集成MEMS电容位移传感器的二维微位移定位平台系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,微位移定位技术已成为许多现代高科技装备的基础技术,高精度微位移定位平台系统被广泛应用于航空航天、超精密加工制造和测量、微电子、生物工程、光学工程等领域。本课题针对微位移定位平台系统中定位平台较大、耦合度较高,位移传感器难于实现小型化和高度集成化,尤其是位移传感器不易于安装调整等不足,优化设计了微位移定位平台,并设计了适用于二维定位平台的梳齿电容位移传感器。
     本文首先对微位移定位平台进行了整体设计,确定了微位移定位平台的整体结构尺寸;设计了平行薄板柔性解耦梁来抑制二维微位移定位平台的耦合;合理布局微位移定位平台上的各个结构,利用一级杠杆位移放大机构的特性,有效放大驱动位移,同时改变驱动位移的方向;设计了细牙螺钉结合楔块位移缩小机构的压电陶瓷驱动器预紧方案;最后,使用ANSYS分析软件对设计完成的微位移定位平台进行仿真分析。
     设计了基于MEMS工艺的硅基梳齿电容微位移传感器,考虑与上述微位移定位平台的集成,对梳齿电容微位移传感器进行了整体设计;通过分析计算确定传感器中梳齿电极的参数、梳齿电极间距和柔性梁的结构形式和参数;使用ANSYS分析软件对设计完成的传感器进行仿真分析;最后,确定硅基MEMS梳齿电容传感器的加工工艺。
     建立了以前馈控制同PID控制相结合算法为基础的控制系统,该控制系统主要由压电陶瓷驱动器及驱动电源、梳齿电容微位移传感器、电容信号转换电路和控制计算机组成,从而保证微位移定位平台系统具有好的控制精度。
     最后,建立实验测试系统,对微位移定位平台进行测试,测试实物微位移定位平台的输出位移特性、分辨率、耦合度和频率特性等特性,验证该定位平台是否符合理论设计,是否能达到设计指标。
With the development of science and technology, micro-displacement positioningtechnology has become the basic technologies of many modern High-tech equipment,High-precision positioning platform systems are widely used in aerospace, ultra-precisionmanufacturing and measurement, microelectronics, bio-engineering, optical engineeringand other fields. This subject for that the big platform body, high couple of themicro-displacement positioning platform system, and the displacement sensors is difficultto achieve miniaturization and high integration, especially the installation and adjustmentof displacement sensor is not easy to ensure, optimized the design of themicro-displacement positioning platform and designed the comb capacitive displacementsensor for two-dimensional positioning platform.
     This paper first did the overall design to determine the size of the overall structure ofthe micro-displacement positioning platform; Designed the sheet parallel flexibledecoupling beam to suppress the coupling of the two-dimensional micro-displacementpositioning platform; Made the structures in micro-displacement positioning platform havereasonable layout, using one level displacement amplification mechanism to amplify thedrive displacement effectively, while change the driving displacement direction; Designedthe preload program of the piezoelectric ceramic actuator using fine pitch screw combinedwith wedge mechanism; Finally, using the ANSYS analysis software to simulate andanalyze the designed positioning platform.
     Designed the comb capacitive micro-displacement sensor silicon-based MEMSprocess, considering the integration with the above-mentioned micro-displacementpositioning platform, did the overall design for comb capacitive displacement sensor; Byanalysis and calculation to determine the parameters of the comb-tooth electrode structureof the sensor, the comb-tooth electrode spacing and the structure of the flexible beam;Using the ANSYS analysis software to simulate and analyze the designed comb capacitivedisplacement sensor; Finally, identified the process of the silicon-based MEMS comb capacitive sensor.
     Established the control systems based the algorithm of feed-forward control combinedwith PID, This control system consists of piezoelectric actuators and drive power, combCapacitive Displacement sensor, capacitance signal conversion circuit and controlcomputer, Thus ensured the micro-displacement positioning platform system has goodcontrol accuracy.
