聚硅氧烷超疏水表面制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超疏水表面由于对水展现出非常高的接触角和很低的接触角滞后(滚动角),在自清洁、防冰、防腐蚀、减阻、油水分离等领域具有广阔的应用前景而备受关注。目前已经制备了很多性能优异的超疏水表面,不过其实际应用仍有不少亟待解决的问题:制备方法上,一些已有的手段实用性较差,只适用于实验室研究而无法方便地得到大面积的超疏水表面;稳定性上,超疏水表面的稳定性受组成材料的影响,普通碳链聚合物在受热、户外应用时容易失去疏水性。因此选择合适的材料,开发操作方便、重复性好、能大面积施工的超疏水表面制备方法,得到稳定性优良的超疏水表面十分有必要。聚硅氧烷主链为Si-O-Si,不易被紫外光和臭氧分解,比其他高分子材料有更好的热稳定性、耐辐照性和耐候能力,而且其链上含有疏水基团,制备超疏水表面时无需疏水化处理。本文选取聚硅氧烷为主要材料,研究材料、制备方法对表面结构、疏水性能和稳定性的影响,开发简单、实用化的制备方法,获得性能稳定的超疏水表面,为超疏水表面的应用提供实践依据。
     本文首先进行了聚丙基一甲基倍半硅氧烷(PPMSSQ)超疏水薄膜的制备方法研究。利用溶胶一凝胶过程中失稳分解引起的相分离,在两片载玻片间的密闭空间制备PPMSSQ凝胶,分离后得到多孔薄膜。薄膜的表面粗糙程度受相分离的影响,随添加氨水量增加而增大。氨水较多时,薄膜表面与水的接触从Wenzel态转变为Cassie态,可获得超疏水PPMSSQ薄膜。但该方法实用性较差,为使制备PPMSSQ超疏水薄膜的方法更加实用化,研究了溶胶镀膜时前体中甲基三乙氧基硅烷(MTEOS)与丙基三乙氧基硅烷(PTEOS)比例、老化、外加水等条件对PPMSSQ溶胶形态、薄膜形貌及疏水性的影响。结果表明,PPMSSQ溶胶未经老化时,毛细作用力引起薄膜表面孔洞塌缩,得不到超疏水性;PPMSSQ溶胶老化后,为延缓凝胶过量加入的溶剂降低了溶胶骨架与溶剂间的相分离程度,镀膜表面粗糙程度降低,也得不到超疏水性;在老化溶胶中加入水能够有效地诱导溶胶骨架与溶剂发生相分离,相互簇集,提高镀膜表面的粗糙度;提高PTEOS的比例可以增加溶胶骨架与溶剂间的不相容性,粗糙镀膜表面,而且丙基的空间位阻可以降低反应速度,避免过早凝胶,但是PTEOS浓度过高时,又会引起溶胶骨架与溶剂间极性相差过大而过早宏观分相;当PTEOS:MTEOS体积比为3:7时,PPMSSQ老化溶胶能在加入水后有效簇集,骨架簇集程度随加入水的增多而增大;加入适量水时,提拉得到的薄膜有合适的表面微米纳米粗糙结构,获得接触角大于155°、滚动角小于10°的超疏水薄膜。因而得到了实用化的制备PPMSSQ超疏水薄膜的方法一水诱导相分离法。
     其次对水诱导相分离PPMSSQ超疏水薄膜的热稳定性及失效机理进行了研究。PPMSSQ超疏水薄膜在200℃以下处理能够保持超疏水性,200℃以上随热处理温度的升高逐步失去超疏水性。SEM、FTIR、TG-DTA分析表明超疏水性消失来自于凝胶骨架纳米粒子间的融合和疏水基团分解的共同作用。
     本文又进行了热稳定超疏水涂层的制备与研究。合成了具有优异热稳定性的聚苯基倍半硅氧烷(PPSQ), XRD、29Si CP-MAS NMR、FTIR表征证实其分子链均具有典型的梯形结构,结合苯基的耐热性,PPSQ相比于其他聚硅氧烷(DowCorning840硅树脂与RTV硅橡胶)有更好的耐热性能,500℃以下空气气氛中稳定。空气喷涂含纳米SiO2的PPSQ分散液,研究SiO2添加量对SiO2/PPSQ涂层表面形貌及疏水性的影响,获得SiO2/PPSQ超疏水涂层,其表面微米结构源于喷涂法对雾化粒子外形的保持(强制干燥效应),纳米结构来自较多纳米Si02的添加。不添加纳米SiO2,制备了良溶剂-不良溶剂法PPSQ超疏水涂层,其微米结构同样源自喷涂法强制干燥效应,纳米结构来自PPSQ的微相分离。研究了这两种超疏水涂层的热稳定性,良溶剂-不良溶剂法PPSQ超疏水涂层200℃以上失去超疏水性,而SiO2/PPSQ涂层的超疏水性在500℃空气气氛处理后依旧保持。SEM观测及FTIR分析表明前者的失效由PPSQ的热软化和融合引起涂层表面粗糙结构消失所致,后者优异的热稳定性得益于SiO2刚性的粗糙结构,以及PPSQ分子优异的耐热性能。表明在超疏水结构中掺入刚性纳米粒子有助于提高其热稳定性,另外热稳定超疏水SiO2/PPSQ涂层有望在需要耐热的场合应用。
