TaN薄膜材料及微波功率薄膜电阻器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为射频与微波系统的重要组件—微波功率薄膜电阻器可广泛应用于雷达、通讯、电子对抗等领域。本文主要开展了三个方面的工作:材料方面,采用反应直流磁控溅射技术制备TaN薄膜材料,主要研究了氮流量、薄膜厚度、Al掺杂和TaN/Al多层膜结构的工艺条件对TaN薄膜微结构和电性能的影响;在微波功率薄膜电阻器方面,由有耗传输线理论建立了微波功率薄膜电阻器的等效电路模型,采用HFSS软件设计、仿真了系列微波功率薄膜电阻器的结构尺寸和性能;器件制备方面,采用反应直流磁控溅射和掩膜图形化技术制备了系列TaN微波功率薄膜电阻器,验证设计仿真结果。
     通过从材料制备、器件设计和仿真以及器件制备的系统研究,得到如下几方面的结论:
     在材料制备方面,对于TaN薄膜,随氮流量的增加,薄膜的电阻率和TCR绝对值都逐渐增大,当氮流量从2%增加到6%,薄膜电阻率从约350μ?·cm增加到1030μ?·cm,TCR绝对值从30 ppm/℃增大到750 ppm/℃。当氮流量小于5%时,TaN薄膜中主要含低TCR的Ta2N相,当氮流量高于5%时,TaN薄膜中主要含高TCR的富氮相。薄膜厚度显著影响TaN薄膜的电学性质,随薄膜厚度的增加,薄膜的电阻率和绝对值TCR都减小,当薄膜厚度从30nm增加到280 nm时,TaN薄膜电阻率从519μ?·cm减小到210μ?·cm,TCR绝对值从150 ppm/℃减小到30 ppm/℃;对于Al掺杂的TaN薄膜,随Al/Ta面积比的增加,薄膜的电阻率和TCR绝对值都逐渐增大,当Al/Ta面积比从0%增加到30%,薄膜的电阻率从250μ?·cm增大到2560μ?·cm,TCR绝对值从12 ppm/℃增大到270 ppm/℃,与未掺杂的TaN薄膜相比,其电阻率可调范围显著增大,而TCR并没有显著地恶化;对于TaN/Al多层膜,随氮流量的增加,薄膜的电阻率和TCR绝对值都逐渐增大,当氮流量从2%增加到6%,薄膜的电阻率640μ?·cm增大到1170μ?·cm,TCR从50 ppm/℃增大到350 ppm/℃,与未掺杂的TaN薄膜相比,其电阻率可调范围更宽。
     在微波功率薄膜电阻器设计和仿真方面,根据有耗传输理论建立了微波功率薄膜电阻器的等效电路模型,采用HFSS软件设计仿真了100W(DC~6GHz)、300W(DC~1.5GHz)、500W(DC~2GHz)、800W(DC~1GHz)的系列微波功率薄膜电阻器的结构和性能,获得了四个电阻器的结构与尺寸,且每个电阻器在各自频率范围内的驻波比均小于1.2。
     在TaN微波功率薄膜电阻器制备和测试方面,根据设计仿真结果,采用反应直流磁控溅射技术和掩膜图形化技术制备了系列TaN微波功率薄膜电阻器,所制备的系列微波功率薄膜电阻器的TCR绝对值均小于100 ppm/℃,在满功率测试期间电阻器表面温度均在120℃以下,在功率负载测试前后电阻器阻值变化均在3%以内,在设计的频率范围内微波功率薄膜电阻器的电压驻波比均小于1.2,测试结果与设计结果相一致。
Microwave power thin film resistors were widely used as an important component of RF and microwave system in radar, communications, electron countermeasure et al. In this thesis, firstly, TaN films were prepared by DC reaction magnetron sputtering. The influences of N2 partial flow, film thickness, Al doping and TaN/Al multilayer on the micro-structure and the electric properties were investigated. Secondly, the equivalent circuit model was established based on lossy transmission line theory, and the dimensions and characteristics were designed and simulated by HFSS soft ware. At last, TaN microwave power thin film resistors were prepared by DC reaction magnetron sputtering and pattern technology according to the simulation results. The main results are as follows.