     Finally, build a lab test systems, test the output displacement, resolution, coupling andfrequency of the micro positioning platform to verify the real micro positioning platformdo or don’t achieve the design specifications.
引文
[1]纪海慧,钱进.基于柔性铰链的精密定位平台的设计[J].机床与液压.2007,35(11):62-63.
    [2]雷勇,陈本永,杨元兆,张丽琼,王俊茹,冯平.纳米级微动工作台的研究现状及发展趋势[J].浙江理工大学学报.2006,23(1):72-75.
    [3]冯金.染色体显微操作系统关键技术研究[D].上海:上海交通大学,2012.
    [4]赵强,阎绍泽.光刻机精密运动平台的几何及运动误差建模[J].清华大学学报(自然科学版).2010,50(2):241-245.
    [5]宋树军.高精度定位平台系统的研究[J].机床与液压.2010,38(12):16-17.
    [6] Y.Tian, B.Shirinzadeh, D.Zhang. Design and dynamics of a3-DOF flexure-basedparallel mechanism for micro/nano manipulation[J]. Microelectronic Engineering.2010,(7):230-241.
    [7] E.E.Scire, eta1. Piezodriven50um range stage with subnanometer resolution[J].Rev.Sci.Instrum.1978,49(12):1735-1740.
    [8] Binning.G, Quate.C.F, Gerber.C.H. Atomic Force Microscope[J]. Phys. Rev. Lett.1986(9):[9]Qingsong Xu, Yangmin Li. Tracking performance characterization andimprovement of a piezoactuated micropositioning system based on an empiricalindex[J].Robotics and Computer-integrated Manufacturing.2010,26(6):744-752.
    [10]赵鑫.基于MEMS微位移传感的纳米定位工作台研制[D].黑龙江:哈尔滨工业大学,2008.
    [11]张彦斐,宫金良.2自由度大行程微定位平台结构与参数设计[J].机械工程学报.2010,46(23):30-35.
    [12] D. Zhang, D.G.Chetwynd, X.Liu, Y.Tian. Investigation of a3-DOF micro-positioningtable for surface grinding [J]. International Journal of Mechanical Sciences.2006,48(12):1401-1408.
    [13]王家涛.硅基集成式微型平面纳米级定位系统的研究[D].黑龙江:哈尔滨工业大学,2008.
    [14] Eddy, David S. Application of MEMS technology in automotive sensors and actuators[J]. Proceedings of the IEEE.1998,86(8):1747-1755.
    [15] Sun Yu. Characterizing Fruit Fly Flight Behavior Using a Microforce Sensor With aNew Comb-Drive Configuration [J]. Micro-electromechanical Systems.2005,14(1):4-11.
    [16]于茂华,王小静,谢明春,王国亮,张敏亮.刮板式微致动器性能研究[J].传感器技术学报.2008,21(3):416-419.
    [17] ShunLi.Xiao, YangMing.Li, XinHuan.Zhao. Design and analysis of a novelflexure-based XY micro-positioning stage driven by electromagnetic actuators[J].Fluid Power and Mechatronics(FPM),2011International Conference.2011,8:953-958.
    [18] K.Minami, H.Morishita, M.Esashi. A bellows-shape electrostatic microactuator[J].Sensors and Actuators A: Physical.1999,72(3):269-277.
    [19] D.J.Nagel. Materials and Processes for Microsystems[J]. Surface and CoatingsTechnology.1998:138-145.
    [20] M. H. Kiang, J. T. Nee, K. Y. Lau, R. S. Muller. Surface-micromachined diffractiongratings for scanning spectroscopic applications [J]. Solid State Sensors and Actuators,1997. TRANDECERS’97Chicago’, International Conference.1997,1:343-345.
    [21]曾文光,丁桂甫,王艳,付世,蔡玉丽.新型复合结构电热微驱动器的研制[J].传感器与微系统.2008,27(5):117-119.
    [22]张然,褚金奎,王海祥,陈兆鹏.具有三层结构的Su-8胶V型微电热驱动器[J].光学精密工程.2012,20(7):1500-1508.
