分形维数特性分析及故障诊断分形方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分形是现代数学和非线性科学研究中一个非常活跃的分支,它可以理解为局部和整体在某方面存在相似性。在分形理论中,分形维数是一个非常重要的参数,可以定量的描述非线性系统的分形特征,度量信号的空间填充能力,已经被广泛应用于多个领域。在机械故障诊断方面,不同的故障状态下,非线性因素对机械振动信号的影响是不同的,分形维数可以有效的度量机械系统的故障特征、识别机械设备的故障状态。本文以分形理论为基础,主要围绕分形维数特性和分形故障诊断方法两个方面展开深入的研究。
     针对分形盒维数对噪声不敏感的现象,研究了盒维数的抗噪性能。在不同噪声强度的影响下,改变信噪比,对分形盒维数的抗噪曲线进行分析。在该曲线中,定义了分形盒维数的抗噪性能边界点,以此为基准,将抗噪曲线划分为两个区域,分别对每个区域内的曲线变化趋势进行分析,揭示了分形盒维数的抗噪特性。
     对于单重分形故障诊断,以分形盒维数为故障特征量,讨论了单重分形故障诊断的一般方法,验证了分形盒维数对机械振动信号的定量度量能力和对故障状态的识别能力。多重分形可以在多个测度下对非线性信号进行定量的度量,不仅可以描述信号的整体特征,还能够刻画信号的局部性和不均匀性。多重分形故障诊断以样本序列为基础,采用相关性判断方式实现设备状态识别,扩大了分形故障诊断的应用范围。
     在多重分形故障诊断的基础上,结合信号分解方法,将分形故障诊断的特征量扩展为矩阵形式,实现分形特征量从单重分形维数、广义维数到分形矩阵的延伸与发展。同时,对广义维数的相关性判断法进行改进,提出了适用于矩阵式分形特征量的相关系数计算方法。为了使分形矩阵的构建不局限于一种信号分解方法,分别研究了经验模式分解和小波、小波包分解的基本原理,并以此为基础,实现了基于矩阵式特征量的分形故障诊断,使矩阵式分形特征量的构建适应于更多的信号分解方法。为了使分量信号的选择不受信号分解方式的限制,提出了基于相关系数的分量信号选择方法,采用该分量信号选择方法可以有效的提高矩阵式分形特征量的故障识别能力,更好的区分故障状态、判断故障类型。
     高频噪声对分形故障诊断的效果产生了很大的影响,为了抑制这一不利因素,分析了随机共振的机理,重点研究了级联双稳随机共振的滤波特性,并将其与广义维数相结合,应用于高频大噪声背景下的机械故障诊断中。级联双稳随机共振可以利用高频噪声增强低频信号的能量,使分形维数具有更强的状态识别能力,提高了故障诊断的有效性。
Fractal, which is defined as “shape made of parts similar to the whole in someway”, is an active branch in the study of modern mathematics and nonlinear science.As an essential parameter in fractal theory, fractal dimension has been widely used inmany areas of science, including the capability of quantitative measurement for fractalcharacteristics of nonlinear systems and the ability of space-filling capacitymeasurement for signals. In mechanical fault diagnosis, the influences of nonlinearfactors for mechanical vibration signals are different under diverse fault status. Fractaldimension describes the fault features of mechanical system and recognizes the faultstatus of mechanical device effectively. Based on the fractal theory, the investigationon the fractal dimension features and fractal fault diagnosis methodology was carriedout.
     As the fractal box dimension is not sensitive to noise, the anti-noise property ofbox dimension was studied. According to influences of different noise strength, theanti-noise behavior of fractal box dimension was analyzed by changing signal to noiseratio (SNR). The fractal box dimension varies with SNR and its curve can be dividedinto two parts with a point which is defined as the frontier point between them.Through the tendency of each part of the curve, its anti-noise performance wasunveiled.
     Utilizing the fractal box dimension as characteristic parameter, the single fractalfault diagnosis method was discussed. The result showed that the fractal boxdimension had the ability of quantitative measurement for mechanical vibration signaland recognition of the fault status. In several measures, a nonlinear signal can bedescribed entirely and exactly by multi-fractal, especially for unbalanced property andsubsection attribute. Based on sample sequence, the application range of fractal faultdiagnosis is enlarged by multi-fractal using relationship to recognize the device status.
     On the basis of multi-fractal fault diagnosis, relating to the signal decomposition,the fractal fault diagnosis characteristic parameter was extended from single fractaldimension, generalized dimension to fractal matrix. Moreover, a new correlationcoefficient calculation method, adapting to fractal characteristic parameter matrix,was presented based on improvement of generalized dimension correlation coefficientmethod. In order to make the fractal matrix construction out of limited to any signaldecomposition methods, wavelet, wavelet packet analysis and empirical mode decomposition were discussed and used in constituting the fractal matrix. In addition,the selection method of composition signals based on correlation coefficient waspresented for diversity of signal decompositions. The experiment showed that thefractal characteristic parameter matrix obtained through this selection method hadmore efficient for mechanical fault recognition and diagnosis.
     As is well known, high frequency noise, which is not conducive to fractal faultdiagnosis, need to be restrained by means of filtering method. Therefore, cascadedbistable stochastic resonance with well filtering property, combining with generalizeddimension, was applied to mechanical fault diagnosis in high frequency noisebackground. The power can be transferred from high frequency domain to lowfrequency domain by cascaded bistable stochastic resonance in order to not onlyremove the high frequency noise but also enhance the low frequency signal.Furthermore, for the filtered signals, it is easier to distinguish between different faultstatuses by fractal dimension so as to advance the effect of fractal fault diagnosis.
