t-bt)_2Ir(acac) /C_(60)/BCP/Ag,ITO/(t-bt)_2Ir(acac)/CuPc/C_(60)/BCP/Ag and ITO/CuPc/(t-bt)_2Ir(acac)/C_(60)/BCP/Ag were fabricated.The function of triplet materials on deviceefficiency was explained in theory.
     In summary,this work paves the way for high-efficiency flexible optoelectronicdevice based on the fabrication of rigid substrate as well as flexible substrate,and some effective preliminary works have been carried out on high performance organicsolar cell.We are optimistic that flexible organic solar cell with high efficiency can beachieved using our flexible substrate in the very near future.
引文
[1]J.W.Huh,Y.M.Kim,Y.W.Park,et al.Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates.Journal of Applied Physics,2008,103(4):44502
    [2]J.C.Bernde,Y.Berredjem,L.Cattin,et al.Improvement of organic solar cell performances using a zinc oxide anode coated by an ultrathin metallic layer.Applied Physics Letters,2008,92(8):083304
    [3]J.E.Parmer,A.C.Mayer,B.E.Hardin,et al.Organic bulk heterojunction solar cells using poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2,-b]thiophene).Applied Physics Letters,2008,92(11):113309
    [4]M.C.Tanese,D.Fine,A.Dodabalapur,et al.Organic thin-film transistor sensors:Interface dependent and gate bias enhanced responses.Microelectronics Journal,2006,37(8):837-840
    [5]D.Li,L.J.Guo.Organic thin film transistors and polymer light-emitting diodes patterned by polymer inking and stamping.Journal of Physics D:Applied Physics,2008,41(10):105115
    [6]S.Gowrisanker,Y.Ai,M.A.Quevedo-Lopez,et al.Impact of semiconductor/contact metal thickness ratio on organic thin-film transistor performance.Applied Physics Letters,2008,92(15):153305
    [7]T.Kim,S.J.Son,S.M.Seo.Flexible top gate pentacene thin film transistor with embedded source-drain electrode.Applied Physics Letters,2008,93(1):013304
    [8]K.Yamashita,A.Kitanobou,M.Ito,et al.Solid-state organic laser using self-written active waveguide with in-line Fabry-Prot cavity.Applied Physics Letters,2008,92(14):143305
    [9]B.Schutte,H.Gothe,S.I.Hintschich,et al.Continuously tunable laser emission from a wedge-shaped organic microcavity.Applied Physics Letters,2008,92(16):163309
    [10]Y.S.Tsai,F.S.Juang,T.H.Yang,et al.Effects of different buffer layers in flexible organic light-emitting diodes.Journal of Physics and Chemistry of Solids,2008,69(2-3):764-768
    [11]H.K.Kim,K.S.Lee,M.J.Keum,et al.Magnetic field shape effect on electrical properties of TOLEDs in the deposition of ITO top cathode layer.Electrochemical and Solid-State Letters,2005,8(12):103-105
    [12]张亚萍,殷海荣,黄剑锋.透明导电薄膜的研究进展.光机电信息,2006,2:56-60
    [13] D. Kim, D. Ma, N. Lee. Characterization of the Sn doped In2O3 film prepared by DC magnetron sputter type negative metal ion beam deposition. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2004, 43(4 A):1536-1540
    [14] C. M. Hsu, W. C. Hsu, C. S. Kuo, et al. Enhanced lifetime of organic light-emitting using a nickel-doped indium tin oxide anode. Takamatsu, Japan: Society for Information Display, San Jose, CA 95112-4006, United States, 2005, 683-686
    [15] T. Uchida, T. Mimura, S. Kaneta, et al. Transparent organic light-emitting devices fabricated by Cs-incorporated RF magnetron sputtering deposition. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2005,44(8): 5939-5942
    [16] H. Chen, C. Qiu, M. Wong, et al. DC sputtered indium-tin oxide transparent cathode for organic light-emitting diode. IEEE Electron Device Letters, 2003, 24(5): 315-317
    [17] P. K. Biswas. Absorption and fluorescence properties of sol-gel based nanostructured transparent conducting oxide films on silica glass. Advanced Materials Research, Beijing,China: Trans Tech Publications, Clausthal-Zellerfeld, D-38670, Germany, 2006, 183-188
