植物细胞核仁动态结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核仁是真核生物细胞的rRNA合成加工和核糖体装配的场所。核仁的超微结构主要有三种基本结构组分:FC、DFC和GC。核仁内rDNA的分布、转录定位、rRNA前体的加工及核糖体的装配和核仁的蛋白质组学等都是细胞研究中的重要问题和方面。关于rRNA基因的转录位点是在FC还是DFC,到目前为止还存在争议。本文通过采用常规电子显微镜方法和柠檬酸铽单链RNA特异性染色法,以洋葱为材料对核仁周期中核仁的形态结构变化规律和核仁中的单链RNA的分布进行了研究。由于新合成的RNA短链可能还没有形成二级结构,一些单链RNA的分布区,代表了新合成的RNA的分布区,这有利于转录位点争议的解决。
    本研究得出如下结论:
    从洋葱分生组织可以得出如下规律:
    在细胞周期中,核仁在有丝分裂末期开始出现,在G1期的较早阶段核仁很小,还没有形成FC和DFC结构,随着细胞的发育,核仁逐渐变大,FC和DFC结构开始明显,后来核仁开始合并,在G1期的中后期阶段一个细胞中一般为1—2个核仁;核仁的大小在G1期的中后期、S期和G2期无明显变化,在S期和G2期,DNA的加倍,可能对核仁的体积无明显影响。
    在S期、S与G2的过渡时期,核仁的边缘出现了毛边现象,在形态学上可见核仁与其周边染色质的联系增多。在G1期、G2期的典型阶段和前期的早期阶段则无此现象。
    核仁FC、DFC的变化及分布与细胞周期变化不是同步的。在G1期、 S期和G2期都存在较大的FC和较小的FC,一般具较大的FC的细胞,FC的数量较少;FC较小的细胞,核仁内FC的数量较多;但也有一些细胞的一个核仁
    
    
    中同时存在大的和小的两种FC。DFC从G1期的中后期开始清晰,直至有丝分裂的前期的较早阶段为止都在核仁中清晰可见,其大小和比例在此一段区间内无明显的变化。核仁中存在的是较大的FC还是较小的FC及其分布状态与单个细胞有关,而与细胞的核仁周期可能无相关性。FC是异质性的还是同质性的与环绕其的DFC的大小和比例可能无必然的联系。在一些细胞中核仁内FCs呈区域性集中分布,这反映了rDNA的串联性,同时也反映了多个NOR在组织同一个核仁时,各自组装FC和DFC的区域性。
    核仁在有丝分裂前期开始消失,这是一个过程。早期阶段核仁内的FC和DFC结构无明显变化,后来核仁开始解体为几个小核仁,此时FC和DFC 结构仍然存在,随后FC和DFC结构逐渐消失,在核仁转变成NOR前已没有FC和DFC结构。
    核仁如果有核仁腔隙,该结构可能发生于S期,其发生可能是多位点的。
    二、在洋葱核仁中单链RNA分布于DFC及其周围区域,涉及到GC区,在S期和G2期细胞中没有发现FC中存在单链RNA,因此核仁rDNA进行转录时新合成的RNA应定位于DFC,rRNA基因的转录发生于DFC中。在核仁的DFC中单链RNA的分布有区域性,这可能反映了在DFC中rDNA的分布是呈区域性的。
Nucleoli are the domains in which transcription and processing of rRNA and assembly of ribosomes take place. The nucleolus has three basic ultrastructural subcompartments: fibrillar centers (FCs), dense fibrillar components (DFCs), and granular components (GCs). The studies on nucleolus focus on the sites of transcription and distribution of rDNA, assembly of ribosomes, and proteomics of nucleolus. Up to now, there are still controversial documents on whether the transcription of rDNA takes place in either FCs or DFCs. By using routine EM and terbium citrate single-stranded RNA (ssRNA) special staining, we investigated the morphological changes of the nucleolus and the distribution of ssRNAs in it. In the nucleolus cycle, due to newly synthesized rRNAs cannot form a secondary structure, the distribution of some ssRNAs represents the distribution of newly synthesized ssRNAs, which is beneficial for solving the controversy about where are the transcription sites of rDNAs.