     目前超疏水表面的功能性主要来源于表面疏水性与粗糙结构,本文最后引入功能性纳米粒子,探索研究赋予超疏水表面功能性的其他途径。研究了导电碳黑(CB)EC-300在室温固化聚二甲基硅氧烷(PDMS)橡胶体系中的分散。在此基础上,优选醋酸丁酯为溶剂,BYK 9077为润湿分散助剂,砂磨使EC-300良好分散,并添加具有导磁性的纳米Ni粒子,空气喷涂制备Ni/CB/PDMS涂层。一定CB添加量下,研究Ni添加量对涂层表面形貌,疏水性和电磁屏蔽能力的影响。结果显示,由于添加了纳米颗粒,涂层表面具有纳米结构,而增加Ni含量能够减小雾化涂料颗粒飞抵基底后的流动性和相互融合的可能,增加涂层表面微米突起的高度,使涂层表面的三相接触线从连续变为不连续,从而实现涂层润湿性从高粘附力向低粘附力态转变。同时,添加更多Ni粒子能增加导磁性,提高Ni/CB/PDMS涂层高频下的电磁屏蔽能力。该研究表明在纳米粒子/聚合物涂层体系中,添加纳米粒子,不但可以作为填料改变涂层表面微米纳米粗糙结构,控制疏水性质,还可以利用纳米粒子本身的特性,赋予超疏水表面功能性,拓宽超疏水表面的应用领域。
Superhydrophobic surfaces call full attention because they possess ultra large water contact angle and quite small contact angle hysteresis(sliding angle),and show potential application in areas such as self-cleaning, anti-icing, anti-corrosion, drag reduction and water oil separation, and etc. Quite a large number of superhydrophobic surfaces with excellent properties have been obtained at present. However, many efforts are still needed to take the superhydrophobic surfaces into real application:On one hand, many fabrication methods are only suitable for lab research, which are not convenient to produce large area superhydrophobic surfaces. On the other hand, the stabilities of the superhydrophobic surfaces are influenced by the materials made of. For example, carbonic polymers are suffered from the losing of their hydrophobicity outdoors and under high temperature. Therefore, it is very important to choose proper materials, develop reproducible and convenient fabrication methods with large area preparing capability, to get stable superhydrophobic surfaces. Polysiloxanes, profit from their Si-O-Si chains, are good candidates for their good thermal and O3 stability, UV and radiation stability, and weatherability compared with normal polymers. Furthermore, post hydrophobic modification treatment is not necessary when fabricating a polysiloxane superhydrophobic surface, because the existence of hydrophobic groups on polysiloxane. In this dissertation, polysiloxanes are chosen to make stable superhydrophobic surfaces for applications on the basis of disclosing the influences of materials and methods on surface structures, wetting properties and stabilities. Also, simple and effective methods are desirable.