    [18] S. Hong, J. Han. Synthesis and characterization of indium tin oxide (ITO) nanoparticle using gas evaporation process. Journal of Electroceramics, 2006, 17(2-4): 821-826
    [19] X. Zhi, G Zhao, T. Zhu, et al. The morphological, optical and electrical properties of SnO_2-F thin films prepared by spray pyrolysis. Surface and Interface Analysis, 2008, 40(2): 67-70
    [20] H. Ma, X. Hao, J. Ma, et al. Thickness dependence of properties of SnO_2:Sb films deposited on flexible substrates. Applied Surface Science, 2002, 191(1-4): 313-318
    [21] P. Yao, Q. Jin, X. Chen, et al. Ti/SnO_2-Sb electrodes for pollutant degradation prepared using ultrasonic spray pyrolysis. Electrochemical and Solid-State Letters, 2008, 11(5): 37-39
    [22] S. Rani, S. C. Roy, M. C. Bhatnagar. Effect of Fe doping on the gas sensing properties of nano-crystalline SnO_2 thin films. Sensors and Actuators, B: Chemical, 2007, 122(1): 204-210
    [23] K. Gopinadhan, S. C. Kashyap, D. K. Pandya, et al. High temperature ferromagnetism in Mn-doped SnO_2 nanocrystalline thin films. Journal of Applied Physics, 2007, 102(11): 113513
    [24] H. Agura, V. Takase, K. Uehara, et al. Transparent conducting ZnO thin films prepared at room temperature by PLD method. IEEJ Transactions on Electronics, Information and Systems, 2006, 126(11): 1268-1275
    [25] M. Berginski, B. Rech, J. Hupkes, et al. Design of ZnO:Al films with optimized surface texture for silicon thin-film solar cells. Strasbourg, France: International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, 2006, 61970
    [26] N. Canikoglu, N. Toplan, K. Yildiz, et al. Densification and grain growth of SiO_2-doped ZnO.Ceramics International, 2006, 32(2): 127-132
    [27] J. J. Lu, Y. M. Lu, S. I. Tasi, et al. Conductivity enhancement and semiconductor-metal transition in Ti-doped ZnO films. Optical Materials, 2007, 29(11): 1548-1552
    [28] L. L. Kerr, X. Li, M. Canepa, et al. Raman analysis of nitrogen doped ZnO. Thin Solid Films,2007, 515(13): 5282-5286
    [29] E. Fortunato, P. Nunes, A. Marques, et al. Zinc oxide thin films deposited by rf magnetron sputtering on mylar substrates at room temperature. San Francisco, CA, United States:Materials Research Society, Warrendale, PA 15086, United States, 2001, 140-145
    [30] J. H. Bae, J. M. Moon, J. W. Kang, et al. Transparent, low resistance, and flexible amorphous ZnO-doped In_2O_3 Anode Grown on a PES Substrate. Journal of the Electrochemical Society,2007, 154(3): 81-85
    [31] Y. C. Lin, J. Y. Li, W. T. Yen. Low temperature ITO thin film deposition on PES substrate using pulse magnetron sputtering. Applied Surface Science, 2008, 254(11): 3262-3268
    [32] J. Ma, D. Zhang, J. Zhao, et al. Preparation and characterization of ITO films deposited on polyimide by reactive evaporation at low temperature. Applied Surface Science, 1999,151(3-4): 239-243
    [33] C. Yang, S. Lee, T. Lin, et al. Electrical and optical properties of indium tin oxide films prepared on plastic substrates by radio frequency magnetron sputtering. Thin Solid Films,2008,516(8): 1984-1991
    [34] B. S. Chiou, S. T. Hsieh. R.f. magnetron-sputtered indium tin oxide film on a reactively ion-etched acrylic substrate. Thin Solid Films, 1993, 229(2): 146-155
    [35] C. W. Tang, S. A. Vanslyke. Organic electroluminescent diodes. Applied Physics Letters, 1987,51(12): 913-915
    [36] M. Pope, H. P. Kallmann, P. Magnante. Electroluminescence in Organic Crystals. The Journal of Chemical Physics, 1963,38(8): 2042-2043
    [37] W. Helfrich, W. G. Schneider. Recombination Radiation in Anthracene Crystals. Physical Review Letters, 1965, 14(7): 229-231
    [38] H. Schadt, D. F. Williams. Hall mobility of electrons in anthracene crystals. 1970, 39(1):223-230