    The results from this study are as follows:
    First, by conventional EM, we found that:
    In the cell cycle, the nucleoli begin to emerge at the end of mitotic telophase. At the earlier stage of G1, the nucleoli are very small, and they don’t form FCs and DFCs. With the cell grow up, the nucleoli become bigger gradually, and the structures of FCs and DFCs turn obvious and then the nucleoli begin to fuse. In the mid- and late-G1, the cell usually has one or two nucleoli. In the time of the mid- and late-G1, S and G2, the size of nucleolus has no obvious change. DNA doubling in S and G2 phases has no obvious effects on nucleolus volume.
    In S and S to G2, the nucleolus rim shows hairy and thus more linking of the nucleolus rim to the peripheral chromatins become apparent. In the typical G1 or G2, the morphology changes of the nucleolus rim and the increased linking to the peripheral chromatins are not observed.
    3. The changes and the distributions of FCs and DFCs in nucleoli are not synchronous to the changes of the cell cycles. In the phase of G1, S and G2, there exist both bigger FCs and smaller FCs in the nucleoli. Generally, cells whose nucleoli have bigger FCs but in lower number and cells whose nucleoli have smaller FCs but in higher number But in
    
    
    some cells, we can find that one nucleolus has both bigger and smaller FCs. DFCs become clear at the mid-G1 and exist in the nucleolus until the early mitotic prophase. Whether the nulceolous has bigger or smaller FCs and the FCs’ distributions may be related to a single cell, but not to the nucleolus cycle of the cell. Whether FCs are heterogeneous or homogeneous cannot be necessarily related to the sizes and ratios of DFCs around it. In some cells, FCs show regionalized and centralized distribution, suggesting the tandem characters of rDNAs and reflecting the regionalism of FCs and DFCs when many NORs organizing one nucleolus.
    4. It is a process that the nucleoli begin to disappear at prophase. At the early stage, the structures of FCs and DFCs are not obviously changed in the nucleoli. And then, the nucleolus begins to disintegrate in to several small nucleoli. At this moment, structures of FCs and DFCs still exist. Later, the structures of FCs and DFCs disappear. Before the nucleoli turn into NORs, there have been no structures of FCs and DFCs.
    5.If nucleoli have the nucleolus lacunae, a nucleolus has generally only one. The lacunae structures appear in S and they originate from multiple sites.
    Second, in Allium cepa, with the ion terbium (III), we found that ssRNAs mainly distribute in DFCs and their peripheral regions, and these distribution further extents in the regions of GCs. ssRNA are not found in FCs S and G2. So when nucleolus rDNAs are transcribed, newly synthesized RNAs should be located in DFCs. That means that the transcription sites of rDNAs take place in DFCs. In DFCs, distribution of ssRNAs shows regional, reflecting the distribution of rDNAs is also regional in DFCs.
引文
1. Pederson, T. (1998) The plurifunctional nucleolus. Nucleic Acids Res. 26, 3871-3876
    2. Guarente, L . (1997) Link between aging and the nucleolus Genes. Dev. 11, 2449-2455
    3. Pederson, T. (1998) Growth factors in the nucleolus? J.Cell Biol. 143, 279-282
    4. Olson, M.O.J. et al. (2000) The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol. 10, 189-196
    5. Carmo-Fonseca, M. et al. (2000) To be or not be in the nucleolus. Nat. Cell Biol. 2, E107-E112
    6. Visintin, R.and Amon, A. (2000) The nucleolus: the magictan’s hat for cell cycle tricks. Curr. Opin. Cell Biol. 12, 372-377
    7. Pederson T. (2002) Proteomics of the nucleolus: more proteins, more functions? TREND in Biochemical Sciences 27, 111-112
    8.Goessens G (1973) Fibrillary centers of the nucleoli of Ehrlich’s tumor cells . C R Acad Sci Hebd Seances Acad Sci D 325-327
