厚膜浆料在晶体硅太阳电池中的应用工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属化工艺是目前常规晶体硅太阳电池制造过程中最关键的工艺之一,决定了太阳电池最终的转换效率。目前晶体硅太阳电池生产中常见的金属化工艺为厚膜浆料丝网印刷和烧结工艺。研究厚膜浆料在晶体硅太阳电池上的应用工艺对提高整个太阳电池转换效率具有重要意义。
     本文研究的主要内容和结果如下:
     研究了丝网印刷的原理,分别对印刷设备和印刷参数,网版,浆料,硅片以及环境等影响电极质量的因素做了详细的分析。通过几组实验,验证了其中网版和环境温度两个因素对电极印刷质量的影响。总结了一些规律可用于指导生产。
     总结了前电极的Ag Si接触形成机理的两种不同理论。利用炉温测试仪和相关软件优化太阳电池烧结工艺,通过调整烧结峰值温度,优化烧结工艺,提高了太阳电池转换效率。使用不同扩散方块电阻的硅片制备太阳电池,比较分析各组太阳电池的输出,总结出高方块电阻硅片需要相对较低的烧结温度窗口。
     此外用不同栅线间距的正面网版,印刷电极制备太阳电池,比较各组太阳电池的输出。总结出缩短栅线的间距,会改善太阳电池的串联电阻和填充因子,但同时增加的栅线阴影损失又会降低短路电流。因此太阳电池栅线的设计需要综合平衡两方面的影响,才能达到最匹配的设计。
Metallization is one of the most crucial technologies in the manufacturing process of general crystalline silicon solar cell, make a impact on the solar cell conversion efficiency. Currently, the typical commercially metallization method is screen printing and sintering thick film paste for front side and back side of solar cell. Studies on application of thick film paste for crystalline silicon solar cell is highly important improvement for solar cell conversion efficiency.
     The thesis includes the content as following:
     The principle of screen printing is investigated. The influences of equipment, printing parameters, screen, paste, wafer and environment are analyzed. Based on several experiments to the effects of the screen and ambient temperature on the quality of the printing electrodes are summarized.
     We investigate two theories about the sintering process of front contacts and the formation mechanisms of Ag Si contacts. Using temperature tester and associated software the solar cell firing process is optimized. An optimal firing process is obtained by adjusting the peak temperature and the convention efficiency of solar cell is also improved. Using wafers with different values of sheet resistance, the solar cells were made. The output of solar cell in each group are compared and analyzed. We conclude that high sheet resistance solar cell needs low firing temperature window.
     In addition, different spacing of fine lines screen were used to make solar cell. The conclusions are that shorten the spacing between fine lines will improve solar cell series resistance and fill factor .but while increasing the shadow of the fine line loss will reduce the short circuit current. Therefore the design of fine lines required balance the impact of these two factor to achieve the best performance.
引文
[1]《综合报告:气候变化2007》[R],联合国政府问气候变化专们委员会(IPCC)第四次评估报告第一、第二和第三工作组的报告(核心撰写组、Pachauri,R.K和Reisinger.A),IPCC,瑞士,日内瓦,2007,104页
    [2]赵玉文,林安中等,晶体硅太阳电池及材料[J],太阳能学报,Vo1.10. 1999, 85 94,
    [3] William P Hirshman, et al. Market survey on global solar cell and module production in 2007[ J ] . Photon Int, 2008 ,(4):10
    [4] M. A. Green, A.W. Blakers, S. R. Wenham, et a1. Improvements in silicon solar cell efficiency. In Proceedings of the 18m IEEE Photovoltaic Specialists Conference(PVSC’85)[C]. 39 42, Las Vegas, USA. October 1985
    [5]励旭东,姬成周.太阳能级硅激光刻槽埋栅电池的研究[J].北京师范大学学报(自然科学版),1999,35(4):472 474
    [6]史济群.激光开槽埋槽电极硅太阳电池的性能及分析[J].太阳能学报, 1994,15(1):7 11
    [7] J. Zhao, A. Wang, M. A. Green. high efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates[J].Solar Energy Materials & Solar Cells.2001, 65:429 435
    [8] W. Fuhs, K. Niemann, J. Stuke. Heterojunctions of Amorphous Silicon and Silicon Single Crystals[C].Tetrahedrally bonded amorphous semiconductors: International Conference.AlP Conference Proceedings,1974,20 345 350
    [9] M. Tanaka, M. Taguchi, T. Matsuyama, etc.. Development of new a Si/c Si heterojunction solar cells: ACJ HIT(Artificially Constructed Junction Heterojunction with Intrinsic Thin—Layer) [J]. Jpn. J. Appl. Phys.,1992.31: 3518 3522
    [10] Aaron Hand et al, SANYO Develops HIT Solar Cells with World s HighestEnergy Conversion Efficiency of 23.0%[J/OL], http://www.pvexchange.net/a/technology/csi/3695.html