    [39] P. S. Vincett, W. A. Barlow, R. A. Hann, et al. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. 1982, 94(2): 171-183
    [40] R. H. Partridge. Electroluminescence from polyvinylcarbazole films: 3. electroluminescent devices. Polymer, 1983, 24(6): 748-754
    [41] C. Adachi, S. Tokito, T. Tsutsui, et al. Electroluminescence in organic films with three-layer structure. Japanese Journal of Applied Physics, Part 2: Letters, 1988, 27(2): 269-271
    [42] C. Adachi, S. Tokito, T. Tsutsui, et al. Organic elctroluminescent device with a three-layer structure. Japanese Journal of Applied Physics, Part 2: Letters, 1988, 27(4): 713-715
    [43] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, et al. Light-emitting diodes based on conjugated polymers. Nature, 1990,347(6293): 539-541
    [44] M. A. Baldo, D. F. O'brien, Y. You, et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395(6698): 151-154
    [45] C. Hosokawa, M. Eida, M. Matsuura, et al. Organic multi-color electroluminescence display with fine pixels. Synthetic Metals, 1997, 91(1-3): 3-7
    [46] Y. Fukuda, T. Watanabe, T. Wakimoto, et al. Organic LED display exhibiting pure RGB colors.Synthetic Metals, 2000, 111:1-6
    [47] A. Goetzberger, C. Hebling. Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells, 2000, 62(1-2): 1-19
    [48] A. Goetzberger, C. Hebling, H. W. Schock. Photovoltaic materials, history, status and outlook.Materials Science and Engineering R: Reports, 2003, 40(1): 46
    [49] J. Zhao, A. Wang, M. A. Green, et al. 19.8% efficient 'honeycomb' textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters, 1998, 73(14): 1991
    [50] R. R. King, D. C. Law, K. M. Edmondson, et al. 40% efficient metamorphic GalnPGalnAsGe multijunction solar cells. Applied Physics Letters, 2007, 90(18): 183516
    [51] R. Komiya, L. Han. High efficient quasi-solid state dye sensitized solar cell with polymer electrolyte. Shapu Giho/Sharp Technical Journal, 2005, (93): 36-41
    [52] M. A. Green, K. Emery, Y. Hishikawa, et al. Solar cell efficiency tables (version 31). Progress in Photovoltaics: Research and Applications, 2008, 16(1): 61-67
    [53] B. O'regan, M. Graetzel. Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films. Nature, 1991, 353(6346): 737
    [54] K. Murakoshi, R. Kogure, Y. Wada, et al. Solid State Dye-Sensitized TiO_2 Solar Cell with Polypyrrole as Hole Transport Layer. Chemistry Letters, 1997, (5): 471
    [55] U. Bach, D. Lupo, P. Comte, et al. Solid-state dye-sensitized mesoporous TiO_2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702): 583-585
    [56] A. J. Heeger, A. G. Macdiarmid. Electronic properties of doped polyacetylene, (CH)/x:insulator-semiconductor-metal. American Chemical Society, Division of Organic Coatings and Plastics Chemistry, Preprints, 1977, 38: 631-633
    [57] B. R. Weinberger, M. Akhtar, S. C. Gau. Polyacetylene photovoltaic devices. Synthetic Metals,1982, 4(3): 187-197
    [58] S. Glenis, G. Horowitz, G. Tourillon, et al. Electrochemically grown polythiophene and poly(3-methylthiophene) organic photovoltaic cells. Thin Solid Films, 1984, 111(2): 93-103
    [59] L. Smilowitz, N. S. Sariciftci, T. Hagler, et al. Photoinduced and electroabsorption spectroscopy of a new, stable and soluble polyacetylene blend. Synthetic Metals, 1993, 55(1):159-164
    [60] G Yu, J. Gao, J. C. Hummelen, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789-1791
    [61] H. Hoppe, N. Arnold, N. S. Sariciftci, et al. Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells. Solar Energy Materials and Solar Cells, 2003, 80(1): 105-113
    [62] F. Padinger, R. S. Rittberger, N. S. Sariciftci. Effects of postproduction treatment on plastic solar cells. Advanced Functional Materials, 2003, 13(1): 85-88
    [63] J. K. J. Van Duren, A. Dhanabalan, P. A. Van Hal, et al. Low-bandgap polymer photovoltaic cells. Synthetic Metals, 2001, 121(1-3): 1587-1588