    9. Smetana K, Buth H (1974) The nucleolus and nucleolar DNA. In: Bush H(ed) The cell nucleus. vol 1 Academic Press New York, pp73-147
    10. Raska I, Ochs RL, Salamin-Michel L (1990) Immunocytochemistry of the cell nucleus. Electron Microsc Rev 3:301-353
    11.Granboulan N, granboulan P (1965) Cytochimie ultrastructurale du nucleoli. II Etude des sites de synthese du RNA. dans le nucleoli at le noyau. Exp Cell Res 38:604-619
    12. Thiry M, Lepoint A, Goesssens G (1985) Re-evaluation of the site of transcription in Ehrlich tumor cell nucleoli. Biol Cell. 54:57-64
    13. Dundr M, Raska I (1993) Nonisotopic ultrastructural mapping of transcription sites within the nucleolus Exp Cell Res 208:275-281
    14. Raska I, dundr M, Koberna k, Melcak I, risueno MC, Torok I (1995) Does the synthesis of ribosomal RNA take place within nucleolar fibrillar centers or dense fibrillar components? A critical appraisal. J struct Biol
    
    
    14:1-22
    15. Schofer C, Muller M, Leitner MD, Wachtler F (1993) The uptake of uridine in the nucleolus occurs in the dens fibrillar component.Immunogold localization of incorporated digoxigenin-UTP at the electron microscopic level. Cytogenet Cell Genet 64:27-30
    16. Mena CG, Testillano PS, Gonzalez-Melendi P, Gorab E,Risueno MC (1994) Immunoelectron microscopy of RNA combined with nucleic acid cytochemistry in plant nucleoli. Exp Cell Res 212:393-408
    17. Shaw PL, Highett MI, Beven AF, Jordan EG (1995) The nucleolar architecture of polymerase I transcription and prossing. EMBO J 14:2896-2906
    18. Puvion-Dutilleul F, Puvion E, Bachellerie J-P (1997) Early stages of pre-RNA formation within the nucleolar ultrastructure of mouse cells studied by in situ hybridization with a 5’ ETS leader probe. Chromosoma 105:496-505
    19. Cmarko D, Verschure PJ, Martin TE, Dahmus ME, Krause S. Fu X-D, van Driel R. Fakan S(1999) Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol Cell Biol 10:211-233
    20. Cmarko D, Verschure PJ, Rothblum LI, Hernez-Verdum D, Amalric F, van Driel R. Fakan S(2000) Ultrastructural analysis of nucleolar transcription in cells microinjected with 5-bromo-UTP. Histochem Cell Biol 113:181-187
    21. Susan A. Gerbi (1997) The nucleolus: then and now. Chromosoma 105:385-387
    22. Angus L. lamond and William C. Earnshaw(1998) Structure and Function in the nucleus. Science. 280:547-553
    23. Cook PR. (1999) The Organization of Replication and Transcription. Science 284:1790-1795
    24. Dundr. M. and M. OJ. Olson (1998) Partially processed pre-rRNA is preserved in association with processing components in nucleus derived foci during mitosis. Mol. Biol. Cell. 9:2407-2422
    25. Dundr. M, Misteli T., and O. J. Olson M. (2000) The Dynamics of Postmitotic Reassembly of the Nucleolus J Cell Biol. 150:433-446
    
    26. Savino T. M. et al (2001) Nucleolar Assembly of the rRNA Processing Machinery in living Cells. J. Cell. Biol. 153:1097-1110
    27. Politz JC S. et al (2000) Signal recognition Partical Components in the nucleolus. Proc. Natl Acad. Sci. USA 97:55-60
    28. Stanek D. et al (2001) Non-isotopic mapping of ribosomal RNA synthesis and processing in the nucleolus. Chromosoma 110:460-470
    29. Trumtel S. et al (2000) Assembly and Functional Organization of the Nucleolus:Ultrastructural Analysis of Saccharomyces cerevisiae Mutants. Mole Bio Cell. 11:2175-2189
    30. Prescott, D.M., and M.A. Bender. (1962). Synthesis of RNA and protein during mitosis in mammalian tissue culture cells. Exp. Cell Res. 26:260-268
    31. Weisenberger, D., and U. Scheer. (1995). A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitosis. J. Cell Biol. 129:561-575
    32. Scheer, U., M. Thiry, and G. Goessens. (1993) Structure, function and assembly of the nucleolus. Trends Cell Biol. 3:236-241