     In the aspect of TaN thin films, the results show that the resistivity and absolute TCR of the TaN films go up gradually with the increase of the nitrogen partial flux. With increase of the nitrogen partial flux from 2 % to 6 %, the resistivity of the samples are increased from 344μΩ·cm to 1030μΩ·cm, and the absolute TCR of the sample are increased from 30ppm/℃to 750ppm/℃. However, the main crystalline phases existing in the TaN films are Ta2N when nitrogen partial flux is less than 5%, which could lead to lower absolute TCR. The main crystalline phases existing in the TaN films are TaN and Ta3N5 when nitrogen partial flux is larger than 5%, which possess higher absolute TCR. The electrical properties of TaN films are significantly affected by the thickness of films. The resistivity and absolute TCR of the TaN films are decreased slowly with the increase of the thickness of TaN films. When the thickness of films are increased from 30nm to 280nm, the resistivity of the samples are declined from 519μ?·cm to 210μ?·cm, and the absolute TCR of that are also descended from 150 ppm/℃to 30 ppm/℃. For the TaN thin film with doping Al, the resistivity and absolute TCR of the TaN films are increased moderately with the ratios of the Al/Ta area. When the ratios of Al/Ta area are increased from 0% to 30%, the resistivity of the samples are increased markedly from 250μ?·cm to 2560μ?·cm, and the absolute TCR of the samples are increased from 12 ppm/℃to 270 ppm/℃. Compared with the TaN thin films, the tuning range of resistivity is significantly increased, but the absolute TCR is not significantly deteriorated. For the TaN/Al multilayers, the resistivity and absolute TCR of the TaN films are increased gradually with the increase of nitrogen partial flux. When the nitrogen partial flux is increased from 2% to 6%, the resistivity of the samples are increased from 640μ?·cm to 1170μ?·cm, and the absolute TCR of the samples are increased from 50 ppm/℃to 350 ppm/℃. Compared with the TaN thin films, the tuning range of resistivity is wider than that of TaN tihn films.
     In the aspect of devices, the equivalent circuit model was established based on lossy transmission line theory. A series of microwave power resistors, such as 100W(DC~6GHz),300W(DC~1.5GHz),500W(DC~2GHz)and 800W(DC~1GHz)were designed and simulated by HFSS,. The VSWR of the designed microwave power resistors are all less than 1.2 in the range of operating frequency.
     TaN microwave power resistors were fabricated by DC reaction magnetron sputtering and patterned technology. The results illustrate that the absolute TCR of samples are all less than 100 ppm/℃and the surface temperature of power resistors are all lower than 120℃during the period of testing. The varying of resistance of the samples are all less than 3% a during the period of testing. The VSWR of the samples are all less than 1.2 in the range of design frequency. The measured results of the prepared samples are consistent with the design results.
引文
[1] H. Thibieroz, P. Shaner. Mismatch and flicker noise characterization of tantalum nitride thin film resistors for wireless applications. IEEE 2001 Int. Conference on Microelectronic Test Structures, 2001, VoI 14: 207-213
    [2] R. Henderson, P. Zurcher, A. Duvallet. Tantalum nitride thin film resistors for integration into copper metallization based RF-CMOS and BiCMOS. Technology Platforms. IEEE, 2001, 0-7803-7129: 71-75
    [3]张经国.精密薄膜片状电阻器.混合微电子技术,1991,2(3):17-23
    [4] J. Seams.镍铬和氮化钽膜电阻在通信应用中的比较.电子产品世界,2004,6:74-96
    [5] R. Raiola.TaN微波薄膜技术改善电阻元件.技术前沿,2004,1:3-5
    [6] T. Lee, K. Watson, F. Chen, J. Gill. Characterization and reliability of tan thin film resistors. Reliability Physics Symposium Proceedings, 2004, 42nd Annual, IEEE International: 502-509
    [7] J. Nazon, J. Sarradin, V. Flaud. Effects of processing parameters on the properties of tantalum nitride thin films deposited by reactive sputtering. Journal of Alloys and Compounds, 2008, 464(1-2): 526-531.
    [8] S.M. Na, I.S Park, S.Y. Park. Electrical and structural properties of Ta–N thin film and Ta/Ta–N multilayer for embedded resistor .Thin solid film, 2008, 516(16): 5465-5469.
    [9] C.M.wang, J.H.Hsieh, U.T.Lam. Electrical properties of TaN-Cu nanocomposite thin films. Thin Solid Films, 2004, 469-470: 455-459.
    [10] S.M. Kang, S.G. Yoon. Control of electrical resistivity of TaN thin films by reactive sputtering for embedded passive resistors. Thin Solid Films, 2008, 516(11):3568-3571.