引文
[1]王善永,汽轮发电机组状态监测、信号分析与故障诊断理论及技术应用研究:[博士学位论文],南京:东南大学,2000
    [2]刘军,故障诊断方法研究及软件开发:[博士学位论文],大连:大连理工大学,2000
    [3]张海军,机械故障诊断和预测中的信息提取,[博士学位论文],西安:西安交通大学,2002
    [4] Cooley J.W., Tukey J. W., An algorithm for the machine calculation of complexfourier series, Mathematics of Computation,1965,19(90):297~301
    [5]丁康,离散频谱分析校正理论和技术:[博士学位论文],西安:西安交通大学,2006
    [6] John C. Burgess, On digital spectrum analysis of periodic signals, J. Acoust.Soc Am,1975,58(3):556~567
    [7] Thomas Grandke, Interpolation algorithms for discrete fourier transforms ofweighted signals, IEEE Transactions on Instrumentation and Measurement,1983,32(2):350~355
    [8] Carlo Offelli, Dario Petri, The influence of windowing on the accuracy ofmulti-frequency signal parameter estimation, IEEE Transactions onInstrumentation and Measurement,1992,41(2):256~261
    [9] Ferrero Alessandro, Salicone Simona, Toscani Sergio, A fast, simplifiedfrequency-domain interpolation method for the evaluation of the frequency andamplitude of spectral components, IEEE Transactions on Instrumentation andMeasurement,2010,60(5):1579~1587
    [10] Ozbay Yuksel, Ceylan Murat, Effects of window types on classification ofcarotid artery Doppler signals in the early phase of atherosclerosis usingcomplex-valued artificial neural network, Computers In Biology andMechine,2007,37(3):287~295
    [11] O'Leary Paul, Harker Matthew, Polynomial approximation: an alternative towindowing in Fourier analysis, IEEE International Instrumentation andMeasurement Technology Conference,2011,China, Hangzhou,2011:1759~1764
    [12] Schoukens J.,Pintelon R.,Van Hamme H., The interpolated fast Fouriertransform: A comparative study, IEEE Transactions on Instrumentation andMeasurement,1992,41(2):226~232
    [13] Xie Ming, Ding Kang, Correction for the frequency, amplitude and phase inFFT of harmonic signal, Mechanical Systems and Signal Processing,1996,10(2):211~221
    [14] Ding K., Zhu W. Y., Yang, Z. J., Li, W. H., Anti-noise Performance andParameter Estimation Accuracy of FFT and FT Discrete Spectrum Correction,Proceedings of the20092nd International Congress on Image and SignalProcessing, China, Tianjin,2009:4161~4165
    [15] Huang X. H., Wang Z. H., Hou G. Q., New method of estimation of phaseamplitude, and frequency based on all phase FFT spectrum analysis,2007Intelligent Signal Processing and Communication Systems-ISPACS, China,Xiamen,2007:303~306
    [16] Salor Oezguel, Spektral Leakage Elimination of the Fourier Transform ofSignals with Fundamental Frequency Deviation,2009IEEE17th SignalProcessing and Communications Applications Conference, Turkey, Antalya,2009:9~12
    [17]丁康,朱文英,杨志坚,李巍华,FFT+FT离散频谱校正法参数估计精度,机械工程学报,2010,46(7):68~73
    [18]杨志坚,丁康,调制FFT及其在离散频谱校正技术中的应用,振动工程学报,2009,22(6):632~637
    [19]丁康,郑春松,杨志坚,离散频谱能量重心法频率校正精度分析及改进,机械工程学报,2010,46(5):43~48
    [20]杨志坚,丁康,梁茜,基于频谱校正理论的阶比跟踪分析,机械工程学报,209,45(12):41~45
    [21] Morlet J., Arens G., Fourgeau E., et al, Wave propagation and sampling theory,Part1: Complex signal scattering in multilayered media, Geophysics,1982,47(2):203~221
    [22] Morlet J., Arens G., Fourgeau E., et al, Wave propagation and sampling theory,Part2:Sampling theory and complex waves, Geophysics,1982,47(2):222~236
    [23] Mallat S., A theory for multi-resolution decomposition: the waveletrepresentation. IEEE Transactions of Pattern Analysis and Machine Intelligence,1989,11(7):674~693
    [24] Mallat S., Hwang W. L., Singularity detection and processing with wavelet,IEEE Transactions on Information Theory,1992,38(2):617~643
    [25] Daubechies I., Grossman A., Meyer Y., Painless nonorthogonal expansions, J.Math. Phys.,1986,27(5):1271~1283
    [26] Daubechies I., Orthogonal bases of compactly supported wavelets,Communications on Pure and Applied Mathematics,1988,41:909~990
    [27] El-morsy Mohamed S., Abouel-seoud Shawki, Rabeih El-Adl, GearboxDamage Diagnosis using Wavelet Transform Technique, International Journalof Acoustics and Vibration,2011,16(4):173~179
    [28] Gryllias K. C., Gelman L., Shaw B., Local damage diagnosis in gearboxesusing novel wavelet technology, Insight,2010,52(8):437~441
    [29] Kankar P. K., Satish C. Sharma, S. P. Harsha, Rolling element bearing faultdiagnosis using autocorrelation and continuous wavelet transform, Journal ofVibration and Control,2011,17(14):2081~2094
    [30] Rafiee J., Rafiee M. A., Tse P. W., Application of mother wavelet function forautomatic gear and bearing fault diagnosis, Expert Systems with Applications,2010,37(6):4568~4579
    [31] Do an G khan Ece, Murat Basaran, Condition monitoring of speed controlledinduction motors using wavelet packets and discriminant analysis, ExpertSystems with Applications,2010,38(7):8079~8086