    [23]刘永红,杨毅.NiTi形状记忆合金弹簧电热驱动特性[J].机械工程材料.2000,24(4):27-28.
    [24]李岩,杨大智.形状记忆合金智能复合材料系统的发展[J].功能材料.2000,31(6):561-564.
    [25] Ono.N, Kusaka.M, Taya.M, etal. Design of fish fin actuators using shape memoryalloy composites[A]. Proceedings of the SPIE (vol5388): Smart Structures andMaterials2004–Industrial and Commercial Applications of Smart StructuresTechnologies[C]. Bellingham, WA, USA: SPIE,2004:305-312.
    [26]叶至碧.压电陶瓷驱动器[J].电子元件与材料.1989,8(4):1-5.
    [27] Jung.Li, Gweon D G. Greep characteristics of piezoelectric actuators[J]. Review ofScientific Instruments.2000,71(4):1896-1900.
    [28]王岳宇,赵学增.补偿压电陶瓷迟滞和蠕变的逆控制算法[J].光学精密工程.2006,14(6):1032-1040.
    [29] Ralph C.Smith, Murti V.Salapaka, Luke Cherveny. A preisach model for quantifyinghysteresis in an atomic force microscope [C]. Proceedings of SPIE The internationalSociety for Optical Engineering, San Diego,2002:89-100.
    [30] Isaak Mayergoyz, Claudio Serpico. Nonlinear diffusion and the Preisach model ofhysteresis [J]. Physica B. Condensed Matter.2000,275(1-3):17-23.
    [31] Main J.A, Garcia E. Errors and accuracy in modeling piezoelectric stackactuators [C].In Proceedings of the Tenth VPI&SU Symposium Oil Structural DynamicsandControl, Blacksburg VA,1995:65-76.
    [32] Leigh TD, Zimmerman DC. An implicit method for the nonlinear modeling andSimulation of piezoceramic actuators displaying hysteresis [C]. AD-v01.24/AMD—v01.123.Smart structures and materials, ASME,1991:57-63.
    [33]范伟,余晓芬,奚琳.压电陶瓷驱动系统及控制方法研究[J].光学精密工程.2007,15(3):368-371.
    [34]刘卫玲,姚世选,段晋军.基于电磁谐振的电感式位移传感器的频率分析[J].电子测量技术.2012,35(8):82-85.
    [35]严剑明.高精度电感传感器相关技术研究[D].黑龙江:哈尔滨工业大学,2010.
    [36]杨宏伟.基于旋转台式轮廓仪对圆柱体表面粗糙度测量的研究[D].山东:山东理工大学,2009.
    [37] Kolb P W, Decca R S, Drew H D. Capacitive sensor for micropositioning in twodimensions [J]. Review of Scientific Instruments.1998,69(1):310-312.
    [38] Yang T, Sun G SH, Zhao Y M. A High-g silicon carbide vertical capacitive [C].Proceedings of the International Symposium on the Physical and Failure Analysis ofIntegrated Circuits, IPFA.2009:315-318.
    [39] HAN J CH, LEE S, LEE M L, et al. Sensitivity tunable capacitive type microaccelerometer[C]. Proceedings of IEEE Sensor,2008:1020-1023.
    [40]王碧波,岳金福,周泽兵,彭益武.基于二维精密电容微位移传感器的二维纳米定位系统[J].纳米技术与精密工程.2005,3(2):137-141.
    [41]史修芬.硅基差分电容式加速度传感器的研究与设计[D].四川:成都电子科技大学,2008.
    [42]张洋.微位移定位平台的拓扑优化及其闭环控制系统研究[D].黑龙江:哈尔滨工业大学,2010.
    [43] LIU D X, SUN F Z, HUANG X L. Method of computer-aided selection for theaviation precision coupling assembly [J].Machinery.2010,6(32):80-82.
    [44] LOBONTIU Nicolae, PAINE Jeffrey S.N., GARCIA Ephrahim, GOLDFARBMichael. Corner-filleted flexure hinges[J]. Mechanical Design.2001,123(3):346-352.