    [11]H.Shen,R.Ramanathan. Fabrication of a low resistively tantalum nitride thin film. Microelectronic Engineering, 2006, (83): 206–211
    [12] T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Sunia, J.K. Kivilahti. Reactive sputter deposition and properties of TaN thin films. Microelectronic Engineering, 2002 (64): 289–297
    [13] K.Radhakrishnan, J. Vackar, A. Simunek. Adaptability and accuracy of all-electron pseudopotentials. Phys Rev B, 2003, 67: 125-113
    [14] A.Vu, H. Pham, V.Krishnamurthy, D. Bates, W. Marcinkewicz, B. Schmanski, R. Saia.Development of integral passive components for multilayer organic MCMs at millimeter wave frequencies. IEEE Transactions on Advanced Packaging, 2002,25: 98-101
    [15] L.B.Benito, O.R. José, M.F. I?igo. Design and implementation of DC–20 GHz lumped resistor matched loads for planar microwave circuits. IEEE Trans. Microw. Theo. Tech., 2009, 57(10): 2439-2443.
    [16] R.R. Monje, V.V.A.Pavolotsky, V. Belitsky. High quality microstrip termination for mmic and millimeter wave applications. IEEE. MTT-S Int. Microw. Symp. Dig, 2005, 1827-1830.
    [17] Z.W.Wang, M.J.Deen, A.H.Rahal. Accurate modelling of thin-film resistor up to 40 GHz. 32nd European Solid-State Device Research Conference, 2002, 24-26: 307-310
    [18]苏秦.世界电阻器发展的现状和展望.世界电子元器件,2002,2:56-59
    [19] TT electronics.薄膜电阻及电阻阵列.电子产品世界,2004(09B):45-45
    [20]薄膜电阻.电容网络.电子产品世界,1998,(Z1):110
    [21]向阳.TaN微波功率薄膜电阻器制备及性能研究;[硕士学位论文],成都;电子科技大学,2009年,7-41
    [22]梅显秀,王煜明.离子束辅助沉积制备氮化钽薄.大连理工大学学报,1995,35(5):623-627
    [23]杨文茂,张琦,陶涛,冷永祥.非平衡磁控溅射沉积Ta-N薄膜的结构与电学性能研究.功能材料,2006,10(37):1593-1598
    [24]许俊华.磁控反应溅射Ta-N薄膜的结构和性能.功能材料,2000,31(3):306-308
    [25]冷永祥,黄楠,杨萍.氮化钽薄膜的制备与结构研究.材料工程,1998(9):19-21
    [26]许小红,武海顺.压电薄膜的制备、结构与应用.北京:科学出版社,2002:49-51
    [27]田明波.薄膜技术与薄膜材料.北京:清华大学出版社,2006:528-529
    [28] K. Valleti, ASubrahmanyam, S. VJos- hi. Studies on phase dependent mechanical properties of dc magnetron sputtered TaN thin films: evaluation of super hardness inorthor hombic Ta4N phase. Appl. Phys. D,2008, 41(4): 045409.1-045409.6
    [29] N.D Cuong, D.J Kim, B.D Kang. Structural and electrical characterization of tantalum nitride thin film resistors deposited on AlN substrates for∏-type attenuator applications. Materials Science and Engineering B, 2006, 135(2): 162-165.
    [30] K. Radhakrishnan, N. G. ING, R. Gopalakrishnan. Reactive sputter deposition and characterization of tantalum nitride thin films. Mater Sci and Eng B, 1999, 57(3): 224–227.
    [31] C.M. Wang, J.H. Hsieh, U.T. Lam, T.P. Chen, Y.Q. Fu, C. Li. Electrical properties of TaN-Cu nanocomposite thin films. Ceramics international, 2004, 30(7): 1879-1883
    [32] K. Radhakrishnan, N.G. Ing. Reactive sputter deposition and characterization of tantalum nitridethin films. Materials Science and Engineering B, 1999, 57(3): 224-227
    [33]张肇仪译.微波工程.北京:电子工业出版社,2006:1-60
    [34]朱建清编译.微波电路引论—射频与应用设计.北京:电子工业出版社,2006:36-37
    [35]李言荣.电子材料导论.北京:清华大学出版社,2001:89-91
    [36]张玉兴,赵宏飞译.射频与微波功率放大器设计.北京:电子工业出版社,2006:238-240
    [37] H. W. Bode.网络分析和反馈放大器设计.Sec. Van Nostrand, 1985: 65-67
    [38] R.M. Fano.任意阻抗宽带匹配的理论限度.Sec. Van Nostrand, Vol.249: 92-94
    [39] Matthew,M. Radmanesh. Radio Frequency and Microwave Electronics.北京:电子工业出版社,2002:333-338
    [40]王文祥.微波工程技术.北京:电子工业出版社,2009:161-175
    [41]谢拥军,王鹏等编著.Ansoft HFSS基础及应用.西安:西安电子科技大学出版.2007:5-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700