    33. Heix, J., A, Vente, R. Voit, A. Budde, T.M. Michaelidis, and I. Grummt. (1998). Mitoltic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. EMBO (Eur. Mol. Biol. Organ.) J.17:7373-7381
    34. Kuhn, A., a. Vente, M. Doree, and I. Grummt. (1998). Mitotic phosphorylation of the TBP-containing factor SL1 represses ribosomal gene transcription. J. Mol. Biol. 284:1-5
    35. Klein. J., and I. Grummt. (1999). Cell cycle-dependent regulation of RNA polymerase I transcription: the nucleolar transcription factor UBF is inactive in mitosis and early G1. Proc. Natl. Acad. Sci. USA. 96:6096-6101
    36. Voit, R., M. Hoffmah, and I. Grummt. (1999). Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF EMBO (E.ur. Mol. Biol. Organ.) J. 18:1891-1899
    37. Jordan, P., M. Mannervik, L, Tora, and M. Carmo-Fonseca: (1996). In vivo Evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J. Cell
    
    
    Biol. 133:225-234
    38. Roussel, P., C. Andre, L, Comai, and D. Hernandez-Verdun. (1996). The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J. Cell Biol. 133:235-246
    39. Hernandez-Verdun, D., and T. Gautier. (1994). The chromosome periphery during mitosis. Bioessays. 16:179-185
    40. Dundr, M., U.T. Meier, N. Lewis, Rekosh, M.-L.Hammarskjolk, and M.O.J.Olson. (1997). A class of nonribosomal nucleolar components is located in chromosome periphery and in nucleolus-derived foci during anaphase and telophase. Chromosoma. 105:407-417
    41. Dundr, M., G.H. Leno, N. Lewis, D. Rekosh, M.-L. Hammarskjold, and M.O.J. Olson. (1996). Location of the HIV-1 Rev protein during mitosis: inactivation of the nuclear export signal alters the pathway for postmitotic reentry into nucleoli. J. Cell Sci. 109:2239-2251
    42. Hirano, T., Konoha, G., Toda, T., and Yanagida, M.(1989). Essential roles of the RNA polymerase I largest subunit and DNA topoisomerases in the formation of fission yeast nucleolus. J. Cell Biol. 108:243-253
    43. Chernoff, Y.O., Vincent, A., and Liebman, S.W.(1994). Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics. EMBO J. 13:906-913
    44. Nierras, C.R., Liebman, S.W., and Warner, J.R.(1997). Does Saccharomyces need an organized nucleolus? Chromosoma 105:444-451
    45. Oakes, M., Nogi, Y., Clark, M.W., and Nomura, M. (1993). Structural alterations of the nucleolus in mutants of Saccharomyces cerevisiae defective in RNA polymerase I. Mol. Cell. Biol. 13:2441-2455
    46.Oakes, M.., Aris, J.P., Brockenbrough, J.S., Wai, H., Vu, L., and Nomura, M. (1998). Mutational analysis of the structure and localization of the nucleolus in the yeast Saccharomyces cerevisiae. J. Cell Biol. 143:23-34
    47. Fomproix, N., J. Gebrane-Younes, and D. Hernandez-Verdun.(1998). Effects of anti-fibrillarin antibodies on building of functional nucleoli at the end of mitosis. J. Cell Sci. 111:359-372
    48. Azum-Gelade, M.C., J. Noaillac-Depeyre. M. Caizergues-Ferrer, and N. Gas. (1994). Cell cycle redistribution of U3 snRNA and fibrillarin.
    
    
    Presence in the cytoplasmic nucleolus remnant and in the prenucleolar bodies at telophase. J. Cell Sci. 107:463-475
    49. Jimenez-Garcia, L. F., M.L. Segura-Valdez, R.L. Ochs, L.I. Rothblum, R. Hannan, and D.L. Spector. (1994). Nucleologenesis. U3 snRNA-containing prenucleolar bodies move to sites of active pre-rRNA transcription after mitosis. Mol. Biol. Cell. 5:955-966
    50. Beven, A.F., R, Lee, M. Razaz, D.J. Leader. J.W.S. Brown, and P.J.Shaw. (1996). The organization of ribosomal RNA processing correlates with the distribution of nucleolar snRNAs. J. Cell Biol. 263:12824-12827
    51. Bell, P.,M.C. Dabauvalle, and U. Scheer. (1992). In vitro assembly of prenucleolar bodies in Xenopus egg extract. J.Cell Biol. 118:1297-1304
    52. Gebrane-Younes, J.,N. Fomproix, and D. Hernandez-Verdun. (1997). When rDNA transcription is arrested during mitosis, UBF is still associated with non-condensed rDNA. J. Cell. Sci. 110:2429-2440