     To begin with, polypropyl-methylsilsesquioxane (PPMSSQ) superhydrophobic preparing methods are investigated. Films are made by splitting the two slides, between which the sol-gel transition is conducted and a porous structure is made by the spindal decomposition phase separation between the sol skeleton and the solvent. Surface roughness is controlled by the ammonia added and the phase separation thereof. With more ammonia, rougher surface makes the Wenzel to Cassie mode transition, and obtain the superhydrophobicity. However, it is not compatible with conventional coating methods, so the influences of the MTEOS to PTEOS precursor ratio, aging and water adding conditions on the PPMSSQ sol, thin film morphologies, and the wetting properties are investigated in sol dip coating method. It reveals that superhydrophobicity disappears when rough structures at the film surfaces are destroyed by the capillary force introduced by the solvent evaporation employing the fresh sols, or the reduced skeleton-solvent phase separation degree by the extra solvent in aging. Adding water into the aged sols can induce the phase separation between sol skeleton and solvent, lead to aggregation of the skeleton and enlarge the film surface roughness. More PTEOS enhances the phase separation, roughen the surface, and prevent gelling too fast because of its steric hindrance, yet too more PTEOS, which means macro phase separation, makes the sol unstable. When PTEOS: MTEOS=3:7(in volume), the PPMSSQ sol skeletons aggregate effectively, more water, larger aggregation and rougher surfaces. A superhydrophobic surface with contact angle larger than 155°and sliding angle smaller than 10°can be gained under proper water volume condition. Thus we acquired the meaningful PPMSSQ preparing method, that is, the water induced phase separation method.
     To move on, the thermal stability and failure mechanism of the water induced phase separation superhydrophobic (WIPS-SHS) PPMSSQ film has been studied. The WIPS-SHS PPMSSQ film keeps its superhydrophobicity below 200℃,and gradually loses it with temperature increasing above 200℃, caused by merging of the nano skeletons and loss of hydrophobic groups, as revealed by SEM,FTIR and TG-DTA.
     The next chapter of the dissertation focuses on the preparing and researching of the thermal stable superhydrophobic surfaces. Polyphenylsilsesquioxanes (PPSQ) with excellent thermal stability have been synthesized. Combined with the stable phenyl group and the ladder structure confirmed by XRD,29Si CP-MAS NMR and FTIR studies, the PPSQ demonstrates outstanding thermal stability up to 500℃in air, compared with other polysiloxanes as DowCorning 840 resin and RTV silicone elastomer. Employing slurry with nano SiO2 particles and PPSQ to prepare SiO2-PPSQ coatings by air spraying, and studying how the SiO2 content will influence the coating surface structures and wetting properties. Then superhydrophobic SiO2-PPSQ coatings are produced. The prepared SiO2-PPSQ coatings possess micro and nano hierarchical structures, and the micro structure is stemmed from the atomized slurry particles (termed as the enforced evaporation effect of spraying) while the nano structure is the consequence of the nanoparticles introducing. A solvent-nonsolvent superhydrophobic PPSQ coating is prepared as well, whose micro structure is the analog of the superhydrophobic SiO2-PPSQ coatings, and nano structure is induced by micro phase separation of PPSQ. The solvent-nonsolvent superhydrophobic PPSQ coating loses its superhydrophobicity above 200℃on account of the elimination of nanostructures by the thermal softening of PPSQ, and superhydrophobicity of the SiO2-PPSQ coating retains up to 500℃, sustained by the rigidity of the filled SiO2 and excellent thermal stability of PPSQ, which is revealed by FTIR, SEM analysis. It indicates that embedding rigid nanoparticles into the thermal soft structures helps to retain the roughness and keep superhydrophobicity stable.