    [11] S. Dauwe, J. Schmidt, R. Hezel. Very low surface recombination velocities on P and n type silicon wafers passivated with hydrogenated amorphous silicon Films Photovoltaic Specialists Conference[C], Conference Record of the Twenty Ninth IEEE. Louisiana: New Orleans, 2002. 1246 1249
    [12] T. Sawada, N. Terada, S. Tsuge, etc.. High efficiency a Si/c Si heterojunction solar cell[C]. Proceedings of the 1st World Conference on Photovoltaic Energy Conversion. USA: Hawaii, 1994. 1219 1226
    [13] Van Kerschaver E, Beaucarne G. Back contact solar cells: A Review[J]. Prog Photovolt: Res Appl,2006,14:107
    [14] Nishimoto Y, et al. Investigation of texturization for crystalline silicon solar cells with sodium carbonate solutions[J].Solar Energy Mater Solar Cells,2000, 61:393
    [15] Doughs S Ruby, et al. RIE texturing industrial multicrystalline silicon solar cells[J]. J Solar Energy Eng, 2005, 127(1): 146
    [16] Kumar R, et a1. Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions[J]. Solar Energy Mater Solar Cells, 2001, 70: 103
    [17] Preu R, Emanul, et al, Innovative and efficient production process for silicon solar eels and modules SOLPRO IV[C] , Proc of 19th European Photovoltaic Solar Energy Conference, 2004
    [18] Kimura K. Recent developments in polycrystalline silicon solar cells[C] Proceedings of the 1st International Photovoltaic Science and Engineering Conference, 1984 :37
    [19] P. Wflrfel. Physik der Solarzelle. Spektrum Verlag.SiN: H Anti Reflection Coatings for C Si.Solar Cells by Large Scale Inline Sputtering[C]. Proc. 19th PVSEC. Paris. 2004.
    [20] F. Duerinckx*, J. Szlufcik Defect Passivation of Industrial MulticrystallineSolar Cells Based on PECVD Silicon Nitride[J]. Solar Energy Materials&Solar Celis,2002,Vol.72 231 246
    [21] P.J. Holmes, R.G. Loasby, Handbook of Thick Film Technologies[M], Glasgow Electrochemical Publications, 1976.
    [22]朱薇桦,晶体硅太阳电池电极研究[硕士学位论文][D].广州:中山大学,2010, 45 48
    [23] Gunnar Schubert. Thick Film Metallisation of Crystalline Silicon Solar Cells [博士学位论文][D]. Konstanz: Universit?t konstanz Fachbereich Physik, 2006,9
    [24] L. Weber, Equilibrium solid solubility of silicon in silver, Metall. Mater. Trans. 33 (2002) 1145.
    [25] A.D. Haigh, Developments in polycrystalline silicon solar cells and a novel form of printed Contact[C], Proceedings of the 12th IEEE PVSC, Baton Rouge, 1976, 360–361.
    [26] G. Schubert, B. Fischer, P. Fath, Formation and Nature of Ag Thick Film Front Contacts on Crystalline Silicon Solar Cells[C], Proceedings of Photovoltaics in Europe Conference, Rome, 2002, 343 346.
    [27] T.B. Massalski, Binary Alloy Phase Diagrams, second ed[S], ASM International, USA, 1992, 1 3.
    [28] M. Prudenziati, L. Moror, B. Morten, F. Sirotti, AG Based Thick Film Front Metallization of Silicon Solar Cells, Act. Passive Electr. Compounds [M] 13 (1989) 133.
    [29] T. Nakajima, A. Kawakami, and A. Tada, Ohmic Contact of Conductive Ag Paste to Silicon Solar Cells[J], International Journal of Hybrid Microelectronics, Vol. 6, 1983, 580 586.
    [30] B. Thuillier, S. Berger, J.P. Boyeaux, A. Laugier, Observation of mechanisms of screen printed contact formation during heat treatment on multicrystalline silicon solar cells by transmission electron microscopy[C], Proceedings of the 28th
    [31] C. Ballif, D.M. Huljic, G. Willeke, A. Hessler Wyser, Silver thick film contactson highly doped n type silicon emitters: Structural and electronic properties of the interface[J], Appl. Phys. Letter. 82 (12) (2003) 1878.
    [32] A. Cuevas, D.A. Russell, Co optimisation of the emitter region and the metal grid of silicon solar cells[J], Prog. Photovolt: Res. Appl. 8 (2000) 603–616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700