    53. Thiry. M., and G. Goessens. (1996). The nucleolus during the cell cycle. Springer-Verlag, Heidelberg, Germany 146pp.
    54. Sirri, V., P. Roussel, and D. Hernandez-Verdum. (2000). In vivo release of mitotic silencing of rDNA transcription does not give rise to pre-rRNA processing. J. Cell Biol. 148:259-270
    55. Srri. V., P. Roussel, and D. Hernandez-Verdunl. (1999). The mitotically phosphorylated form of the transcription termination factor TTF-1 is associated with the repressed rDNA transcription machinery. J. Cell Sci. 112:3259-3268
    56. Jordan. P., M. Mannervik, L. Tora, and M. Carmofonseca. (1996). In vivo evidence that TATA-binding protein SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J. Cell Biol. 133:225-553
    57. Roussel. P., C. Andre.L. Comai, and D. Hernandez-Verdun. (1996). The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J. Cell Biol. 133:235-246
    58. Ochs, R.L., M.A. Lischwe, E. Shen, R.E. Caroll, and H.Busch. (1985). Nucleologenesis:compositon and fate of prenucleolar bodies. Chromosoma. 92:330-336
    59. Benavente, R.(1991). Postmitotic nuclear reorganization events
    
    
    analyzed in living cells. Chromosoma. 100:215-220
    60. Savino, T.M., R. Bastos, E. Jansen, and D. Hernandez-Verdun. (1999). The cucleolar antigen Nop 52, the human homologue of the yeast ribosomal RNA processing RRP1, is recruited at late stages of nucleologenesis. J. Cell Sci. 112:1889-1900
    61. Verheggen. C.,S. Le Pause, G. Almouzni, and D. Hernandez-Verdun. (1998). Presence of pre-rRNAs before activation of polymerase I transcription in the building process of nucleoli during early development of Xenopus laevis. J. Cell Biol. 142:1167-1180
    62. Verheggen, C., G. Almouzni, and D. Hernandez-Verdun. (2000). The ribosomal RNA processing machinery is recruited to the nucleolar domain before RNA polymerase I during Xenopus laevis development. J. Cell Biol. 149:293-305
    63. Dousset. T., C. wang, C. Verheggen, D. Chen, D. Hernandez-Verdun, and S. Huang. (2000). Inititation of nucleolar assembly is independent of RNA polymerase I transcription. Mol. Boil. Cell. 11:2705-2717
    64. Melcak I. Riseno MC. Raska I (1996) Ultrastructural nonisotopic mapping of nucleolar transcription sites in onion protoplasts. J. Struct Biol. 116:253-263
    65. Mosgoller W. Schoter C. Wesierska-Gadek J. Steiner M. Muller M. Wachtler F(1998) Ribosomal gene transcription is organized in foci within nucleolar components. Histochem Cell Biol. 109:111-118
    66. de Carcer G. Medina FJ(1999) Simultaneous localization of transcription and early processing markers allows dissection of functional domains in the plant cell nucleolus. J. Struct Biol. 128:139-151
    67. Thiry M. Cheutin T, O’Donohue M-F, Kaplan H. Ploton D (2000) Dynamics three-dimensional localization of ribosomal RNA within the nucleolus. RNA 6:1750-1761
    68. Mais Ch. Scheer U (2001) Molecular architecture of the amplified nucleoli of Xenopus oocytes. J Cell Sci 114:709-718
    69. Geuskens M, Bernhard W (1966) Ultrastructural cytochemistry of the nucleolus. 3. The effect of actinomycin D on the metabolism of nucleolar RNA. Exp Cell Res 44:579-598
    70. Royal A, Simard R (1975) RNA synthesis in the ultrastructural
    
    
    biochemical components of the nucleolus of Chinese hamster ovary cells. J Cell Biol 11:385-390
    71. Fischer D., Weisenberger D. Scheer (1991) Assigning functions to nucleolar structures. Chromosoma 101:133-140
    72. Beven AF. Lee R. Razaz M. Leader DJ. Brown JWS. Shaw PJ (1996) The organization of ribosomal RNA processing correlates with the distribution of nucleolar snRNAs. J Cell Sci 109:1242-1251
