低电阻温度系数TaN薄膜及微波功率匹配负载研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波功率匹配负载是微波器件与微波电路中的一类通用元件,可以广泛应用于通讯、雷达、探测等领域的无线电子器件及系统中。随着无线通讯的快速发展,高频率、大功率、性能稳定的微波功率匹配负载的研究具有重要意义。本文采用直流磁控溅射制备TaN薄膜,对其微结构及电性能进行研究,并设计、制备具有高频率、大功率性能特征的微波功率匹配负载。得出以下几方面的结论:
     在TaN薄膜方面,研究氮流量和退火工艺条件对TaN薄膜微结构和电性能的影响。实验结果表明,对于Al掺杂的TaN薄膜,当氮流量从2%增加到7%时,薄膜电阻率从2372μ?·cm增加到3894μ?·cm,电阻温度系数(TCR)绝对值从253ppm/℃增大到945ppm/℃,薄膜厚度从320nm减小到230nm。在大气中对TaN薄膜退火2小时,退火温度从200℃增加到600℃时,方阻从12Ω/sq增加到24Ω/sq,TCR从15ppm/℃下降到-80ppm/℃;在大气中对TaN薄膜进行300℃退火,随着退火时间从1小时增加到5小时,方阻及TCR几乎不变化。
     在微波功率匹配负载的设计和仿真方面,根据有耗传输线理论及热传导相关理论,采用HFSS软件与ePhysics软件联合仿真,设计具有高频率、大功率性能特征的微波功率匹配负载。本文设计仿真了两个微波功率匹配负载,其中一个工作频带为DC-18GHz,电压驻波比小于1.2,功率负载为20W;另外一个工作频带为DC-40GHz,电压驻波比小于1.2,功率负载为1W。按照仿真结果,采用直流磁控溅射、掩膜图形化、光刻、丝网印刷等工艺制备微波功率匹配负载样品。测试结果表明,所制备样品的TCR绝对值均小于120ppm/℃;功率测试期间,样品表面温度均在120℃以下,功率测试前后阻值变化均在2%以内;在设计的频率范围内除个别频率点外,微波功率匹配负载的电压驻波比均小于1.4,测试结果与设计结果具有很好的一致性。
     为了克服单电阻膜微波功率匹配负载的工作频率与功率负载能力不能同时提高的难题,设计并制备基于功率分流思想的双电阻膜微波功率匹配负载。仿真与测试结果表明,在3.4-7.4GHz和8.2-9.8GHz频带范围内,电压驻波比小于1.6,功率负载为200W,实验结果与仿真结果具有很好的一致性。
As a general element for microwave components and microwave systems, microwave power match loads (MPMLs) has been widely used in communications, radar, detection and other fields. With the rapid development of wireless communication, the research of MPMLs with high frequency, high power and stable performances is of great significance. In this thesis, the micro-structure and electrical properties of TaN thin films deposited by reaction DC magnetron sputtering were explored. The MPMLs with high frequency and high power were designed and fabricated. The main results are as following.
     In the aspect of TaN thin films, the influences of Nitrogen partial flux and annealing on the micro-structures and electrical properties of the samples were investigated in detail. The results show that , for the aluminium doping TaN thin films, with the nitrogen partial flux increase from 2% to 7%, the resistivity of the samples changes from 2372μΩ·cm to 3894μΩ·cm, and the absolute temperature coefficient of resistance (TCR) of the samples increases from 253ppm/℃to 945ppm/℃, and the thickness of the samples decreases from 320nm to 230nm. With the annealing temperature increase from 200℃to 600℃, the sheet resistance of TaN thin films increases from 12Ω/sq to 24Ω/sq, and the TCR of the samples changes from 15ppm/℃to -80ppm/℃.With the annealing time increase from 1 hour to 5 hours at 300℃, the sheet resistance and the TCR of the samples almost do not change.
