震裂岩体隧道施工期地震动力响应特征与稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,由于地震频发,在震裂岩体中修建高速公路隧道越发常见。震裂岩体经过反复的挤压作用变得更为破碎,给隧道安全施工带来了极大的安全隐患。广甘高速隧道隧址区围岩多为震裂岩体且余震频发,施工期隧道曾多次发生初支及二衬开裂甚至塌方等破坏,隧道建设在动力稳定性方面和安全控制措施上缺乏经验而亟待完善。本文以广甘高速隧道科研项目为依托,首先对震裂岩体隧道施工中发生的典型灾害情况进行了统计,概括了隧道震害的影响因素和失稳特征,然后通过数值建模对典型病害断面的结构和围岩在地震作用下的动力响应特性进行了研究,并分析了典型断面的失稳破坏机理。最后综合分析结果,对施工中的安全控制措施进行了归纳。本文的主要研究内容及成果如下:
     (1)通过大量的文献及震害资料结合广甘高速施工现场情况,对震裂岩体区隧道灾害情况进行统计,归纳概括了地震造成岩体和隧道的损害特点和其影响因素以及广甘震裂岩体隧道的失稳破坏形式和特征。
     (2)针对广甘隧道典型灾害断面,结合工程地勘资料和现场情况,以数值模拟的方法研究了余震作用情况下施工期隧道不同支护结构作用下的动力响应特征以及断面灾害机理,认为支护结构的存在基本不会影响围岩的动力响应,随着支护刚度的增大结构受到的地震作用越大,并综合分析了断面的失稳病害机理。
     (3)通过数值模拟对广甘隧道衬砌背后可能存在的空洞情况进行了研究,并分析其对衬砌动力响应特性的影响,分析结果表明空洞的存在不会影响结构其它位置的动力响应规律,只会在空洞附近产生应力集中现象,对一定范围内的结构内力产生影响,并且空洞会降低结构的承载力,认为空洞及余震的影响是导致断面二衬开裂的主要原因。
     (4)根据广甘隧道群组的现场监测和调研的数据,结合上述对不同支护作用下和空洞缺陷下隧道的数值分析结果,提出相应的安全预防及控制措施。
Due to frequent earthquakes in recent years, more and more highway tunnels in our country were constructed inevitably in shattered rock. Shattered rock becomes more broken after repeated rubbing effect, it brought great security risk for safety construction. Many tunnels'surrounding rock in Guanggan are shattered rocks and a number of primary support and secondary lining cracks and even landslides occurred in the construction process under the aftershock, so its method needs to be improved because of lacking experience in its seismic stability analysis and safety control measures. This dissertation is based on the Guanggan highway tunnel research project. Firstly, the disasters that occurred in shattered rock are summarized and the influencing factors of tunnels' seismic damage are studied. Then the dynamic response characteristics of the structure and surrounding rock under seismic action are studied. Lastly, this paper summarized the possible factors and mechanism of typical section's instability under the dynamic action and studied the safety control measures during the construction. The main research contents and results are as follows:
     (1) By combining extensive literature and research data with the surrounding rock case revealed by the construction site, we make a count on surrounding rock in the earthquake area, generalized the shattered rock mass damage cases and their influencing factors.
     (2) Based on the engineering geological survey information and site conditions of Guanggan highway tunnels, the dynamic response characteristics of tunnel support structure in typical section during construction under the earthquake are analyzed by the method of numerical modeling. The presence of the supporting structure basically will not affect the dynamic response of the surrounding rock, and support with greater rigidity has bigger earthquake response, the parts which have largest dynamic response mainly exists in the spandrels and springing.
     (3) Cavity may exist behind the lining of Guanggan highway tunnels. By analysis of lining's dynamic response characteristics, the results show that the presence of cavity does not affect the dynamic response law of other position of the structure, only leaves concentration phenomenon of the stress near the cavity, the structural forces generated within a certain range, and cavities will reduce the bearing capacity of the structure. Cavity and aftershocks is the main reason that led to the cracking of second lining according to the analysis.