     Currently, functionalities of superhydrophobic surfaces are mainly based on the low surface tension and rough structures. Exploration of granting superhydrophobic surfaces functions by embedding functional nanoparticles is conducted. Dispersing effects of the Carbon Black (EC-300) into RTV PDMS are examined; finding out that BYK 9077, butyl acetate and sand milling is benefit for good dispersing. The Ni/CB/PDMS coatings are prepared by spray coating, and researches on the influences of Ni content under given CB loading on surface structures, wetting property and EMI shielding property are conducted. It is found that more Ni can prohibit the atomized paint particles from merging together and make the micro perturbation more distinct on surface, thus transit the three contact line from connected to disconnected, and accomplish the transition from a sticky surface to a roll off surface. Meanwhile, more Ni increases the permeability and enhances the EMI shielding ability of the coating at high frequency. It brings to light that nanoparticles can not only serve as filler to control the surface structures and the wetting property, but also impart superhydrophobic surfaces with functionality to enlarge their application area.
引文
[1]W. Barthlott, C. Neinhuis. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces[J]. Planta 1997,202:1-8.
    [2]C. Neinhuis, W. Barthlott. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces [J]. Annals of Botany 1997,79:667-677.
    [3]L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D.B. Zhu. Super-Hydrophobic Surfaces:From Natural to Artificial [J]. Adv.Mater.,2002,14:1857-1860.
    [4]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997:147-148.
    [5]G. McHale, M. I. Newton. Frenkel's Method and the Dynamic Wetting of Heterogeneous Planar Surfaces [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002, 206:193-201.
    [6]L. A. Girifalco, R. J. Good. A Theory for the Estimation of Surface and Interfacial Energies I. Derivation and Application to Interfacial Tension[J]. J Phys Chem,1957,61:904-909.
    [7]杨浩.超疏水/超亲油不锈钢滤网涂层的制备及其表面润湿性研究[D].广州:华南理工大学,2010.
    [8]R. N. Wenzel. Resistance of Soild Surfaces to Wetting by Water[J].Ind.Eng.Chem.,1936,28(8): 988-994.
    [9]R. N. Wenzel. Surface Roughness and Contact Angle[J]. J.Phys.Chem.,1949,53(9):1466-1467.
    [10]D. Quere. Wetting and Roughness[J]. Ann.Rev.Mater.Res.,2008,38:71-99.
    [11]A. B. D. Cassie, S. Baxter. Wettability of Porous Surfaces [J].Trans.Faraday Soc.,1944,40: 546-551.
    []2]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社,2007:97.
    [13]L. C. Gao, T. J. McCarthy. How Wenzel and Cassie Were Wrong [J].Langmuir 2007,23: 3762-3765.
    [14]L. C. Gao, T. J. McCarthy. An Attempt to Correct the Faulty Intuition Perpetuated by the Wenzel and Cassie "Laws" [J]. Langmuir 2009,25:7249-7255.
    [15]F. E. Bartell, J. W. Shepard. Surface Roughness as Related to Hysteresis of Contact Angles. Ⅱ. The Systems Paraffin-3 Molar Calcium Chloride Solution-Air and Paraffin-Glycerol-Air [J]. J. Phys. Chem.1953,57:455-458.
    [16]C. W. Extrand. Contact Angles and Hysteresis on Surfaces with Chemically Heterogeneous Islands[J]. Langmuir 2003,19:3793-3796.
    [17]L. C. Gao,T. J. McCarthy. Wetting 101°[J]. Langmuir 2009,25:14105-14115.
    [18]M. Nosonovsky. On the Range of Applicability of the Wenzel and Cassie Equations [J].Langmuir 2007,23:9919-9920.
    [19]J. Long, M.N. Hyder, R.Y.M. Huang, P. Chen. Thermodynamic Modeling of Contact Angles on Rough,Heterogeneous Surfaces [J]. Adv. Colloid Interface Sci,2005,118:173-190.
    [20]S. X. Tan, X. Y. Lu, W. Li, N.Zhao, X. L. Zhang, J. Xu. A Thermodynamic Analysis of the Validity of Wenzel and Cassie's Equations. [J]. Chin. Phys. Lett.,2009,26:080502.