    [32] Bin G. F., Gao J. J., Li X. j., Dhillon B. S., Early fault diagnosis of rotatingmachinery based on wavelet packets—Empirical mode decomposition featureextraction and neural network, Mechanical Systems and Signal Processing,2012,27:696~711
    [33]段晨东,何正嘉,基于提升模式的特征小波构造及其应用,振动工程学报,2007,20(1):85~90
    [34]段晨东,基于第二代小波变换的混合小波降噪方法,中国机械工程,2007,18(14):1700~1702
    [35] Vapnik V., An overview of statistical learning theory. IEEE Transactions onNeural Networks,1999,10(5):988~999
    [36]尹传环,结构化数据核函数的研究:[博士学位论文],北京:北京交通大学,2007
    [37]吴青,基于优化理论的支持向量机学习算法研究:[博士学位论文],西安:西安交通大学,2009
    [38]汪廷华,支持向量机模型选择研究:[博士学位论文],北京:北京交通大学,2009
    [39] Cortes C., Vapnik V., Support vector networks, Machine Learning,1995,20(3):273~297
    [40] Karim Salahshoor, Mojtaba Kordestani, Majid S. Khoshro, Fault detection anddiagnosis of an industrial steam turbine using fusion of SVM(support vectormachine) and ANFIS(adaptive neuro-fuzzy inference system) classifiers,Energy,2010,35(12),5472~5482
    [41] Vong C. M., Wong P. K., Engine ignition signal diagnosis with wavelet packettransform and multi-class least squares support vector machines,2011,38(7),8563~8570
    [42] Konar P., Chattopadhyay P., Bearing fault detection of induction motor usingwavelet and support vector machines(SVMs), Applied Soft Computing,2011,11(6):4203~4211
    [43] Sugumaran V., Ramachandran K. I., Effect of number of features onclassification of roller bearing faults using SVM and PSVM, Expert Systemswith Applications,2011,38(4),4088~4096
    [44] Saravanan N., Kumar Siddabattuni V. N. S., Ramachandran K. I., Acomparative study on classification of features by SVM and PSVM extractedusing Morlet wavelet for fault diagnosis of spur bevel gear box, Expert Systemswith Applications,2007,35(3),1351~1366
    [45]刘路,基于改进支持向量机和文理图像分析的旋转机械故障诊断:[博士学位论文],天津:天津大学,2011
    [46] Huang N. E., Computer implicated empirical mode decomposition method,apparatus, and article of manufacture, U. S. Patent,1996
    [47] Huang N. E., Shen Zheng, Long S. R., et al, The empirical mode decompositionand the Hilbert spectrum for nonlinear and non-stationary time series analysis,Proc. R. Soc. Lond.1998, A:903~995
    [48] Rilling G., Flandrin P., Gon alvès P., On empirical mode decomposition and itsalgorithms, IEEE-EURASIP Workshop on Nonlinear Signal and ImageProcessing, Grado-Trieste (Italy),2003
    [49] Wu Z. H., Huang N. E., A study of the characteristics of white noise using theempirical mode decomposition method, Proc. R. Soc. London, Ser. A,2004:460,1597~1611
    [50] Christopher D. Blakely, A fast empirical mode decomposition technique fornonstationary nonlinear time series, Computational Statistics and Data Analysis,2006
    [51] Flandrin P., Rilling G., Gon alvès P., Empirical mode decomposition as a filterbank, IEEE Signal Processing Letters,2004,11(2):112~114
    [52] Wu Z. H., Huang N. E., Ensemble empirical mode decomposition: a noiseassisted data analysis method, Advances in Adaptive Data Analysis,2009:1-41
    [53]杜修力,何立志,侯伟,基于经验模态分解(EMD)的小波阈值除噪方法,北京工业大学学报,2007,33(3):265~272
    [54]高云超,桑恩方,刘百峰,基于经验模态分解的自适应去噪算法,计算机工程与应用,2007,43(26):59~61
    [55] Chang F. K., Damage detection using empirical mode decomposition methodand a comparison with wavelet analysis, Signal Processing and DiagnosticMethods: Structural Health Monitoring,2000:891~900
    [56] Shinde A., Hou, Z. A wavelet packet based sifting process and its applicationfor structural health monitoring, Structural Health Monitoring,2005,4(2):153~170
    [57] Antonino-Daviu J., Roger-Folch J., Pons-Llinares J., et al, Application of theEmpirical Mode Decomposition to condition monitoring of damper bars insynchronous motors,2011IEEE International Symposium on IndustrialElectronics,2011
    [58] Loutridis S. J., Damage detection in gear systems using empirical modedecomposition, Engineering Structures,2004,26(12):1833~1841
    [59] Ricci R., Pennacchi P., Diagnostics of gear faults based on EMD and automaticselection of intrinsic mode functions, Mechanical Systems and SignalProcessing,2010,25(3):821~838
    [60] Gao Q., Duan C., Fan H., Meng Q., Rotating machine fault diagnosis usingempirical mode decomposition, Mechanical Systems and Signal Processing,2008,22(5):1072~1081
    [61] Yaguo Lei, Zhengjia He, Yangyang Zi, Application of the EEMD method torator fault diagnosis of ratating machinery, Mechanical Systems and SignalProcessing,2009,23(4):1327~1338
    [62] Fangji Wu, Liangsheng Qu, Diagnosis of subharmonic faults of large rotatingmachinery based on EMD, Mechanical Systems and Signal Processing,2009,23(2):467~475
    [63] Goharrizi A. Y., Sepehri N., Internal leakage detection in hydraulic actuatorsusing Empirical Mode Decomposition and Hilbert spectrum, IEEE Transactionson Instrumentation and Measurement,2012,61(2):368~378