    73. Lazdins IB. Delannoy M. Sollner-Web B (1997) Analysis of nucleolar transcription processing domains pre-rRNA movements by in situ hybridization. Chromosoma 105:709-718
    74. Puvion-Dutilleul F. Bachelerie J-P. Puvion E (1991) Nucleolar organization of Hela cells as studies by in situ hybridizaiton. Chromosoma 100:395-409
    75. Puvion-Dutilleul F. Mazan S. Nicoloso M. Pichard E. Bachellerie J-P. Puvion E (1992) Alterations of nucleolar ultrastructure ribosome biogenesis by actinomycin D. Implications for U3 snRNP function. Eur J Cell Biol 58:149-162
    76. Dundr M., Hoffmann-Rohrer U., Hu Q., Grummf I., Rothblum L.I., Phair R. D. and Misteli T. (2002) A Kinetic Framework for a Mammalian RNA Ploymerase in Vivo. Science 298:1623-1626
    77. Scheer U, Xia B. Merkert H, Weisenberger D (1997) Looking at Christmas trees in the nucleolus. Chromosoma 105:470-480
    78. Shaw PJ, Jordan EG (1995) The nucleolus. Annu Rev Cell Dev Biol 11:93-121
    79. Trendelenburg MF, Puvion-Dutilleul F (1987) Visualizing active genes. In:Sommerville J, Scheer U (eds) Electron microscopy in molecular biology, a practical approach. IRL Press, Oxford, pp 101-146
    80. Wchtler, F., Hartung, M., Devictor, M., Wiegant, J., Stahl, A. and Schwarzacher, H.G. (1989). Ribosomal DNA is located and transcribed in the dense fibrillar component of human Sertoli cell nucleoli. Exp: Cell Res. 184,61-71
    81. Stahl, A., Wachtler, F.,Hartung, M., Devictor, M., Schofer, C., Mosgoller, w., de Lanversin, A., Fouet, C. and Schwarzcher, H. G. (1991). Nucleoli, nucleolar chromosomes and ribosomal genes in the human
    
    
    spermatocyte. Chromosoma 101, 231-244
    82.Jimenez-Garcia, L. F.,Segura-Valdez, M, D., Ochs, R. L., Echeverria, O. M., Vazquez-Nin, G. H. and Busch, H. (1993). Electron microscopic localization of ribosomal DNA in rat liver nucleoli by nonisotopic in situ hybridizaiton. Exp. Cell Res. 207, 220-225
    83. Hozak. P. (1995). Catching RNA polymerase I in Flagranti:ribosomal genes are transcribed in the dense fibrillar component of the nucleolus. Exp. Cell Res. 216, 285-289
    84. Derenzini, M., Hernandez-Verdun, D. and Bouteille, M. (1982). Visualization in situ of extended DNA filaments in nucleolar chromatin of rat hepatocytes. Exp. Cell Res. 141, 463-469
    85. Derenzini, M., Pession, A. and Licastro, F. E. A. (1985). Electronmicroscopical evidence that ribosomal chromatin of human circulating lymphocytes is devoid of histones. Exp. Cell Res. 157,59-62
    86. Thiry, M. and Thiry-Blaise, L. (1991). Locating transcribed and nontranscribed rDNA spacer sequence within the nucleolus by in situ hybridization and immunoelectron microscopy. Nucleic Acids Res. 19, 11-15
    87. Biggiogera M., Malatesta M., Abolhassani-Dadras S., Amaltric F., Rothblum L.I. and Fakan S. (2001) Revealing the unseen: the organizer region of the nucleolus. J. Cell Sci. 3199-3205
    88. Miller, O.L., and B.R. Beatry. (1969). Visualization of nucleolar genes. Science. 164:955-957
    89. Trendelenburg, M.F., Spring, U. Scheer, and W.W. Franke. (1974). Morphology of nucleolar cistrons in a plant cell, Acetabularia mediterranea. Proc. Natl. Acad. Sci. USA. 71:3626-3630
    90. Puvion-Dutilleul, F., J.P. Bachellerie, A Bernadac, and J.P. Zalta. (1977). transcription complexes in subnuclear fractions isolated from mammalian cells:ultranstructural study. C.R. Acad. Sci. Hebd. Seances Acad. Sci. D. 284:663-666
    91.Gonzalez-Melendi, P., B. Wells, A.F. Beven, and P.J. Shaw. (2001). Single ribosomal transcription units are linear, compacted Christmas tree in plant nucleoli. Plant J.27:223-233