     In the aspect of microwave power match loads, the MPMLs with high frequency and high power were designed based on lossy transmission line theory and heat conduction therory and simulated by HFSS and ePhysics. Two MPMLs were designed and simulated. A MPMLs with bandwidth of DC-18 GHz, VSWR<1.2 and the power load of 20W was designed and simulated. The other MPMLs with bandwidth of DC-40GHz, VSWR<1.2 and the power load of 1W was designed and simulated too. Accordding to the the design and simulation results, the samples of MPMLs were prepared by reaction DC magnetron sputtering, graphic mask, lithography process, and screen printing. The results show that the absolute TCR of the samples is less than 120ppm/℃and the surface temperature of samples is less than 120℃during the testing periods. The change of the resistance of the samples is less than 2% after power load test. The VSWR of MPMLs is less than 1.4 in the range of design frequency except at some individual frequence points. The measurement results are good agreement with the design results.
     In order to overcome the problem which the frequency and the power load of the MPMLs with single resistance film can not be improved simultaneously, a MPMLs based on power dividing was designed and prepared. The MPMLs has two resistive films. The simulated and experimental results show that the voltage standing wave ratio of the sample is lower than 1.6 in the band of 3.4-7.4GHz and 8.2-9.8GHz. The experimental data are in good agreement with the EM simulation. The power load of the MPMLs is 200W.
引文
[1] S. Otto, B. Andreas, S. Klaus. A Distributed Attenuator for K-Band using Standard SMD Thin-Film Chip Resistors. Microwave Conference Asia Pacific, 2009, 2148-2151
    [2] T. Helene, P. Shaner, Z. C. Butler. Mismatch and flicker noise characterization of tantalum nitride thin film resistors for wireless applications. IEEE 2001 Int. Conference on Microelectronic Test Structures, 2001, 207-212
    [3] N. D. Cuong, S. G. Yoon, D. J. Kinm, et al. Ti(N) thin film resistors for 20dBΠ-type attenuator application. Applied Physics Letters, 2007, 90 (18) : 183506-1-3
    [4] R. R. Monje, V. Vassilev, A. Pavolotsky, et al. High quality microstrip termination for mmic and millimeter-wave applications. IEEE MTT-S International Microwave Symposium Digest, 2005, 1827-1830
    [5] J. Seams.镍铬和氮化钽膜电阻在通信应用中的比较.电子产品世界, 2004, (10): 74-96
    [6] R. Raiola. TaN微波薄膜技术改善电阻元件.今日电子, 2004,(1): 3-5
    [7]王云秀.无线通信系统中小型化微带滤波器的研究: [博士学位论文].成都:电子科技大学, 2008
    [8] S. M. Kang, S. G. Yoon, S. J. Suh, et al. Control of electrical resistivity of TaN thin films by reactive sputtering for embedded passive resistors. Thin Solid Films, 2008, 516(11): 3568-3571
    [9] H. Shen, R. Ramanathan. Fabrication of a low resistively tantalum nitride thin film. Microelectronic Engineering, 2006, (83): 206–211
    [10] T. Riekkinen, J. Molarius, T. Laurila, et al. Reactive sputter deposition and properties of TaN thin films. Microelectronic Engineering, 2002 (64): 289–297
    [11]蒋洪川,王超杰,张万里等.掺Al对TaN薄膜微结构及电性能的影响.电子科技大学学报, 2010, 39(3): 440-442
    [12]王超杰,蒋洪川,张万里等.氮流量对TaN薄膜微结构及性能的影响.功能材料与器件学报, 2010,16(1): 85-88
    [13] H. C. Jiang, C. J. Wang, W. L. Zhang, et al. Composition control and its electric properties of TaNx thin films. Modern Physics Letters B, 2010, 24(9): 905-910