    [64] Zvokelj Matej, Zupan Samo, Prebil Ivan, Multivariate and multiscalemonitoring of large-size low-speed bearings using Ensemble Empirical ModeDecomposition method combined with Principal Component Analysis,Mechanical Systems and Signal Processing,2010,24(4):1049~1067
    [65] Benzi R., Alfonso S., Vulpiani A., The mechanism of stochastic resonance, J.Phys. A,1981,14: L453~45
    [66] Benzi R., Parisi G., Vulpiani A., Theory of stochastic resonance in climaticchange, Siam J Appl Math,1983,43(3):565~578
    [67] Gammaitoni L., H nggi P., Jung P., et al, Stochastic Resonance, Rev. Mod.Phys.,1998,70(1):223~285
    [68] Mcnamara B., Wiesenfeld K., Roy R., Observation of stochastic resonance in aring laser, Phys. Rev. Lett.,1988,60(25):223~287
    [69] Mcnamara B., Wiesenfeld K., Theory of stochastic resonance, Phys. Rev. A,1989,39(9):4854~4867
    [70] Choi M. H., Fox R. F., Jung P., Quantifying stochastic resonance in bistablesystems: Response vs residence-time distribution functions, Phys. Rev. E,1998,57(6):6335~6344
    [71] Zhou T., Moss F., Analog simulations of stochastic resonance, Phys. Rev. A,1990,41(8):4255~4264
    [72] Dykman M. I., Mannella R., Mcclintock P. V. E., et al, Giant nonlinearity in thelow-frequency response of a fluctuating bistable system, Phys. Rev. E,1993,47(3):1629~1632
    [73] Dykman M. I., Mcclintock P. V. E., Power spectra of noise-driven nonlinearsystems and stochastic resonance, Physica D: Nonlinear Phenomena,1992,58:10~30
    [74] H nggi P., Mroczkowski T. J., Moss F., et al, Bistability driven by colored noise:theory and experiment, Phys. Rev. A,1985,32(1):695~698
    [75] Jung P., H nggi P., Amplification of Small Signals Via Stochastic Resonance,Phys. Rev. A,1991,44(12):8032~804
    [76] Amblard A. K., Zozor S., Cyclostationary and stochastic resonance in thresholddevices, Phys. Rev. E,1999,59(5):5009~5020
    [77] Goychuk I., Information transfer with rate-modulated Poisson processes: Asimple model for nonstationary stochastic resonance, Phys. Rev. E,2001,64(2):021909
    [78] Collins J. J., Chow C. C., Imhoff T. T., Aperiodic stochastic resonance inexcitable systems, Phys. Rev. E,1995,52(4): R3321~3324
    [79] Collins J. J., Chow C. C., Capela A. C., Aperiod stochastic resonance, Phys.Rev. E,1996,54(5):5575~5584
    [80] Robinson J. W. C., Asraf D. E., et al, Information-theoretic distance measuresand a generalization of stochastic resonance, Phys. Rev. Lett.,1998,81(14):2850~2853.
    [81] Godivier X., Chapeau-Blondeau F., Stochastic resonance in the informationcapacity of a nonlinear dynamic system, International Journal of Bifurcationand Chaos,1998,8(3):581~589
    [82] Anishchenko V. S., Safonova M. A., Chua L. O., Stochastic resonance innonautonomous Chua’s circuit, J. Cir. Sys.&Comp.,1993,3(2):553~578
    [83] Xu B. H., Li J. L., Duan F. B., Effects of colored noise on multi-frequencysignal processing via stochastic resonance with tuning system parameters,Chaos, Solitons and Fractals,2003:93~106
    [84]冷永刚,王太勇,郭焱等,双稳随机共振参数特性的研究,物理学报,2007,56(1):30~35
    [85]冷永刚,王太勇,秦旭达等,二次采样随机共振频谱研究与应用初探,物理学报,2004,53(3):717~723
    [86]冷永刚,王太勇,二次采样用于随机共振从强噪声中提取弱信号的数值研究,物理学报,2003,52(10):2432~2437
    [87] Leng Y. G., Leng Y. S., Wang T. Y., et al, Numerical analysis and engineeringapplication of large parameter stochastic resonance, Journal of Sound andVibration,2006,292(3-5):788~801
    [88]冷永刚,王太勇,郭焱等,级联双稳系统的随机共振特性,物理学报,2005,54(3):1118~1124
    [89] He H. L., Wang T. Y., Leng Y. G., et al, Study on non-linear filtercharacteristic and engineering application of cascaded bistable stochasticresonance system, Mechanical Systems and Signal Processing,2007,21:2740~2749
    [90] Dhara A. K., Mukhopadhyay T., Coherent stochastic resonance in the case oftwo absorbing boundaries, Phys. Rev. E,1999,60(3):2727~2736
    [91] Pikovsky A. S., Kurths J., Coherence resonance in a noise-driven excitablesystem, Phys. Rev. Lett.,1997,78(5):775~778
    [92] Stocks N. G., Suprathreshold stochastic resonance: An exact result foruniformly distributed signal and noise, Phys. Lett. A.,2001,279(5-6):308~312
    [93] Stocks N. G., Suprathreshold stochastic resonance in multilevel thresholdsystems, Phys. Rev. Lett.,2000,84(11):2310~2313
    [94] Ditzinger T., Stadler M., Strüber D., et al, Noise improve three-dimensionalperception: stochastic resonance and other impacts of noise to the perception ofautostereograms, Phys. Rev. E,2000,62(2):2566~2575
    [95] Mitaim S., Kosko B., Adaptive stochastic resonance in noisy neurons based onmutual information, IEEE Transactions on Neural Networks,2004,15(6):1526~1540
    [96] Zhou C., Kurths J., Hu B., Array-enhanced coherence resonance: Nontrivialeffects of heterogeneity and spatial independence of noise, Phys. Rev. Lett.,2001,87(9):098101
    [97] Gonzalea J. A., Reyes I. I., Guerreo L. E., Solution to chaotic and stochasticresonance, Chaos,2001,11(1):1~15