    [21]H. Awada, B. Grignard, C. Jerome, A. Vaillant, J. D. Coninck, B. Nysten, A. M. Jonas. Correlation between Superhydrophobicity and the Power Spectral Density of Randomly Rough Surfaces[J]. Langmuir,2010,26:17798-17803.
    [22]L. Barbieri, E. Wagner, P. Hoffmann, Water Wetting Transition Parameters of Perfluorinated Substrates with Periodically Distributed Flat-Top Microscale Obstacles [J].Langmuir,2007,23: 1723-1734.
    [23]G. McHale, N. J. Shirtcliffe, M. I. Newton. Contact-Angle Hysteresis on Super-Hydrophobic Surfaces[J]. Langmuir,2004,20:10146-10149.
    [24]A.Marmur. Thermodynamics Aspects of Contact Angle Hysteresis. [J]. Adv. Colloid Interface Sci,1994,50:121-141.
    [25]R. Shuttleworth and G.L.J. Bailey. The Spreading of a Liquid Over a Rough Solid [J]. Discuss. Faraday Sot.,1948,3:16-22.
    [26]R.E. Johnson. Jr. R.H. Dettre. Contact Angle Hysteresis Ⅰ. Study of an Idealized Rough Surface in Contact Angle, Wettability and Adhesion, Adv.in Chem. Series 43 [M]. Washington, D.C:ACS,1964:113.
    [27]R.E. Johnson, Jr. R. H. Dettre. Contact Angle Hysteresis. Ⅲ. Study of an Idealized Heterogeneous Surface [J]. J. Phys. Chem.,1964,68:1744-1750.
    [28]W. Li, A. Amirfazli. A Thermodynamic Approach for Determining the Contact Angle Hysteresis for Superhydrophobic Surfaces[J]. J. Colloid Interface Sci.,2005,292:195-201.
    [29]J. Long, P. Chen. On the role of energy barriers in determining contact angle hysteresis [J]. Adv. Colloid Interface Sci,2006,127:55-66.
    [30]J. Long, M.N. Hyder, R. Y. M. Huang, P. Chen. Thermodynamic Modeling of Contact Angles on Rough, Heterogeneous Surfaces [J]. Adv. Colloid Interface Sci,2005,118:173-190.
    [31]G. Whyman, E. Bormashenko, T. Stein. The Rigorous Derivation of Young, Cassie-Baxter and Wenzel Equations and the Analysis of the Contact Angle Hysteresis Phenomenon [J].Chem. Phys. Lett.,2008,450:355-359.
    [32]J. F. Joanny, P. G. de Gennes. A Model for Contact Angle Hysteresis[J]. J. Chem. Phys.1984, 81:552-562.
    [33]M. Reyssat, D. Quere. Contact Angle Hysteresis Generated by Strong Dilute Defects[J]. J. Phys. Chem. B,2009,113:3906-3909.
    [34]B. M. Mognetti, J. M. Yeomans. Modeling Receding Contact Lines on Superhydrophobic Surfaces[J]. Langmuir 2010,26:18162-18168.
    [35]J. W. Krumpfer, T. J. McCarthy. Contact Angle Hysteresis:a Different View and a Trivial Recipe for Low Hysteresis Hydrophobic Surfaces [J]. Faraday Discuss.,2010,146:103-111.
    [36]J. W. Krumpfer, P. Bian, P. W. Zheng, L. C. Gao, T. J. McCarthy. Contact Angle Hysteresis on Superhydrophobic Surfaces:An Ionic Liquid Probe Fluid Offers Mechanistic Insight [J]. Langmuir,2011,27:2166-2169.
    [37]D.Oner, T. J. McCarthy. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability[J]. Langmuir,2000,16:7777-7782.
    [38]P. S. H. Forsberg, C. Priest, M. Brinkmann, R. Sedev, J. Ralston. Contact Line Pinning on Microstructured Surfaces for Liquids in the Wenzel State[J]. Langmuir,2010,26:860-865.
    [39]L. C. Gao, T. J. McCarthy. Contact Angle Hysteresis Explained [J]. Langmuir,2006,22: 6234-6237.