    [64] F. Padinger, D. Gebeyehu, C. J. Brabec, et al. Interconnection between efficiency and morphology of two component systems in plastic solar cells. Boston, MA, USA: Materials Research Society, Warrendale, PA, USA, 2000, 9-3
    [65] A. Ltaief, J. Davenas, A. Bouazizi, et al. Film morphology effects on the electrical and optical properties of bulk heteroj unction organic solar cells based on MEH-PPV/C_(60) composite. Materials Science and Engineering C, 2005, 25(1): 67-75
    [66] M. M. Alam, S. A. Jenekhe. Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers. Chemistry of Materials, 2004, 16(23): 4647-4656
    [67]W.Ma,C.Yang,X.Gong,et al.Thermally stable,efficient polymer solar cells with nanoscale control of the interpenetrating network morphology.Advanced Functional Materials,2005,15(10):1617-1622
    [68]M.Reyes Reyes,K.Kim,D.L.Carroll.High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene)and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C_(61)blends.Applied Physics Letters,2005,87(8):083506
    [69]C.W.Tang.Two-layer organic photovoltaic cell.Applied Physics Letters,1986,48(2):183-185
    [70]R.De Bettignies,Y.Nicolas,P.Blanchard,et al.Planarized Star-Shaped Oligothiophenes as a New Class of Organic Semiconductors for Heterojunction Solar Cells.Advanced Materials,2003,15(22):1939-1943
    [71]L.Schmidt-Mende,M.Watson,K.Mullen,et al.Organic thin film photovoltaic devices from discotic materials.Molecular Crystals and Liquid Crystals,2003,396:73-90
    [72]J.Hu,D.Zhang,S.Jin,et al.Synthesis and properties of planar liquid-crystalline bisphenazines.Chemistry of Materials,2004,16(24):4912-4915
    [73]T.Hasobe,Y.Kashiwagi,M.A.Absalom,et al.Supramolecular photovoltaic cells using porphyrin dendrimers and fullerenes.Advanced Materials,2004,16(12):975-979
    [74]M.Y.Chan,S.L.Lai,M.K.Fung,et al.Doping-induced efficiency enhancement in organic photovoltaic devices.Applied Physics Letters,2007,90(2):023504
    [75]Y.Shao,Y.Yang.Efficient organic heterojunction photovoltaic cells based on triplet materials.Advanced Materials,2005,17(23):2841-2844
    [76]D.Gebeyehu,B.Maennig,J.Drechsel,et al.Bulk-heterojunction photovoltaic devices based on donor-acceptor organic small molecule blends.Solar Energy Materials and Solar Cells,2003,79(1):81-92
    [77]S.Uchida,J.Xue,B.P.Rand,et al.Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine:C_(60)active layer.Applied Physics Letters,2004,84(21):4218-4220
    [78]B.P.Rand,J.G.Xue,S.Uchida,et al.Mixed donor-acceptor molecular heterojunctions for photovoltaic applications.Ⅰ.Material properties.Journal of Applied Physics,2005,98(12):
    [79]J.Xue,B.P.Rand,S.Uchida,et al.Mixed donor-acceptor molecular heterojunctions for photovoltaic applications.Ⅱ.Device performance.Journal of Applied Physics,2005,98(12):124903
    [80] P. Peumans, V. Bulovic, S. R. Forrest. Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Applied Physics Letters, 2000,76(19): 2650-2652
    [81] F. Yang, S. R. Forrest. Organic solar cells using transparent SnO_2-F anodes. Advanced Materials, 2006,18(15): 2018-2022
    [82] C. Y. Kwong, A. B. Djurisic, P. C. Chui, et al. CuPc/C_(60) solar cells - Influence of the indium tin oxide substrate and device architecture on the solar cell performance. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2004, 43(4A):1305-1311
    [83] J. Machet, J. Guille, P. Saulnier, et al. Deposition of conducting and transparent thin films of indium tin oxide by reactive ion plating. Thin Solid Films, 1981, 80(1/2/3): 149-155
    [84] H. W. Lehmann, R. Widmer. Preparation and properties of reactively co-sputtered transparent conducting films. Thin Solid Films, 1975,27(2): 359-368