    [98] Kapitaniak T., Stochastic resonance in chaotically forced systems, Chaos,Solitons and Fractals,1993,3(4):405~410
    [99] Gammaitoni L., Stochastic resonance and the dithering effect in thresholdphysical system, Phys. Rev. E,1995,52(5):4691~4698
    [100] Wannamaker R. A., Lipshitz S. P., vanderkoov J., Stochastic resonance asdithering, Phys. Rev. E,2000,61(10):233~236
    [101]李强,王太勇,冷永刚等,基于变步长随机共振的弱信号检测技术,天津大学学报,2006,39(4):432~437
    [102]赵艳菊,王太勇,冷永刚,任成祖,徐跃,张攀,级联双稳随机共振降噪下的经验模式分解,天津大学学报,2009,42(2):123~128
    [103]张莹,随机共振信号恢复机理与方法研究:[博士学位论文],天津:天津大学,2010
    [104] Leng Y. G., Guo Y., Zhou D. K., Characteristic signal detection based onre-scaling frequency stochastic resonance and its application in fault diaganosis,Proceedings of the ASME International Design Engineering TechnicalConference and Information in Engineering Conference,2008:1711~1717
    [105] Wang T. Y., Leng Y. G., Xu Y. G., Wang W. J., Qin X. D., Study of scaletransformation stochastic resonance of a bistable system,9th WorldMulti-Conference on Systemics, Cybernetics and Information,2005,6:97~102
    [106] Tan J. Y., Chen X. F., Wang J. Y., et al, Study of frequency-shifted andre-scaling stochastic resonance and its application to fault diagnosis,Mechanical Systems and Signal Processing,2009,23(3):811~822
    [107]胡茑庆,陈敏,温熙,随机共振理论在转子碰摩故障早期检测中的应用,机械工程学报,2001,37(9):88~91
    [108]杨定新,胡茑庆,杨银刚,随机共振技术在齿轮箱故障检测中的应用,振动工程学报,2004,17(2):201~204
    [109] Wang T. Y., Hu S. G., Leng Y. G., et al, Technology of magnetic flux leakagesignal detection based on scale transformation stochastic resonance, NonlinearScience and Complexity,2007,1:187~192
    [110] Li B., Li J. M., He Z. J., Fault feature enhancement of gearbox in combinedmachining center by using adaptive cascade stochastic resonance,Technological Sciences,2011,54(12):3203~3210
    [111] Jutten C., Herault J., Blind separation of sources, Part1: An adaptive algorithmbased on neuromimetic structure, Signal Processing,1991,24:1~10
    [112] Comon P., Independent component analysis, a new concept, Signal Processing,1994,36:287~314
    [113] Bell A. J., Sejnowski T., An information maximization approach to blindseparation and blind decovolution, Neural Computation,1995,7(6):1129-1159
    [114] Pearlmutter B. A., Parra L. C., Maximum likelihood blind source separation: Acontext-sensitive generalization of ICA, Advances in Neural InformationProcessing Systems, Cambridge: MIT Press,1997,9:613~619
    [115] Amari S., Cichocki A., Yang H. H., A new learning algorithm for blind signalseparation, Advances in Neural Information Processing Systems, Cambridge:MIT Press,1996,8:757~763
    [116] Cardoso, J. F. High-order constrasts for independent component analysis,Neural Computation,1999,11(1):157~192
    [117] Hyvarinen A., Fast and robust fixed-point algorithms for independentcomponent analysis, Neural Networks,1999,10(3):626~634
    [118] Alexander YPMA, Learning methods for machine vibration analysis and healthmonitoring [Doctor Dissertation], Delft: Delft University of Technology,2001
    [119] Gelle, G. Colas M., Delaunay G., Blind sources separation applied to rotatingmachines monitoring by acoustical and vibrations analysis, MechanicalSystems and Signal Processing,2000,14(3):427~442
    [120]季忠,金涛,杨炯明等,基于独立分量分析的消噪方法在旋转机械特征提取中的应用,中国机械工程,2005,16(1):50~53
    [121]顾江,张光新,刘国华等,基于独立分量分析的声发射信号去噪方法,江南大学学报(自然科学版),2008,7(1):55~59
    [122] Hong Rao, Meizhu Li, Mingfu Fu, Equipment diagnosis method based onHopfield-BP neural networks, Proceedings of International Conference onAdvanced Computer Theory and Engineering, Phuket, Thailand,2008:20~22
    [123] Selaimia Y., Moussaoui A., Abbassi H. A., Multi neural network based approachfor fault detection and diagnosis of a DC motor, Neural Network World,2006,16(5):369~379
    [124] Wenyu Chen, Xiaobin Wang, Shixin Sun, Jingbo Liu, A method of remote faultdiagnosis based on multilayer SOM, Proceedings of IEEE Conference onCybernetics and Intelligent Systems, Chengdu, China,2008:21~24
    [125] AI-Raheem K. F., Roy A, Ramachandran K. P., et al, Application of theLaplace-Wavelet combined with ANN for rolling bearing fault diagnosis,Journal of Vibration and Acoustics Transactions of ASME,2008,130(5):051007-1~051007-9
    [126] Saravanan N., Siddabattuni V. N. S. Kumar, Ramachandran K. I., Faultdiagnosis of spur bevel gear box using artificial neural network (ANN) andproximal support vector machine (PSVM), Applied Soft Computing,2010,10(1):344~360
    [127] Barakat M., Druaux F., Lefebvre D., et al, Self adaptive growing neural networkclassifier for faults detection and diagnosis, Neurocomputing,2011:74(18):3865~3876
    [128] Mandelbrot B. B., How long is the coast of Britain? Statistical self-similarityand fractal dimension, Science, New series, Vol.156, No.3775, May5,1967:636~638