     (4) According to the on-site monitoring and research data, combined with the results of dynamic response characteristics under different lining and cavity situation, the corresponding safety prevention and control measures are proposed.
引文
[1]张瑛.“5.12”汶川大地震震裂山体灾害勘查评价与治理设计方法研究[D].成都理工大学,2009.
    [2]席先武.松动岩体群洞围岩稳定性研究[D].长安大学,2004.
    [3]黄润秋.汶川地震地质灾害研究[M].科学出版社,2009.12.
    [4]Raymond, C.W. & David, K.K. Dynamic analysis of a slope failure from the 6 august 1979 coyote lake California earthquake [J]. Seismological Society of America,1983,73(3): 863-877.
    [5]Edwin, L.H.&Randall, W.J. Landslides triggered by the 1994 northridge California earthquake [J]. Seismological Society of America,1996,86(1):319-332
    [6]Tang Chuan, Huang Chunxin, Wan Ye. Lijiang earthquake and induced rockfalls and landslides in Yunnan [J]. Journal of Natural Disasters,1997,6(3):76-84.
    [7]Takashi Fujita. Some large scale landslides caused by the 1995 Kobe earthquake [M]. International IAEG Congress, Balkema, Rotterdam,1998.
    [8]Lin, J.S.&Whitman, R. Earthquake induced displacements of sliding blocks[J]. J Geotech Engng Div,1986,112(1):44-59.
    [9]黎克武,刘汉超,冯永国等.大柳树坝址松动岩体的基本特征及成因机制[J].地质灾害与环境保护,1994,1-17.
    [10]王勇智,戚炜等.黄河某高拱坝岩体力学参数的选取[J].岩石力学与工程学报,2011,32(S2).
    [11]Asakura, Toshihiro & Sato, Yutaka. Damage to mountain tunnels in hazard area [J]. Soils and Foundations,1996,301-310.
    [12]Lu, Chih-Chieh Hwang, Jin-Hung. Damage of new Sanyi railway tunnel during the 1999 chi-chi earthquake [C]. Geotechnical Earthquake Engineering and Soil Dynamics IV Congress 2008-Geotechnical Earthquake Engineering and Soil Dynamics Geotechnical Special Publication,2008.
    [13]Wang W.L. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake [J]. Tunnelling and underground space technology,2001(16):133-155.
    [14]高波,王峥峥,袁松等.汶川地震公路隧道震害启示[J].西南交通大学学报,2009,44(3):336-341.
    [15]郑永来,杨林德.地下结构震害与抗震对策[J].工程抗震,1999,(4):23-28.
    [16]姚瑞卿,刘寒鹏,杨文婷等.大柳树坝址区松动岩体中硐室围岩破坏变形特征[J].长安大学学报(地球科学版),2003,25(1):62-65.
    [17]席先虎.松动岩体群洞围岩稳定性研究[D].长安大学,2004.
    [18]郑勇,马宏生,吕坚等.汶川地震强余震(Ms≥5.6)的震源机制解及其与发震构造的关系[J].中国科学(D辑:地球科学),2009,39(4):413-426.
    [19]薛丁,邹家义,王立巍.汶川强余震节律趋势简单分析[J].山西地震,2010(1):18-20.
    [20]孙振,李海清.强余震条件下的酒家垭隧道修建技术[A].和谐地球上的水工岩石力学——第三届全国水工岩石力学学术会议论文集[C].2010
    [21]李海清,孙振.公路隧道震害处治对策[A].汶川大地震工程震害调查分析与研究[C].2009
    [22]孔祥菊.余震及强降雨条件下千枚岩隧道施工塌方预防[J].山西建筑,2011,37(24): 188-189
    [23]韩文峰.黄河黑山峡河段开发重大工程地质问题研究[J].科学出版社,2004.11
    [24]何川,耿萍,晏启祥.汶川大地震隧道工程震害初步分析[J].汶川大地震隧道工程震害调查分析与研究.科学技术出版社(ISBN 978-7-03-024285-3),2009.4.779-800
    [25]潘昌实.隧道及地下结构抗震问题的研究概况[J].世界隧道,1996,(5):7-16.
