低温共烧陶瓷(LTCC)内电极银浆的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,随着新技术、新材料和新工艺的迅速发展,微电子材料在各个方面都得到了蓬勃的发展。低温共烧陶瓷(Low Temperature Co-fired Ceramic)技术由于其优异的热学、电学、机械及其工艺特性,将成为未来电子器件模块化、集成化的首选方式以及元器件产业新的经济增长点。国内LTCC技术的开发及产业化较发达国家晚,生产的浆料质量较差、品种少,仍然没有摆脱国外产品价高、受控制的局面。本论文以LTCC蓝牙天线内电极用银浆为研究对象,研究了化学还原沉淀法制备高分散高振实的超细结晶型银粉,设计和优化了玻璃粉的配方以及玻璃粉的制备工艺,通过添加助剂改性,制备了有机载体,将各组成相进行系统优化后,最后制备成LTCC内电极印刷电路用银浆。借助环境扫描电子显微镜、激光粒度分析仪、PF-100B型振实密度测试仪、Netzsch DTA 449PC示差扫描量热仪和D/Max 2500 X射线衍射仪对制得银粉的形貌、粒径和振实密度、玻璃粉的软化温区和析晶情况进行检测和分析;通过粘度仪和细度计测定了浆料的粘度和细度;利用SEM分析了浆料烧结膜的微观形貌;采用四探针测试仪和测力计测定了烧结膜的电性能和附着力,主要研究结果如下:
     (1)采用化学沉淀法从硝酸银溶液中沉淀出银粉,用反应速率适中的抗坏血酸作为还原剂,明胶作为分散剂,可以制得分散性良好的银粉。当硝酸银与抗坏血酸的浓度比为2:1,明胶为硝酸银质量的2wt%时,用激光粒度分析仪测得银粉的平均粒径为2.68μm;化学反应溶液的pH为2时,可以制得所需结晶性银粉,当反应滴液速度控制在200mL/min,反应温度为50℃时,可以得到平均粒径为2.46μm的结晶性高分散类球状银粉。
     (2)适于LTCC天线内电极浆料优化后的粘度为120Pa·s;用平均粒径为2.46μm的类球状高分散银粉制得浆料,浆料的丝网印刷性能和触变性良好,其烧结膜方阻为1.40mΩ/□;随着银粉振实密度的提高,烧结膜越致密,导电性越好,当用振实密度为5.1g/mL,平均粒径为2.25μm的银粉时,制得烧结膜的方阻可达1.35mΩ/□;当固粉中银粉与玻璃粉的质量比为82:3时,可以使烧结膜导电性能最好,为1.22 mΩ/□;当载体在浆料中的含量为15wt%时,电性能良好,方阻为1.02 mΩ/□。
     (3)通过对3个体系6种不同玻璃粉进行比较分析,优选出的C系玻璃粉,其软化温度为650℃左右,长时间保温不会有析晶的情况,根据Turner模型计算得出其烧结膜的线膨胀系数与基片生瓷最为匹配;当C系玻璃粉中Li20含量为2wt%时,烧结厚膜与基片的线膨胀匹配性良好;当浆料中玻璃粉含量为8%时,烧结膜与基片的附着力最佳,为16.8N/mm2。
     (4)将陶瓷生瓷片料作为添加剂加入到银浆中,可以抑制因浆料和生瓷片共烧时线膨胀系数不匹配而导致的翘曲现象;随着生瓷片料在浆料中添加量的增加,所得天线的中心频率先增加后迅速减小,当添加量为0.6wt%时,中心频率与设计值最接近,为2.44GHz;加入表面活性剂卵磷脂和蓖麻油对浆料流平性有一定的改善作用。通过提高烧结膜的高宽比来减少共烧后的翘曲现象,在浆料中加入丁基卡必醇有效提高浆料的触变性,当加入量为12wt%时,高宽比可以达到0.32。
As the rapid development of advanced material, new process and neoteric technique, microelectronic material got a booming market in the last 20 years. Technique of Low Temperature Co-fired Ceramic will become the top choice of modularization and a new economic growth point, because of its excellent character in electricity, machinery, thermology and craft. The domestic development and industrialization of LTCC lags behind that in developed countries, expecially in integrating module. We are unable to break loose from the high price and control of the foreign offerings for the scarce assortment and bad quality. In this thesis, taking the silver paste of LTCC bluetooth antenna inner electrode as the research objective, we researched the preparation method of high dispersing silver powder by chemical deposition, designed the ingredient and preparation process of glass frits, prepared organic vehicles though adding modifier, and optimized the constitutions of the goal silver paste. With the help of scanning electron microscope, laser scattering particle analyzer, PF-100B vibration solid density spectrometer, Netzsch DTA 449PC DSCmeter and D/Max 2500XRD,we observed and analysed the morphologies, mean grain sizes, tap density of silver powder, and the themal features of glass frits. By Viscometer and Fineness dispersion meter, the viscocity and fineness had been measured. Through SEM, we surveyed the morphology of sintered film. Four point probe meter and forcemeter measured the electroconductibility and adhesion of the sintered film. The results are as follows:
     (1) Selecting ascorbic acid as reducing agent and gelatine as dispersing agent,we got the fine dispersing silver powder though chemical reduction method. When C(AgNO3):C(Vc)=2:1 and m(gelatin):m(AgNO3)=2:100,the mean grain sizes of fine dispersing silver powder is 2.68μm. When acidity of solution is 2, the drop rate is 200mL/min and temperature is 50℃, we can got crystalline silver powder of which the mean grain sizes is 2.46μm.
     (2) The viscocity of LTCC paste optimised for inner electron is 120 Pa-s. The paste prepared by silver powder of 2.46μm could get fine screen printing and the resistance of its sinterd film could reach 1.40 mΩ/□. The higher the tap density of silver powder is, the finer the conductivity of sinterd film is. When the tap density of silver powder is 5.1 mΩ/□, the conductivity of its sinterd film was 1.02mΩ/□. When m(Ag):m(glass frits)=82:3, the sintered film obtains the best electronic property,1.22 mΩ/□. From the TG graph of organic vehical,1# vehical is much suitable to the LTCC sinter process and the residul is only 0.03%. When the content of vehical is 15wt%, the resistance of the sinterd film was 1.45 mΩ/□.
     (3) The soften temperature of glass C which is not devitrification optimized from six kinds glass frits is about 650℃. The TEC of glass C calculated by Turner model can match that of the green tape. In addition, when the content of Li2O is 2wt% in glass, the coordination is fine between sinterd film and substrate with good electroconductivity. The adhesive of the sintered film can reach 16.8N/mm with 8wt% of glass frits in the paste.
     (4) If the ceramic green tape is added into the silver paste as the addition,it can restrain the mismatch shrinkage and warpage due to the different materials in X and Y directions. With the increase of the green tape addtion content, the efficiency of the bluetooth antenna is first increased and then rapid decreased. When the content of addtion is 0.6wt%, it can approach to the designed velue,2.44GHz. Lecithin and castor oil as the surfactant of paste can improve the levelling property. For enhancing the aspect ratio of sintered film, dibutyl phthalate in the paste can increase the thixotropism. When the content of dibutyl phthalate is 12wt%, the aspect ratio of sintered film can reach 0.32.
引文
[1]童志义.低温共烧陶瓷技术现状与趋势.电子工业专用设备,2008,(11):1-9
    [2]今中佳彦.多层低温共烧陶瓷技术.北京:科学出版社,2010.20-23
    [3]王睿,王悦辉,周济,et a1.低温共烧陶瓷技术及其应用.硅酸盐学报,2007,(S1):125-130
    [4]李震.蓝牙技术在手机上的应用.中国新技术新产品,2008,(14):15
    [5]乔辉.蓝牙天线技术分析与产品应用.无线电工程,2004,(10):38-40
    [6]Barlow Fred D., Elshabini Aicha. Ceramic Interconnect Technology Handbook. London:Taylor & Francis Group 2006.