    [14] H.C. Jiang, C. J. Wang, W. L. Zhang, et al. Microstructure and electrical properties of Al/TaNx multilayers. Functional Materials Letters, 2010, 3(2): 131-133
    [15] H. C. Jiang, C. J.Wang, W. L. Zhang, et al. Influences of the film thickness on the electrical properties of TaNx thin films deposited by reactive DC magnetron sputtering, Journal of Materials Science & Technology, 2010, 26(7): 597-600
    [16] Z. W. Wang, M. J. Deen, A. H. Rahal. Accurate modelling of thin-film resistor up to 40 GHz. 32nd European Solid-State Device Research Conference, 2002, 24-26: 307-310
    [17] J. Chramiec, M. Kitlinski. Computer aided modeling of resistors used in MICs. Microwaves, Radar and Wireless Communications, MIKON-2002. 14th International Conference , 2002, (2): 496 - 499
    [18] R. R. Monje, V. V. Pavolotsky, V. Belitsky. High quality microstrip termination for mmic and millimeter wave applications. IEEE. MTT-S Int. Microw. Symp. Dig, 2005, 1827-1830
    [19] J. Nitin, W. Dennis. Design of a DC-to-90-GHz Resistive Load. Microwave and Guided Wave Letters, IEEE, 1999: 69-70
    [20]王超杰. TaN薄膜材料及在微波功率匹配负载中的应用研究: [硕士学位论文].成都:电子科技大学, 2010, 41-49
    [21] L. B. Benito, O. R. José, M. F. I?igo. Design and implementation of DC–20 GHz lumped resistor matched loads for planar microwave circuits. IEEE Trans. Microw. Theo. Tech., 2009, 57(10): 2439-2443
    [22] S. Horst, S. Bhattacharya, S. Johnston, et al. Modeling and Characterization of Thin Film Broadband Resistors on LCP for RF Applications. Electronic Components and Technology Conference,2006,1751-1755
    [23] V. Stavros, J. Morelli. Design of High Power Microwave Miniaturized Terminations. Electronic Components and Technology Conference,2005,772-775
    [24] A. Vu, H. Pham, V. Krishnamurthy, et al. Development of integral passive components for multilayer organic MCMs at millimeter wave frequencies. IEEE Transactions on Advanced Packaging, 2002,25: 98-101
    [25] X. Y. Wang, Z. S. Zhang, T. Bai, et al. Thin Film Chip Resistors with High Resistance and Low Temperature Coefficient of Resistance. Trans. Tianjin Univ. 2010, 16: 348-353
    [26]向阳. TaN微波功率匹配负载制备及性能研究: [硕士学位论文].成都:电子科技大学, 2009
    [27]田明波.薄膜技术与薄膜材料.北京:清华大学出版社, 2006: 528-529
    [28] K. Valleti, S. A. Subrahmanyam, H. VJos. Studies on phase dependent mechanical properties of dc magnetron sputtered TaN thin films: evaluation of super hardness inorthor hombic Ta4N phase. Appl. Phys. D,2008, 41(4): 045409.1-6
    [29]黄艳. K波段2W固态功率放大器的研制: [硕士学位论文],西安:西安电子科技大学, 2007
    [30] R. Ludwig, P. Bretchko.射频电路设计-理论与应用,王子宇等译.北京:电子工业出版社, 2005:45-47
    [31] R. J. Weber.微波电路引论-射频与应用设计,朱建清等译.北京:电子工业出版社, 2006: 30-34
    [32] A. R. Kerr. Surface impedance of superconductors and normal conductors in EM simulators. ALMA Memo245, http://www.alma.nrao.edu
    [33]王文祥.微波工程技术.北京:国防工业出版社, 2009: 133-140
    [34]谢拥军. Ansoft HFSS基础及应用.西安:西安电子科技大学出版社, 2007
    [35] S. V. Georgakopoulos, J. Morelli. Design of high power microwave miniaturized terminations. Electronic Components and Technology Conference, 2005:772-775
    [36] Ansoft Corporation. Coupling ePhysics with HFSS and Maxwell, USA, 2008:1-4
    [37]宋丽川.网络综合与宽带匹配.北京:国防工业出版社, 1981
    [38] H. W. Bode.网络分析和反馈放大器设计.Sec. Van Nostrand, 1985: 65-67
    [39] R. M. Fano.任意阻抗宽带匹配的理论限度.Sec. Van Nostrand, Vol.249: 92-94
    [40] M. P. David .微波工程(第三版),张肇仪等译.北京:电子工业出版社:274-278

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700