    [129] Mandelbrot B. B., Les Objects Fractals: Forme Hasard et Dimension, Paris:Flammarion,1975
    [130] Mandelbrot B. B., Fractal Object: Form, Chance and Dimension, San Francisco:Freeman,1977
    [131] Mandelbrot B. B., The Fractal Geometry of Nature, San Francisco: Freeman,1982
    [132] Falconer K J., Fractal geometry: Mathematical foundation and applications,Chichester: John Wiley&Sons Ltd,1990
    [133]张永平,分形的控制与应用:[博士学位论文],济南:山东大学,2008
    [134]杜必强,振动故障远程诊断中的分形压缩及分形诊断技术研究:[博士学位论文],北京:华北电力大学,2009
    [135] Nouri E., Dolati A., The fractal study of Cu-Ni layer accumulation duringelectrodeposition under diffusion-controlled condition, Materials ResearchBulletin,2007,42(9):1769~1776
    [136] Isvoran A., Pitulice L., Creascu C. T., et al, Fractal aspects of calcium bindingprotein structure, Chaos, Solutions&Fractals,2008,35(5):960~966
    [137] Wnuk M. P., Yavari A., Discrete fractal fracture mechanics, EngineeringFracture Mechanics,2008,75(5):1127~1142
    [138] Mahamud M. M., Novo M. F., The use of fractal analysis in the texturalcharacterization of coals, Fuel,2008,87(2):222~231
    [139] Mobahed M. S., Hermanis E., Fractal analysis of river flow fluctuations,Physical A.,2008,387(4):915~932
    [140] Lan C. H., Lan K. T., Hsui C. Y., Application of fractals: create an artificialhabitat with several small (SS) strategy in marine environment, EcologicalEngineering,2008,32(1):44~51
    [141] Budyansky M. V., Prants S. V., Chaotic mixing and fractals in a geophysical jetcurrent, Communications in Nonlinear Science and Numerical Simulation,2008,13(2):434~443
    [142] Yonaiguchi N., Ida Y., Hayakawa M., et al, Fractal analysis for VHFelectromagnetic noises and the identification of preseismic signature of anearthquake, Journal of Atmospheric and Solar-Terrestrial Physics,2007,69(15):1825~1832
    [143] Smirnova N. A., Hayakawa M., Fractal characteristics of the ground-observedULF emissions in relation to geomagnetic and seismic activities, Journal ofAtmospheric and Solar-Terrestrial Physics,2007,69(15):1833~1841
    [144] Salmasi M., Modarres Hashemi M., Design and analysis of fractal detector forhigh resolution radars, Chaos, Solutions&Fractals,2007,40(5):2133~2145
    [145] Milosevic N. T., Ristanovic D., Fractal and nonfractal properties of triadic Kochcurve, Chaos, Solutions&Fractals,2007,34(4):1050~1059
    [146] Halsey T. C., Jensen M. H., Kadanoff L. P., et al, Fractal measures and theirsingularities: The characterization of strange sets, Phys. Rev. A.,1986,33(2):1141~1151
    [147] Nauenberg M., Schellnhuber H. J., Analytic evaluation of the multifractalproperties of a Newtonian Julia set, Physical Review Letters,1989,62(16):1807~1810
    [148] Hu B., Lin B., Yang-Lee zeros, Julia sets, and their singularity spectra, Phys.Rev. A.,1989,39(9):4789~4796
    [149] Marmi S., A method for accurate stability bounds in a small denominatorproblem, J. Phys. A.,1988,21(20):L961~L966
    [150] Manton N., Nauenberg M., Universal scaling behavior for iterated maps in thecomplex plane, Communications in Mathematical Physics,1983,89(4):555~570
    [151] Rammal R., Spectrum of harmonic excitations on fractal, J. de Phys.,1984,45(2):191~206
    [152] Biskup M., Borgs C., Chayes J. T., et al, General theory of Lee-Yang zeros inmodels with first-order phase transitions, Physical Review Letters,2000,84(21):4794~4797
    [153]张朝晖,黄惟一,振动波形的分形判断及特征提取,东南大学学报(自然科学版),1999,29(4):26~29
    [154]吕志民,徐金梧,翟续圣,分形维数及其在滚动轴承故障诊断中的应用,机械工程学报,1999,35(2):88~91
    [155] Candela R., Mirelli G., Schifani R., PD recognition by means of statistical andfractal parameters and neural network, IEEE Transactions on Dielectrics andElectrical Insulation,2000,7(1):87~94
    [156]刘希亮,陈小虎,王汉功,基于分形盒维数的齿轮泵故障诊断,机床与液压,2009,37(7):255~257
    [157]李萌,陆爽,马文星,滚动轴承故障诊断的分性特征研究,农业机械学报,2005,36(12):162~164
    [158] Logan D., Mathew J., Using the correlation dimension for vibration faultdiagnosis of rolling element bearings. I. Basic concepts, Mechanical Systemsand Signal Processing,1996,10(3):241~250
    [159] Ghosh S., Sarkar B., Saha J., Wear characterization by fractal mathematics forquality improvement of machine, Journal of Quality in MaintenanceEngineering,2005,11(4):318~332
    [160] Loutridis S. J., Self-similarity in vibration time series: application to gear faultdiagnostics, Journal of Vibration and Acoustics,2008,130(3):031004-1~031004-9
    [161] Kolokolov Y. V., Monovskaya A. V., Adjallah K. H., Real-time degradationmonitoring and failure prediction of pulse energy conversion systems, Journalof Quality in Maintenance Engineering,2007,13(2):176~185
    [162] Toliyat H. A., Abbaszadeh K., Rahimian M. M., Olson L. E., Rail defectdiagnosis using wavelet packet decomposition, IEEE Transactions on IndustryApplications,2003,39(5):1454~1461
    [163] Zainzinger H. J., Neuro-fuzzy logic sound analysis for motor vehicle faultanalysis, OEGAI-Journal,1998,17(3):24~27