    [85] A. W. Metz, M. A. Lane, C. R. Kannewurf, et al. MOCVD growth of transparent conducting Cd_2SnO_4 thin films. Chemical Vapor Deposition, 2004, 10(6): 297-300
    [86] I. B. Shim, C. S. Kim. Doping effect of indium oxide-based diluted magnetic semiconductor thin films. Journal of Magnetism and Magnetic Materials, 2004, 272-276(SUPPL 1):1571-1572
    [87] P. K. Biswas, A. De, N. C. Pramanik, et al. Effects of tin on IR reflectivity, thermal emissivity,Hall mobility and plasma wavelength of sol-gel indium tin oxide films on glass. Materials Letters, 2003, 57(15): 2326-2332
    [88] Y. Z. You, Y. S. Kim, D. H. Choi, et al. Electrical and optical study of ITO films on glass and polymer substrates prepared by DC magnetron sputtering type negative metal ion beam deposition. Materials Chemistry and Physics, 2008, 107(2-3): 444-448
    [89] D. Vaufrey, M. Ben Khalifa, J. Tardy, et al. ITO-on-top organic light-emitting devices: A correlated study of opto-electronic and structural characteristics. Semiconductor Science and Technology, 2003,18(4): 253-260
    [90] C. H. Chung, Y. W. Ko, Y. H. Kim, et al. Improvement in performance of transparent organic light-emitting diodes with increasing sputtering power in the deposition of indium tin oxide cathode. Applied Physics Letters, 2005, 86(9): 093504-093503
    [91]C.N.De Carvalho,G.Lavareda,E.Fortunato,et al.ITO films with enhanced electrical properties deposited on unheated ZnO-coated polymer substrates.Materials Science and Engineering B:Solid-State Materials for Advanced Technology,2005,118(1-3):66-69
    [92]曲喜新,杨邦朝.电子薄膜材料.北京:科学出版社,1996
    [93]杨邦朝,王文生.薄膜物理与技术.成都:电子科技大学出版社,1994
    [94]李学丹,万英超.真空沉积技术:浙江大学出版社,1994
    [95]田民波,刘德令.薄膜科学与技术手册:机械工业出版社,1991
    [96]唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,1998
    [97]W.Q.Zhao,G.Z.Ran,W.J.Xu,et al.Inverted top-emission organic light-emitting device with n-type silicon as cathode.Journal of Physics D:Applied Physics,2008,41(3):035106
    [98]V.Bulovic,P.Tian,P.E.Burrows,et al.Surface-emitting vacuum-deposited organic light emitting device.Applied Physics Letters,1997,70(22):2954-2956
    [99]X.Zhou,M.Pfeiffer,J.S.Huang,et al.Low-voltage inverted transparent vacuum deposited organic light-emitting diodes using electrical doping.Applied Physics Letters,2002,81(5):922
    [100]T.Dobbertin,M.Kroeger,D.Heithecker,et al.Inverted top-emitting organic light-emitting diodes using sputter-deposited anodes.Applied Physics Letters,2003,82(2):284-286
    [101]H.Lin,J.Yu,S.Lou,et al.Low temperature DC sputtering deposition on indium-tin oxide film and its application to inverted top-emitting organic light-emitting diodes.Journal of Materials Science and Technology,2008,24(2):179-182
    [102]H.W.Choi,S.Y.Kim,K.-B.Kim,et al.Enhancement of hole injection using O_2 plasma-treated Ag anode for top-emitting organic light-emitting diodes.Applied Physics Letters,2005,86(1):012104-012101
    [103]M.D.J.Auch,O.K.Soo,G.Ewald,et al.Ultrathin glass for flexible OLED application.Thin Solid Films,2002,417:47-50
    [104]A.Plichta,A.Weber,A.Habeck.Ultra Thin Flexible Glass Substrates.San Francisco,CA,United States:Materials Research Society,2003,273-282
    [105]K.S.Ong,J.Hu,R.Shrestha,et al.Flexible polymer light emitting devices using polymer-reinforced ultrathin glass.Elsevier,Amsterdam,1000 AE,Netherlands,2005,32-37
    [106]R.Q.Ma,M.Hack,J.J.Brown.The making of a flexible active-matrix OLED display.Photonics Spectra,2007,41(9):60-62
    [107] M. Troccoli, T. Afentakis, M. K. Hatalis, et al. Amoled TFT pixel circuitry for flexible displays on metal foils. San Francisco, CA, United States: Materials Research Society, 2003,93-98
    [108] T. K. Chuang, A. J. Roudbari, M. Trocolli, et al. Active-Matrix Organic Light-Emitting Displays on flexible metal foils. Orlando, FL, United States: International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, 2005, 234-248