    [40]N. A. Patankar. On the Modeling of Hydrophobic Contact Angles on Rough Surfaces [J]. Langmuir,2003,19:1249-1253.
    [41]E. Chibowski. Surface Free Energy of a Solid From Contact Angle Hysteresis [J].Adv. Colloid Interface Sci.,2003,103:149-172.
    [42]P. Roura, J. Fort. Comment on "Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces"[J]. Langmuir,2002,18:566-569.
    [43]B.A. Pethica. Contact Angles [J]. Rep. Prog. Appl. Chem.,1961,46:14.
    [44]B.A. Pethica, The Contact Angle Equilibrium [J].J. Colloid Interface Sci.,1977,62:567-569.
    [45]J. Drelich, J. S. Laskowski, K. L. Mittal. Apparent and Microscopic Contact Angles [M].Utrecht:VSP,2000.
    [46]R. V. Sedev, J. G. Petrov, A. W. Neumann. Effect of Swelling of a Polymer Surface on Advancing and Receding Contact Angles [J]. J.Colloid Interface Sci.,1996,180:36-42.
    [47]C. N. C. Lam, R. Wu, D. Li, M. L. Hair, A. W. Neumann. Study of the Advancing and Receding Contact Angles:Liquid Sorption as a Cause of Contact Angle Hysteresis [J]. Adv. Colloid Interface Sci.,2002,96:169-191.
    [48]J. K. Kim, I. H. Kim. Characteristics of Surface Wettability and Hydrophobicity and Recovery Ability of EPDM Rubber and Silicone Rubber for Polymer Insulators.[J]. J. Appl. Polym. Sci.,2001,79:2251-2257.
    [49]A. Hozumi, T. J. McCarthy. Ultralyophobic Oxidized Aluminum Surfaces Exhibiting Negligible Contact Angle Hysteresis [J]. Langmuir 2010,26:2567-2573.
    [50]A. Y. Fadeev, T. J. McCarthy. Trialkylsilane Monolayers Covalently Attached to Silicon Surfaces:Wettability Studies Indicating that Molecular Topography Contributes to Contact Angle Hysteresis[J].Langmuir,1999,15:3759-3766.
    [51]H. Rangwalla, A. D. Schwab, B. Yurdumakan, D. G. Yablon, M. S. Yeganeh, A. Dhinojwalaet. Molecular Structure of an Alkyl-side-chain Polymer-water Interface:Origins of Contact Angle Hysteresis [J].Langmuir,2004,20:8625-8633.
    [52]M. Reyssat, D. Richard, C. Clanetab, D. Quere. Dynamical Superhydrophobicity[J]. Faraday Discuss.,2010,146:19-33.
    [53]J. P. Rothstein, Slip on Superhydrophobic Surfaces [J]. Annu. Rev. Fluid Mech.,2010,42: 89-109.
    [54]R. S. Voronov, D. V. Papavassiliou. Review of Fluid Slip over Superhydrophobic Surfaces and Its Dependence on the Contact Angle [J]. Ind. Eng. Chem. Res.2008,47:2455-2477.
    [55]C. G. L. Furmidge,Studies at Phase Interfaces. I. The Sliding of Liquid Drops on Solid Surfaces and a Theory for Spray Retention [J].J. Colloid Interface Sci,1962,17:309-324.
    [56]E.Wolfram, R. Faust. Wetting, Speading, and Adhesion. Padday, J. F., Ed.; [M]. London: Academic Press,1978:Chapter 10.
    [57]M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe. Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces [J]. Langmuir, 2000,16:5754-5760.
    [58]J. Kijlstra, K. Reihs, A. Klamt., Roughness and Topology of Ultra-hydrophobic Surfaces[J]. Colloids Surf. A.2002,206:521-529.
    [59]M. Sakai, J. H. Song, N. Yoshida, S. Suzuki, Y. Kameshima, A. Nakajima. Direct Observation of Internal Fluidity in a Water Droplet during Sliding on Hydrophobic Surfaces [J]. Langmuir 2006,22:4906-4909.