    [164] Kirk T. B., Stachowiak G. W., Batchelor A. W., Fractal parameters and computerimage analysis applied to wear particles isolated by ferrography, Wear,1991,145(2):347~365
    [165] Simard P., Le Tavernier E., Fractal approach for signal processing andapplication to the diagnosis of cavitation, Mechanical Systems and SignalProcessing,2000,14(3):459~469
    [166] Prieto M. D., Espinosa A. G., Ruiz J. R. R., Urresty J. C., Ortega J. A., Featureextraction of demagnetization fault in permanent-magnet synchronous motorsbased on box-counting fractal dimension, IEEE Transactions on IndustrialElectronics,2011,58(5):1594~1605
    [167] Kirk T. B., Stachowiak G. W., Development of fractal morphological descriptorsfor a computer image analysis system, National Conference Publication-Institution of Engineers, Australia,1990,90(14):104~109
    [168] Lim J. S., Cho K. B., Ju Y. H., Kim H. D., et al, Development of an adaptiveneuro-fuzzy technique based PD-model for the insulation condition monitoringand diagnosis: practical aspects and economic consideration, InternationalConference on Large High Voltage Electric Systems. Session Papers,1998,5(5):1~6
    [169] Abbaszadeh K., Milimonfared J., Haji M., Toliyat H. A., Broken bar detectionin induction motor via wavelet transformation,27thAnnual Conference of theIEEE Industrial Electronics Society,2001,1(1):95~99
    [170] De Moura E. P., Vieira A. P., Irmao M. A. S., Silva A. A., Applications ofdetrended-fluctuation analysis to gearbox fault diagnosis, Mechanical Systemsand Signal Processing,2009,23(3):682~689
    [171] Wong K. L., Application of very-high-frequency (VHP) method to ceramicinsulators, IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(6):1057~1064
    [172] Umyai P., Kumhom P., Chamnongthai K., Air bubbles detecting on ribbedsmoked sheets based on fractal dimension,2011International Symposium onIntelligent Signal Processing and Communications Systems,2011:1~4
    [173]汪慰军,陈进,吴昭同,关联维数在大型旋转机械故障诊断中的应用,振动工程学报,2000,13(2):229~234
    [174]汪慰军,陈进,吴昭同,等,关联维数的计算及其在大机组故障诊断中的应用,上海交通大学学报,2000,34(9):1265~1268
    [175]滕丽娜,刘天雄,佟德纯,等,关联维数在设备状态监测中的应用研究,振动工程学报,2002,15(4):399~403
    [176]滕丽娜,刘天雄,佟德纯,等,关联维数在旋转机械支撑系统状态监测中的应用,上海交通大学学报,2002,36(9):1377~1380
    [177]梁平,龙新峰,樊福梅,基于分形关联维的汽轮机转子的振动故障诊断,华南理工大学学报(自然科学版),2006,34(4):85~90
    [178]肖云魁,李世义,曹亚娟,等,汽车传动轴承振动信号分形维数计算,振动,测试与诊断,2005,25(1):43~47
    [179]李娜,方彦军,利用关联维数分析机械系统故障信号,振动与冲击,2007,26(4):136~139
    [180]夏勇,张振仁,内燃机振动信号的混沌分形特性研究,振动与冲击,2001,20(2):64~66
    [181]程军圣,于德介,杨宇,基于EMD和分形维数的转子系统故障诊断,中国机械工程,2005,16(12):1088~1091
    [182] Grassberger P., Procaccia I., Characterization of stranger attractors, PhysicalReview Letters,1983,50(5):346~349
    [183] Grassberger P., Procaccia I., Measuring the strangeness of strange attractors,Physica D: Nonlinear Phenomena,1983,9(2):189~208
    [184] Theiler J., Spurious dimension from correlation algorithms applied to limitedtime-series data, Physical Review A,1986,34(3):2427~2432
    [185] Ding M., Grebogi C., Ott E., et al, Estimating correlation dimension from achaotic time series: when does plateau onset occur?, Physica D: NonlinearPhenomena,1993,69(3-4):404~424
    [186] Galka A., Maa T., Pfisher G., Estimating the dimension of high-dimensionalattractor: A comparison between two algorithms, Physica D: NonlinearPhenomena,1998,121(3-4):237~251
    [187] Kitoh S., Kimura M., Mori T., et al, A fundamental bias in calculatingdimension from finite data sets, Physica D: Nonlinear Phenomena,2000,141(3-4):171~182
    [188] Lai Y. C., Lerner D., Effective scaling regime for computing the correlationdimension from chaotic time series, Physica D: Nonlinear Phenomena,1998,115(1-2):1~18
    [189] Pisarenko D. V., Pisarenko V. F., Statistical estimation of the correlationdimension, Physics Letters A,1995,197(1):31~39
    [190] Theiler J., Statistical precision of dimension estimators, Physical Review A,1990,41(6):3038~3051
    [191] Widman G., Lehnertz K., Jansen P., et al, A fast general purpose algorithm forthe computation of auto-and cross-correlation integrals from single channel data,Physica D: Nonlinear Phenomena,1998,121(3-4):65~74
    [192]汪富泉,罗朝盛,G-P算法的改进及其应用,计算物理,1993,10(3):345~351
    [193]党建武,施怡,黄建国,分形研究中无标度区的计算机识别,计算机工程与应用,2003,25(3):25~27
    [194]秦海勤,徐可君,江龙平,分形理论应用中无标度区自动识别方法,机械工程学报,2006,42(12):106~109
    [195] Arduini F., Fioravanti S., Giusto D. D., A multifractal-baesd approach to naturalscene analysis, Proceedings of the1991International Conference on Acoustics,Speech, and Signal Processing, Piscataway, NJ, USA: Publ by IEEE,1991,2681~2684
    [196] Grassberger P., Generalized dimensions of strange attractors, Physics Letters A,1983,97(6):227~230
    [197]周炜星,王延杰,多重分形奇异谱的几何特性:I.经典Renyi定义法,华东理工大学学报(自然科学版),2000,26(4):385~389