    [109] H. Kim, J. S. Horwitz, G. P. Kushto, et al. Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laser deposition for organic light-emitting diodes. Applied Physics Letters, 2001, 79(3): 284-286
    [110] J. H. Shin, S. H. Shin, J. I. Park, et al. Properties of dc magnetron sputtered indium tin oxide films on polymeric substrates at room temperature. Journal of Applied Physics, 2001, 89(9):5199-5203
    [111] G Golan, A. Axelevitch, B. Gorenstein, et al. Novel type of indium oxide thin films sputtering for opto-electronic applications. Applied Surface Science, 2007,253(15): 6608-6611
    [112] J. H. Choi, Y. M. Kim, Y. W. Park, et al. Evaluation of gas permeation barrier properties using electrical measurements of calcium degradation. Review of Scientific Instruments, 2007,78(6): 064701
    [113] F. O. Adurodija, H. Izumi, T. Ishihara, et al. Low-temperature growth of low-resistivity indium-tin-oxide thin films by pulsed laser deposition. Vacuum, 2000, 59(2-3): 641-648
    [114] K. H. Kim, N. M. Park, T. Y. Kim, et al. Indium tin oxide thin films grown on polyethersulphone (PES) substrates by pulsed-laser deposition for use in organic light-emitting diodes. ETRI Journal, 2005,27(4): 405-409
    [115] B. Lucas, W. Rammal, A. El Amrani, et al. Elaboration of transparent conductive oxide films for flexible organic electroluminescent devices. Strasbourg, France: International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, 2006,
    [116] Y. Han, D. Kim, J. S. Cho, et al. Tin-doped indium oxide (ITO) film deposition by ion beam sputtering. Solar Energy Materials and Solar Cells, 2001,65(1): 211-218
    [117] D. Kim, Y. Han, J. Cho, et al. Low temperature deposition of ITO thin films by ion beam sputtering. Thin Solid Films, 2000, 377-378: 81-86
    [118] L. Hao, X. Diao, X. Hu, et al. Growth and photoelectrical properties of indium tin oxide films on flexible substrates. Journal of Vacuum Science and Technology, 2008, 28(3): 256-260
    [119] Y. Hong, Z. He, N. S. Lennhoff, et al. Tansparent flexible plastic substrates for Organic light-emitting devices. Journal of Electronic Materials, 2004, 33(4): 312-320
    [120] Y. S. Yoon, H. Y. Park, Y. C. Lim, et al. Effects of parylene buffer layer on flexible substrate in organic light emitting diode. Thin Solid Films, 2006, 513(1-2): 258-263
    [121] T. N. Chen, D. S. Wuu, C. C. Wu, et al. Improvements of permeation barrier coatings using encapsulated parylene interlayers for flexible electronic applications. Plasma Processes and Polymers, 2007, 4(2): 180-185
    [122] P. R. Chalker, S. J. Bull, D. S. Rickerby. Review of the methods for the evaluation of coating-substrate adhesion. Materials Science & Engineering A: Structural Materials:Properties, Microstructure and Processing, 1991, A140(1-2): 583-592
    [123] F. L. Wong, M. K. Fung, S. W. Tong, et al. Flexible organic light-emitting device based on magnetron sputtered indium-tin-oxide on plastic substrate. Thin Solid Films, 2004, 466(1-2):225-230
    [124] B. H. Lee, I. G. Kim, S. W. Cho, et al. Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application. Thin Solid Films, 1997, 302(1-2):25-30
    [125] S. H. Shin, J. H. Shin, K. J. Park, et al. Low resistivity indium tin oxide films deposited by unbalanced DC magnetron sputtering. Thin Solid Films, 1999, 341(1-2): 225-229
    [126] S. Y. Tsai, Y. M. Lu, J. J. Lu, et al. Comparison with electrical and optical properties of zinc oxide films deposited on the glass and PET substrates. Surface and Coatings Technology, 2006,200(10 SPEC ISS): 3241-3244
    [127] F. Zhu, K. Zhang, L. Bee Ling, et al. Morphological and electrical properties of indium tin oxide films prepared at a low processing temperature for flexible organic light-emitting devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology,2001,85(2-3): 114-117