    [26]王秀英,刘维宁,张弥.地下结构震害类型及机理研究[J].中国安全科学学报,2003,13(11):55-58
    [27]郑清,高波,申玉生.山岭隧道震害调查及修复技术研究[J].石家庄铁道大学学报(自然科学版),2010.12,23(4)
    [28]王文礼,苏灼谨,林峻弘等.台湾集集大地震山岳隧道受损情形之探讨[J].现代隧道技术,2001,38(2):52-60.
    [29]Tajiri Masaru.Damage done by the great earthquake disaster of the Hanshin-Awaji district to the kobe Municipal Subway System and restoration works of the damage [J]. Japanese Railway Engineering,1997,(137):19-23.
    [30]高峰,石玉成,严松宏等.隧道洞口段的抗震设防长度[J].中国公路学报.2006,19(3):65-69.
    [31]高峰.地下结构动力分析若干问题研究[D].西南交通大学博士学位论文.2003.
    [32]李育枢.山岭隧道地震动力响应及减震措施研究[D].同济大学博士学位论文.2002
    [33]朱永生.浅埋隧道地震动力相应数值模拟分析研究[J].西南交通大学硕士学位论文.2006
    [34]梁庆国,韩文峰,李雪峰,李德武.极震区岩体地震动力破坏研究体系框架初探[J].地球科学进展.2010(01):43-54.
    [35]朱海之,王克鲁,赵其强.从昭通地震破坏看山区地面破坏特点[J].地质科学,1975,8(3):230-241.
    [36]李天池.地震与滑坡的关系及地震滑坡预测的探讨(节录)[C].滑坡文集(第二集).北京:人民铁道出版社,1979,2:127-132.
    [37]乔建平,蒲晓红.川滇地震滑坡分布规律探讨[J].地震研究,1992,15(4):411-417.
    [38]孙崇绍.特大地震的震害特征[J].西北地震学报,1993,5(2):64-70.
    [39]孙崇绍,蔡红卫.我国历史地震时滑坡崩塌的发育及分布特征[J].自然灾害学报,1997,6(1):25-30.
    [40]杨涛,邓荣贵,刘小丽.四川地区地震崩塌滑坡的基本特征及危险性分区[J].山地学报,2002,20(4):456-460.
    [41]Sharma S, Judd W.R. Underground opening damage from earthquakes [J]. Eng. Geol. 1991,Vol.30(3,4):263-276.
    [42]陈贵红,李海清,钟勇等.国道213线都江堰至汶川段隧道震害调查与分析[J].西南公路:2008,4(1):114-119.
    [43]耿萍.铁路隧道抗震计算方法研究[D].西南交通大学博士学位论文.2012
    [44]Dowing C.H. & Rozen A. Damage to rock tunnels from earthquakes shaking[J]. Journal of the geotechnical engineering Division, ASCE,1978,(104):175-191.
    [45]陈卫忠,谭贤君等.特殊地质与环境下地下工程稳定性研究[M].科学出版社,2012.
    [46]铁路工程设计技术手册-隧道[M].北京:铁道出版社,1990.
    [47]John CMS, Zahrah T F. Aseismic design of under ground structures [J]. Tunnelling and Underground Space Technology,1987, (21):65-197.
    [48]川岛一彦.地下耩造物の耐震設計[M].日本:鹿岛出版株式會社,1994.
    [49]孙钧,候学渊.地下结构(上)、(下)[M).北京:科学出版社,1987
    [50]高峰,李德武.隧道三维地震反应分析若干问题德研究[J].岩土工程学报,1998,20(4)
    [51]杜伟.震裂岩体公路隧道稳定性分析及处治措施研究[D].西南交通大学硕士学位论文.2012
    [52]佘健,何川,汪波,汪洋.衬砌背后空洞对隧道结构承载力影响的模型试验研究[J].公路交通科技,2008.1
    [53]周成涛,陈俊涛.衬砌背后矩形空洞对隧道初支应力分析[J].重庆大学学报,2012,12:106-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700