    [198]周炜星,吴韬,多重分形奇异谱的几何特性:II.配分函数法,华东理工大学学报(自然科学版),2000,26(4):390~395
    [199]王祖林,周荫清,多重分形普及其计算,北京航空航天大学学报,2000,26(3):256~258
    [200] Chhabra A., Jensen R. V., Direct determination of the f ()singularityspectrum, Physical Review Letters,1989,62(12):1327~1330
    [201] Grassberger P., Badii R., Politi A., Scaling laws for invariant measures onhyperbolic and nonhyperbolic atractors, Journal of Statistical Physics,1988,51(1):135~178
    [202]徐玉秀,钟建军,闻邦椿,旋转机械动态特性的分形特征及故障诊断,机械工程学报,2005,41(12):186~189
    [203] Du G., Yeo T. S., A novel multifractal estimation method and its application toremote image segmentation, IEEE Transactions on Geoscience and RemoteSensing,2002,40(4):980~982
    [204] Perrier Edith, Tarquis Ana M., Dathe Annette, A program for fractal andmultifractal analysis of two-dimensional binary images: Computer algorithmsversus mathematical theory, Geoderma,2006,134(3-4):284~294
    [205] Butoma B. G., Stolyarov I. D., Petrov A. M., et al, Immunological andmultifractal ECG analysis and analysis of status in patients with progressiveforms of schizophrenia and schizotypic disorders, International Journal ofPsychophysiology,2008,69(3):145~146
    [206] Nakamura T., Horio H., Chiba Y., Local Hoder exponent analysis of heart ratevariability in preterm infants, IEEE Transaction on Biomedical Engineering,2006,53(1):83~88
    [207] Riedi R. H., Crouse M. S., Ribeiro V. J., et al, A multifractal wavelet modelwith application to network traffic, IEEE Transaction on Information Theory,1999,45(3):992~1018
    [208] Takada H. H., Anzaloni A., A multifractal traffic polcing mechanism,Communications Letters,2006,10(2):120~122
    [209] Kavasseri R. G., Nagarajan R., Evidence of crossover phenomena in wind-speeddata, IEEE Transaction on Circuits and Systems I: Regular Papers,2004,51(11):2255~2262
    [210] Charalampidis D., Kasparis T., Jones W. L., Removel of nonprecipitationechoes in weather radar using multifractals and intensity, IEEE Transaction onGeoscience and Remote Sensing,2002,40(5):1121~1131
    [211]徐玉秀,原培新,黄海英,基于广义维数的故障特征提取及诊断研究,机械强度,2004,26(5):587~590
    [212]徐玉秀,侯荣涛,杨文平,广义分形维数在旋转机械故障诊断中的应用研究,中国机械工程,2003:14(21):1812~1814
    [213]谢平,刘彬,王霄,林洪彬,多重分形熵及其在非平稳信号分析中的应用研究,仪器仪表学报,2005,25(8):610~612
    [214]苑宇,马孝江,局域波时频域多重分形在故障诊断中的应用,振动与冲击,2007,26(5):60~63
    [215]李国宾,段树林,于洪亮,等,发动机振动信号特征参数的多重分形研究,内燃机学报,2008,26(1):87~91
    [216]彭志科,何永勇,等,小波多重分析及其在振动信号分析中应用的研究。机械工程学报,2002,38(8):59~63
    [217]刘彬,王霄,谢平,基于小波多重分形的复杂机械故障诊断方法研究,传感技术学报,2006,19(1):232~234
    [218] Li M., Liu X. j., Yu H. D., Zhao P., Application of general fractal dimension torolling bearing diagnosis, Proceedings of the2009IEEE InternationalConference on Mechatronics and Automation, Changchun, China,2009:3039~3044
    [219] Li M., Ma W. X., Liu X. J., Investigation of rolling bearing fault diagnosisbased on multi-fractal and general fractal dimension,2009Second InternationalConference on Intelligent Computation Technology and Automation,2009:545~548
    [220] Yang J. Y., Zhang Y. Y., Zhu Y. S., Intelligent fault diagnosis of rolling elementbearing based on SVMs and fractal dimension, Mechanical Systems and SignalProcessing,2007,21(5):2012~2024
    [221] Li P., He Q. B., Kong F. R., An approach for fault diagnosis of bearing usingwavelet-based fractal analysis, Proceedings of the2010IEEE InternationalConference on Information and Automation, Harbin, China,2010:2338~2343
    [222] Tao X. M., Du B. X., Xu Y., Bearing fault diagnosis based on HMM and fractaldimensions spectrum, Proceedings of the2007IEEE International Conferenceon Mechatronics and Automation, Harbin, China,2007:1671~1676
    [223] Feng G. B., Zhu Y. B., Sun H. G., Study on fault diagnosis of gearbox based onmorphological filter and multi-fractal theory,2011International Conference onQuality, Reliability, Risk, Maintenance, and Safety Engineering, Xi’an, China,2011:472~477
    [224] Li B., Zhang P. L., Mi S. S., et al, Multi-scale fractal dimension based onmorphological covering for gear fault diagnosis, Journal of MechanicalEngineering Science,2011:2242~2249
    [225] Marwala T., Mahola U., Nelwamondo F. V., Hidden Markov models andGaussian mixture models for bearing fault detection using fractals,2006International Joint Conference on Neural Networks, Vancouver, BC, Canada,2006:3237~3242
    [226] Nelwamondo F. V., Marwala T., Mahola U., Early classifications of bearingfaults using Hidden Markov models, Gaussian mixture models, mel-frequencycepstral coefficients and fractals, International Journal of Innovative Computing,Information&Control, Japan,2006:1281~1299
    [227] Nicolis G., Prigogine I., Self-organization in nonequilibrium systems, NewYork: Wiley-Interscience,1977
    [228] Leon Cohen, Time-Frequency Analysis: Theory and Applications, New York:Prentice Hall,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700