    [45]何忠波,席建敏,李冬伟,李玉龙,催旭.新型十字交叉柔性铰链放大机构研究[J].军械工程学院学报,2011,(2):31-35.
    [46] TREASE Brian P, MOON Yong-Mo, KOTA Sridhar. Design of large–displacementcompliant joints: Mechanical design of compliant microsystems [J]. MechanicalDesign.2005,127(4):788-798.
    [47]谭坤,宗光华,毕树生等.大变形柔性铰链的多簧片构型[J].军民两用技术与产品,2007,(3):38-42.
    [48] Parose J M, Weisbord L. How to Design Flexure Hinges[J]. Mechanical Design.1965,37(27):151-157.
    [49]王宏伟,张伟,林宇,张朝民.差动电容敏感式力学传感器的信号提取电路[J].电子元件与材料.2003,22:10-12.
    [50]陈涛.基于复合振动的粘着控制微操作技术及其实验研究[D].哈尔滨工业大学,2011.
    [51]董林玺,车录锋,王跃林.梳齿的不平行对电容式微机械传感器可靠工作范围的影响[J].半导体学报,2005,26(2):373-378.
    [52] C. H. Chen, J. A. Yeh, P. J. Wang. Electrical Breakdown Phenomena for Deviceswith Micron Separations [J]. Micromechanics and Microengineering.2006,16:1366-1373.
    [53] Yu Sun, Bradley J Nelson, David P Potasek, Eniki ENikov. A bulk microfabricatedmulti-axis capacitive cellular force sensor using transverse comb drives[J].Micromechanics and Microengineering.2002,12:832-840.
    [54]陈涛,孙立宁,李欣昕.具有力感知功能的四臂式MEMS微夹持器研制[J].光学精密工程.2009,17(8):1878-1883.
    [55] R. Legtenberg, A. W. Groeneveld, M. Elwenspoek. Comb-drive actuators for largedisplacements [J]. Micromechanics and Microengineering.1996,6(3):320-329.
    [56]刘伟庭,蔡强,郭希山等.用软光刻技术实现微细结构[J].传感器技术学报.2002,(2):136-139.
    [57]葛益娴,王鸣,戎华.硅的反应离子刻蚀工艺参数研究[J].南京师范大学学报.2006,(3):79-82.
    [58] Ge Ping, Jouanel Musa. Gengeralized Preisach Model for Hysteresis Nonlinearity ofpiezoceramic Actuators[J]. Precision Engineering.1997,19(2):99-111.
    [59]陶惠峰.超精密微位移系统研究[D].浙江:浙江大学,2003.
    [60]魏强,张玉林,于欣蕾,郝慧娟等.扫描隧道显微镜微位移工作台的神经网络PID控制方法研究[J].光学精密工程.2006,14(3):422-426.
    [61]丁芳,李艳芳,费玉龙.智能PID算法在液位控制系统中的应用[J].中国民用航空学院交通工程学院.
    [62]催玉国,孙宝元,董伟杰,杨志欣.基于纳米定位的压电陶瓷执行器控制方法的研究进展[J].机械工程.2003,14(2):164-167.
    [63]舒强,施宁平,饶学军.模糊自整定比例积分控制在空间三维纳米定位平台的应用[J].光学技术.2012,38(2):202-207.
    [64] Horowitz I. Survey of quantitative feedback theory (QFT)[J]. Internal Journal ofControl.1991,53(2):255-291.
    [65] TREASE Brian P, MOON Yong-Mo, KOTA Sridhar. Design of large–displacementcompliant joints: Mechanical design of compliant microsystems [J]. MechanicalDesign.2005,127(4):788-798.
    [66]谭坤,宗光华,毕树生等.大变形柔性铰链的多簧片构型[J].军民两用技术与产品,2007,(3):38-42.
    [67]刘卫玲,姚世选,段晋军.基于电磁谐振的电感式位移传感器的频率分析[J].电子测量技术.2012,35(8):82-85.
    [68]蔡佳慧.光学综合孔径望远镜中电感式位移传感器的研究[D].江苏:南京航空航天大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700