    [7]Huang J.F, Kuo C.W. CPW-fed bow-tie slot antenna. Microwave and Optical Technology Letters,1998,19(5):358-360
    [8]Miao M, Ooi BL, Kooi PS. Broadband CPW-fed wide slot antenna. Microwave and Optical Technology Letters,2000,25(3):206-211
    [9]Soliman EA, Brebels S, Delmotte P, et al. Bow-tie slot antenna fed by CPW. Electronics letters,1999,35(7):514-515
    [10]钟慧,张怀武.低温共烧结陶瓷(LTCC)特点、应用及问题.磁性材料及器件,2003,(04):33-35+42
    [11]李恬.基于LTCC技术小型化天线设计与研究:[硕士学位论文].电子科技大学,2010
    [12]Mistler R.E. Tape casting:past, present, potential. American Ceramic Society Bulletin,1998,77(10):82-86
    [13]唐伟,曾志毅,杨邦朝.基于LTCC工艺的蓝牙天线设计与制造.电子元件与材料,2010,(11):24-26
    [14]胡兴军.低温共烧陶瓷.佛山陶瓷,2005,15(8):33-34
    [15]王悦辉.低温共烧陶瓷技术新进展.中国电子学会第十四届电子元件学术年会.2006.1-2
    [16]代君利.低温共烧陶瓷技术新进展.中国电子商情(基础电子),2009,(04):30-31
    [17]甘卫平.低温烧结型银基浆料烧结膜孔洞率的研究.电子元件与材料,2008,27(6):4
    [18]甘卫平.化学还原制备太阳能电池正极浆料用超细银粉.粉末冶金材料科学与工程,2009,14(6):5
    [19]罗世永,庞远燕,郝燕萍,et al电子浆料用有机载体的挥发性能.电子元件与材料,2006,(08):49-51
    [20]汪荣昌,顾志光,戎瑞芬,et al.应用于蓝牙技术发展的LTCC—AIN多层布线工艺.功能材料,2002,(05):518-520
    [21]甘卫平,甘梅,刘妍.低温烧结银浆料在半导体芯片组装时的附着力.粉末冶金材料科学与工程,2007,12(4):211-215
    [22]陆广广,宣天鹏.电子浆料的研究进展与发展趋势.金属功能材料,2008,(01):48-52
    [23]胡永达,徐如清,杨邦朝,et al. LTCC在蓝牙技术中的应用.2005.
    [24]何发泉,李勇军.银粉的用途和制备.中国粉体技术,2001,(03):45-47
    [25]Nguyen M.N, Lee Chee-Kong, Herrington Thomas L. Silver-glass pastes. U.S, Utility,5183784,1991
    [26]许超,周世珪.玻璃工艺原理.北京:中国建筑工业出版社,1981.17
    [27]蔡雄辉,吴懿平,安兵,et al.采用硫酸作为稳定剂制备微米级球形银粉.粉末冶金技术,2009,(05):361-364
    [28]梁敏.电子材料用球形超细银粉的制备.中国粉体技术,2006,12(3):5
    [29]Shriver D.F, Atkins P.W, Langford C.H. Inorganic Chemistry. Oxford:Oxford University Press,1994.
    [30]Songping W, Shuyuan M. Preparation of ultrafine silver powder using ascorbic acid as reducing agent and its application in MLCI. Materials chemistry and physics,2005, 89(2-3):423-427
    [31]魏丽丽,徐盛明,徐刚,et a1.表面活性剂对超细银粉分散性能的影响.中国有色金属学报,2009,(03):595-600
    [32]Miller LF. Screenability and rheology. Solid State Technol,1974,17:54-60
    [33]Tsai SC, Botts D, Plouff J. Effects of particle properties on the rheology of concentrated noncolloidal suspensions. Journal of rheology,1992,36:1291
    [34]崔作林.纳米技术与纳米材料.北京:国防工业出版社,2000.121
    [35]朱莉华.丝网印刷欧姆接触电极浆料的研制.声学与电子工程,1999,(02):40-42
    [36]Maksimovic VM, Pavlovic MG, Pavlovic L.J, et al. Morphology and growth of electrodeposited silver powder particles. Hydrometallurgy,2007,86(1-2):22-26
    [37]虎轩东.厚膜微电子技术.成都:电子元件与材料出版社,1989.