    92. Thiry, M., T. Cheutin, M.F. O’Donohue, H. Kaplan, and D. Ploton.
    
    
    (2000). Dynamics and three-dimensional localization of ribosomal RNA within the nucleolus. RNA. 6:1750-1761.
    93. Koberna, K., J. Malinsky, A. Pliss, M. Masata, J. Vecerova, M. Fialova, J. bednar, and I. Raska. (2002). Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of “Christmas trees” in situ. J. Cell Biol. 157:743-748
    94. Hozak, P., P.R.Cook, C. Schofer, W. Mosgoler, and F. Wachtler. (1994). Site of transcription of ribosomal RNA and intranucleolar structure in Hela cells. J. Cell Sci. 107:639-648
    95. Cmarko, D.,P.J. Verchure, L.I. Roithblum, D. Hernandez-Verdun, F. Amalric, R. van Driel, and S. Fakan. (2000). Ultrastructural analysis of nucleolar transcription in cells microinjected with 5 bromo-UTP. Histocbem. Cell Biol. 113:181-187
    96. Melcak, I., Risueno, and I. Raska. (1996). Ultrastructural nonisotopic mapping of nucleolar transciption sites in onion protoplasts. J. Struct. Biol. 116:253-263
    97. Mais, C., and Scheer. (2001). Molecular architecture of the amplilfied nucleoli of Xenopus oocytes. J. Cell Sci. 114:709-718
    98. Cheutin, T., O’Donohue M-F, Beorchia. A., Vandecaer M., Kaplan H., Defever B., Ploton D., Thiry M., (2002). Three-dimensional organization of active rRNA genes within the nucleolus J Cell Sci: 115:3297-3307
    99. Sui Huang (2002) Building an efficient factory: Where is pre-rRNA synthesized in the nucleolus? J. Cell. Biol. 157: 739-741
    100. JIAO Ming-Da, BI Xiao-Hui, ZENG Qing-Hua, WANG Yu-Hong. (2001). Studies on RNA Transcription Activity in Interphase Nuclei in Physarum polycephalum. Acta Botanica Sinica. 43(3):227-231
    101. 毕晓辉,焦明大,陶伟,黄百渠 (2001)多头绒泡菌G2期细胞核仁中DNA的分布及转录位点研究 自然科学进展 11(5):481-485
    102. TAO Wei(陶伟),JIAO Mingda(焦明大),HE Jie(赫杰),HE Mengyuan(何孟元),&HAO Shui(郝水)(2000)Structures of nucleolus and transcription sites of rRNA genes in rat liver cells. Science in China 43(3): 301-309
    103. Biggiogera M, Fakan S(1998) Fine Structural Specific Visualizion of RNA on Ultrathin Sections. J. Histochem Cytochem 46: 389-395
    
    104. Mosgoeller W, Schofer C,Steiner M,E Jim,Sylester,Hozák (2001) Arrangement of ribosomal genes in nucleolar domains revealed by detection of“Chrismas Tree”components. Histochem Cell Biol 116:495-505
    105. 翟中和 (2000)细胞生物学283- 289
    106. 张立勇(2000)洋葱根端细胞核仁超微结构于rDNA的分布及转录形态学研究(东北师范大学硕士论文)
    107. Tao Wei1, Huang Baiqu, Liu Chunxiang and Zhai Zhonghe(2003)In situ visualization of rDNA arrangement and itsrelationship with subnucleolar structural regions inAllium sativumcell nucleolus. Journal of Cell Science 116, 1117-1125
    108. F Panzera, MI Gimenez-Abian, JF Lopez-Saez, G Gimenez-Martin, A Cuadrado, JL Canovas, and C De la Torre(1997) Competence for nuclear replication and the NOR-chromosomes of Allium cepa L.Eur J Cell Biol, 72(1): 9-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700