    [128] H. H. Kim, M. Y. Lee, K. T. Kim, et al. Transparent conducting ITO films reactively sputtered on polyethylene terephtalate substrates without heat treatment International Journal of Modern Physics B (IJMPB), 2003, 17: 5
    [129] 王德海, 江棂编著. 紫外光固化材料理论与应用. 北京: 科学出版社, 2001
    [130] R. Bongiovanni, F. Montefusco, A. Priola, et al. High performance UV-cured coatings for wood protection. Progress in Organic Coatings, 2002,45(4): 359-363
    [131]R.W.Stowe.Ultraviolet curing technology and recent advances.London,UK:IEE,Stevenage,Engl,1996,3-1
    [132]洪啸吟,冯汉保.光固化体系与光固化粘合剂的发展.中国胶粘剂,1994,(02):
    [133]王致禄,陈道义.聚合物胶粘剂.上海:上海科技出版社,1988
    [134]杨全篆,寥增琨等.合成胶粘剂.北京:科学出版社,1980
    [135]徐全祥.合成胶粘剂及其应用.沈阳:沈阳科学技术出版社,1985
    [136]张秋禹,李长国,沈卫新.Z97光敏胶粘剂的研制.中国胶粘剂,1998,7(04):4-6
    [137]X.M.Wu,Y.L.Hua,S.G.Yin,et al.Properties of white organic electroluminescent device with double light-emitting layers based upon different hosts.Wuli Xuebao/Acta Physica Sinica,2008,57(2):1150-1154
    [138]J.S.Yu,L.Li,X.Q.Ji,et al.High efficient doped red organic light-emitting diodes based on 9,10-di-beta-naphthylanthracene.Journal of the University of Electronic Science and Technology of China,2008,37(3):457-459
    [139]Y.Lee,J.Kim,S.Kwon,et al.Interface studies of Aluminum,8-hydroxyquinolatolithium(Liq)and Alq3 for inverted OLED application.Organic Electronics:physics,materials,applications,2008,9(3):407-412
    [140]K.U.Haq,S.P.Liu,M.A.Khan,et al.Red organic light-emitting diodes based on wide band gap emitting material as the host utilizing two-step energy transfer.Semiconductor Science and Technology,2008,23(3):035024
    [141]D.Y.Wang,F.K.Chen,N.H.Wang,et al.Characterization of hydrogen-free diamond-like carbon film on COC for flexible organic electro-luminescence application.Thin Solid Films,2007,516(2-4):293-298
    [142]H.Peng,J.Sun,X.Zhu,et al.High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode.Applied Physics Letters,2006,88(7):073517
    [143]R.B.Pode,C.J.Lee,D.G.Moon,et al.Transparent conducting metal electrode for top emission organic light-emitting devices:Ca-Ag double layer.Applied Physics Letters,2004,84(23):4614-4616
    [144]C.J.Lee,R.B.Pode,J.I.Han,et al.Red electrophosphorescent top emission organic light-emitting device with Ca/Ag semitransparent cathode.Applied Physics Letters,2006,89(25):253508
    [145]C.J.Lee,R.B.Pode,J.I.Han,et al.Green top-emitting organic light emitting device with transparent Ba/Ag bilayer cathode.Applied Physics Letters,2006,89(12):123501
    [146] S. Y. Ryu, S. H. Choi, J. T. Kim, et al. Highly efficient transparent organic light-emitting diodes by ion beam assisted deposition-prepared indium tin oxide cathode. Applied Physics Letters, 2007, 90(3): 033513
    [147] H. Yamamoto, T. Oyamada, W. Hale, et al. Low-damage indium tin oxide formation on organic layers using unique cylindrical sputtering module and application in transparent organic light-emitting diodes. Japanese Journal of Applied Physics, Part 2: Letters, 2006,45(4-7): 213-216
    [148] G. Gu, V. Bulovic, P. E. Burrows, et al. Transparent organic light emitting devices. Applied Physics Letters, 1996, 68(19): 2606-2608
    [149] C. W. Chen, P. Y. Hsieh, H. H. Chiang, et al. Top-emitting organic light-emitting devices using surface-modified Ag anode. Applied Physics Letters, 2003, 83(25): 5127-5129
    [150] L. S. Hung, C. W. Tang, M. G Mason, et al. Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes. Applied Physics Letters, 2001, 78(4): 544-546
    [151] C. L. Lin, H. W. Lin, C. C. Wu. Examining microcavity organic light-emitting devices having two metal mirrors. Applied Physics Letters, 2005, 87(2): 1-3