    [38]韦群燕,李向群,俞守耕.银粉特性对银膜致密性的影响.贵金属,2001,(03):35-38
    [39]谭富彬,赵玲,刘林,et al.纳米银粉的液固相化学制备方法及特性.贵金属,1999,(03):9-12
    [40]Eric G, Alan R. Metal nanopowder for passive and hybrid applications. Passive Compon Ind,2004,6:10-13
    [41]袁林生.液相还原法制取纳米银粉的研究.电子元件与材料,2006,25(6):3
    [42]Patton T.C. Paint flow and pigment dispersion. New York Wiley-Interscience,1964.
    [43]Wang Y, Zhang G, Ma J. Research of LTCC/Cu, Ag multilayer substrate in microelectronic packaging. Materials Science and Engineering B,2002,94(1):48-53
    [44]梁彤翔.细线W浆料的研制和AlN/W多层共烧金属化:[博士论文].1996
    [45]韦群燕,潘云昆.超细银粉在有机介质中的分散及其稳定性.电子元件与材料,2000,(01):22-23
    [46]Bangali J, Rane S, Phatak G, et al. Effect of ink organics on cambering of an Ag-metallized low temperature co-fired ceramics (LTCC). Journal of Materials Science: Materials in Electronics,2009,20(5):455-460
    [47]Marshall D.W. Copper-based conductive polymers:A new concept in conductive resins. Particle adhesion:applications and advances,2001:301
    [48]雷芝红.微电子封装用导电胶的研究进展.微纳电子技术,2007,44(1):5
    [49]陈党辉,顾瑛,陈曦.国外微电子组装用导电胶的研究进展.电子元件与材料,2002,(02):34-39
    [50]Kinzl M, Reichmann K, Andrejs L. Electrophoretic deposition of silver from organic PDADMAC-stabilized suspensions. Journal of Materials Science,2009,44(14): 3758-3763
    [51]McLachlan D.S, Blaszkiewicz M, Newnham R.E. Electrical resistivity of composites. Journal of the American Ceramic Society,1990,73(8):2187-2203
    [52]Larry J, Rosenberg R, Uhler R. Thick-film technology:an introduction to the materials. Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, 1980,3(2):211-225
    [53]Vest RW. Materials science of thick film technology. American Ceramic Society Bulletin,1986,65(4):631
    [54]Walton B. Principles of thick film materials formulation. The Radio and Electronic Engineer,1975,45(3):
    [55]宋永辉,梁工英,兰新哲.化学法制备超细银粉的研究进展.贵金属,2006,(04):67-72
    [56]韦群燕,潘云昆.超细银粉在有机介质中的分散及其稳定性.电子元件与材料, 2000,(01):22-23+46
    [57]Guo Q, Guo S, Wang Z. Estimation of 5-fluorouracil-loaded ethylene-vinyl acetate stent coating based on percolation thresholds. International journal of pharmaceutics,2007, 333(1-2):95-102
    [58]Jagtap S, Deshpande V, Rane V, et al. In-house development of co-fireable thick film silver conductor for LTCC applications. Journal of Materials Science:Materials in Electronics,2008,19(6):522-527
    [59]Ketkar SA, Umarji GG, Phatak GJ, et al. Effect of glass content variation on properties of photoimageable silver conductor paste. Materials chemistry and physics,2006, 96(1):145-153
    [60]Rane S.B, Seth T, Phatak G. J, et al. Effect of inorganic binders on the properties of silver thick films. Journal of Materials Science:Materials in Electronics,2004,15(2): 103-106
    [61]俞守耕,张林震,任金玉,刘婀娜,韦群燕.多层陶瓷电容器中的Ag-Pd系内电极浆料.贵金属,1996,(01):
    [62]张君启.厚膜电阻浆料用有机载体挥发特性研究.电子元件与材料,2003,22(11):3
    [63]Rane S, Prudenziati M, Morten B. Organic vehicle effects on devitrification of lead free glasses used in thick film technology. Proceeding in emerging microelectronics & interconnection technologies (EMIT-2004) IMAPS, Bangalore, India,2004:27" C28
    [64]李勇,汪荣昌,戎瑞芬,et al.低温共烧氮化铝复合材料基板的银金属化研究.功能材料,2003,(03):338-341
    [65]Zackay V.F, Mitchell D.W, Mitoff S.P, et al. Fundamentals of Glass-Metal Bonding: I, Wettability of Some Group I and Group VIII Metals by Sodium Silicate Glass. Journal of the American Ceramic Society,1953,36(3):84-89
    [66]Varshneya A.K, Cherukuri S.C. Glass in Microelectronic Packaging:A Review. Ceram. Trans.,1989,15:217-243
    [67]Varshneya A.K, Cherukuri S.C. Low Firing Temperature Glasses for Electronic Applications. Ceramic Transactions,1990,20:387-395
    [68]Nagesh VK, Tomsia AP, Pask JA. Wetting and reactions in the lead borosilicate glass-precious metal systems. Journal of Materials Science,1983,18(7):2173-2180
    [69]赵彦钊,殷海荣.玻璃工艺学.北京:化学工业出版社,2006.