    [152] T. M. Brown, R. H. Friend, I. S. Millard, et al. LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes. Applied Physics Letters, 2000, 77(19): 3096-3098
    [153] M. Matsumura, Y. Jinde. Analysis of current-voltage characteristics of organic light emitting diodes having a LiF/Al cathode and an Al-hydroxyquinoline/diamine junction. Applied Physics Letters, 1998, 73(20): 2872-2874
    [154] T. Mori, H. Fujikawa, S. Tokito, et al. Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy. Applied Physics Letters, 1998, 73(19): 2763-2765
    [155] P. He, S. D. Wang, S. T. Lee, et al. Vibrational study of tris-(8-hydroxyquinoline) aluminum/LiF/Al interfaces. Applied Physics Letters, 2003, 82(19): 3218-3220
    [156] Q. Zhang, Q. Zhou, Y. Cheng, et al. Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes Based on Cu Complexes. Advanced Materials, 2004, 16(5): 432-436
    [157] C. Wu, G R. Lee, T. W. Pi. Energy structures and chemical reactions at the Al/LiF/Alq3 interfaces studied by synchrotron-radiation photoemission spectroscopy. Applied Physics Letters, 2005, 87(21): 212108
    [158] K. Tamano, D. Cho, T. Mori, et al. Enhancement of hole injection by metal anode in organic light-emitting diodes. Kobe, Japan: Elsevier, 2003, 182-186
    [159] Z. Xu, B. Hu, J. Howe. Improvement of photovoltaic response based on enhancement of spin-orbital coupling and triplet states in organic solar cells. Journal of Applied Physics, 2008,103(4): 043909
    [160] C. M. Yang, C. H. Wu, H. H. Liao, et al. Enhanced photovoltaic response of organic solar cell by singlet-to-triplet exciton conversion. Applied Physics Letters, 2007,90(13): 133509
    [161] Z. R. Hong, Z. H. Huang, X. T. Zeng. Utilization of copper phthalocyanine and bathocuproine as an electron transport layer in photovoltaic cells with copper phthalocyanine/buckminsterfullerene heterojunctions: Thickness effects on photovoltaic performances. Thin Solid Films, 2007, 515(5): 3019-3023
    [162] P. Peumans, S. R. Forrest. Very-high-efficiency double-heterostructure copper phthalocyanine/C_(60) photovoltaic cells. Applied Physics Letters, 2001, 79(1): 126
    [163] K. Suemori, T. Miyata, M. Yokoyama, et al. Organic solar cells protected by very thick naphthalene tetracarboxylic anhydride films. Applied Physics Letters, 2004, 85(25):6269-6271
    [164] H. B. Sun, V. Mizeikis, Y. Xu, et al. Microcavities in polymeric photonic crystals. Applied Physics Letters, 2001, 79(1): 1
    [165] P. Peumans, A. Yakimov, S. R. Forrest. Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics, 2003, 93(7): 3693-3723
    [166] W. B. Chen, H. F. Xiang, Z. X. Xu, et al. Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer. Applied Physics Letters, 2007, 91(19): 3
    [167] R. F. Salzman, J. Xue, B. P. Rand, et al. The effects of copper phthalocyanine purity on organic solar cell performance. Organic Electronics: physics, materials, applications, 2005,6(5-6): 242-246
    [168] M. Cocchi, J. Kalinowski, D. Virgili, et al. Excimer-based red/near-infrared organic light-emitting diodes with very high quantum efficiency. Applied Physics Letters, 2008,92(11): 113302
    [169] J. C. Ribierre, A. Ruseckas, K. Knights, et al. Triplet exciton diffusion and phosphorescence quenching in iridium(Ⅲ)-centered dendrimers. Physical Review Letters, 2008, 100(1):017402
    [170] D. Zhang, W. Li, B. Chu, et al. Low efficiency roll off at high current densities in Ir-complex based electrophosphorescence diode with exciton diffusing and fluorescence compensating layers. Applied Physics Letters, 2007, 91(18): 183516
    [171] G Lei, L. Wang, Y. Qiu. Multilayer organic electrophosphorescent white light-emitting diodes without exciton-blocking layer. Applied Physics Letters, 2006, 88(10): 103508

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700