    [70]Sasakit, Yamaguch. Paste to be fired for forming circuit board and method for preparing surface-modified silver power. U.S, Utility,6368378 B2,2002
    [71]Hackenberger WS, Shrout TR, Dougherty JP, et al. Sintering Phenomena and Microstructural Development in LTCC Multilayer Substrates.1993.2105:215
    [72]Hackenberger WS, Shrout TR, Dougherty JP, et al. Real Time Sintering Observations of LTCC Substrate and Conductor Materials. Spieinternational Society for optical.1992.82-82
    [73]Wang C, Zaki K.A. Temperature compensation of combline resonators and filters. IEEE.1999.3:1041-1044 vol.3
    [74]Thust H., H Drue K, J Muller. Coupling behavior between transmission lines with meshed ground planes in LTCC-MCMs. Microwave Journal,1998,41(11):6
    [75]Jantunen H, Rautioaho R, Uusim ki A, et al. Compositions of MgTiO3-CaTiO3 ceramic with two borosilicate glasses for LTCC technology. Journal of the European Ceramic Society,2000,20(14-15):2331-2336
    [76]Berry C, Parlow D, Vasilow T. A design of experiment for a tape casting process. Society of Photo-Optical Instrumentation Engineers.2000.150-155
    [77]Chen G, Hu S. Improvement of the Electrical Properties of Glass by Lithia Addition. American Ceramic Society Bulletin,1993,72(4):85-88
    [78]Tang Y, Frischat G.H. Influence of small additions of Li2O raw materials on glass melting. Glass science and technology,1995,68(7):213-221
    [79]Kirchheim R. The mixed alkali effect as a consequence of network density and site energy distribution. Journal of non-crystalline solids,2000,272(2-3):85-102
    [80]徐灏.机械手册(二).北京:机械工业出版社,2004.
    [81]王承遇,陶瑛.玻璃成分设计与调整.北京:化学工业出版社,2005.
    [82]Yajima Koh Ichi, Yamaguchi Takashi. Sintering and microstructure development of glass-bonded silver thick films. Journal of Materials Science,1984,19(3):777-784
    [83]Ciosek Patrycja, Zawadzki Konrad, Stadnik Dorota, et al. Microelectrode array fabricated in low temperature cofired ceramic (LTCC) technology. Journal of Solid State Electrochemistry,2009,13(1):129-135
    [84]Cui X, Li B, Shen J, et al. The co-fired behaviors between Ag and glass "Cceramics materials in LTCC. Journal of Electroceramics,2008,21(1):541-544
    [85]Rane S, Prudenziati M, Morten B, et al. Structural and electrical properties of perovskite ruthenate-based lead-free thick film resistors on alumina and LTCC. Journal of Materials Science:Materials in Electronics,2005,16(10):687-691
    [86]Birol H., Maeder T., Jacq C., et al. Investigation of interactions between co-fired LTCC components. Journal of the European Ceramic Society,2005,25(12):2065-2069
    [87]Jantunen H., Kangasvieri T., Vahakangas J., et al. Design aspects of microwave components with LTCC technique. Journal of the European Ceramic Society,2003,23(14): 2541-2548
    [88]Fujimoto K. Small antennas. UK:Research Studies Press,1987.
    [89]Hansen R.C. Fundamental limitations in antennas. Proceedings of the IEEE,1981, 69(2):170-182
    [90]杨华荣,堵永国,张为军,et al.表面活性剂对厚膜电子浆料流平性的影响.电子元件与材料,2004,(07):25-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700