    [60]A. Dupuis, J. M. Yeomans. Dynamics of Sliding Drops on Superhydrophobic Surfaces[J]. Europhys. Lett.,2006,75:105-111.
    [61]M. Sakai, H. Kono, A. Nakajima, X. T. Zhang, H. Sakai, M. Abe, A. Fujishima. Sliding of Water Droplets on the Superhydrophobic Surface with ZnO Nanorods[J]. Langmuir 2009,25: 14182-14186.
    [62]C. J. Lv, C. W. Yang, P. F. Hao, F. He, Q. S. Zheng. Sliding of Water Droplets on Microstructured Hydrophobic Surfaces[J]. Langmuir 2010,26:8704-8708.
    [63]B. M. Mognetti, H. Kusumaatmaja, J. M. Yeomans. Drop Dynamics on Hydrophobic and Superhydrophobic Surfaces[J]. Faraday Discuss.,2010,146:153-165.
    [64]P. F. Hao, C. J. Lv, Z. H. Yao, F. He. Sliding Behavior of Water Droplet on Superhydrophobic Surface[J]. Europhys. Lett.,2010,90:66003.
    [65]D. Richard, D. Quere. Viscous Drops Rolling on a Tilted Non-wettable Solid[J]. Europhys. Lett.,1999,48:286-291.
    [66]D. Richard, D. Quere.Bouncing Water Drops[J]. Europhys. Lett.,2000,50:769-775.
    [67]D. Richard, C. Clanet,D. Quere. Surface Phenomena:Contact Time of a bouncing drop [J].Nature,2002,417:811.
    [68]R. Rioboo, M. Voue, A. Vaillant, J. De Coninck. Drop Impact on Porous Superhydrophobic Polymer Surfaces[J]. Langmuir 2008,24:14074-14077.
    [69]Y. C. Jung, B. Bhushan. Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces [J]. Langmuir 2008,24:6262-6269.
    [70]Y. C. Jung, B. Bhushan. Dynamic Effects Induced Transition of Droplets on Biomimetic Superhydrophobic Surfaces [J]. Langmuir 2009,25:9208-9218.
    [71]P. Brunet, F. Lapierre, V. Thorny, Y. Coffinier, R. Boukherroub. Extreme Resistance of Superhydrophobic Surfaces to Impalement:Reversible Electrowetting Related to the Impacting/Bouncing Drop Test[J]. Langmuir 2008,24:11203-11208.
    [72]K. K. Varanasi, T. Deng, M. F. Hsu, N. Bhate. Design of Superhydrophobic Surfaces for Optimum Roll-off and Droplet Impact Resistance[C]. Boston:Proceedings of the ASME International Mechanical Engineering Congress and Exposition,2008.
    [73]M. Reyssat, A. Pepin, F. Marty, Y. Chen, D. Quere. Bouncing Transitions on Microtextured Materials [J]. Europhys. Lett.,2006,74:306-312.
    [74]D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin,P. Silberzan, S. Moulinet. Bouncing or Sticky Droplets:Impalement Transitions on Micropatterned Surfaces[J]. Europhys. Lett.,2006, 74:299-305.
    [75]P. C. Tsai, S. Pacheco, C. Pirat, L. Lefferts, D. Lohse. Drop Impact upon Micro and Nano Structured Superhydrophobic Surfaces [J]. Langmuir 2009,25:12293-12298.
    [76]X. Y. Li, X. H. Ma, Z. Lan. Dynamic Behavior of the Water Droplet Impact on a Textured Hydrophobic/Superhydrophobic Surface:The Effect of the Remaining Liquid Film Arising on the Pillars' Tops on the Contact Time [J]. Langmuir 2010,26:4831-4838.
    [77]D. Bartolo. C. Josserand, D. Bonn. Singular Jets and Bubbles in Drop Impact[J]. Phys. Rev. Lett.2006,96:124501.
    [78]J. Hyaluoma, J. Timonen. Impalement Transitions in Droplets Impacting Microstructured Superhydrophobic surfaces[J]. Europhys. Lett.,2008,83:64002.
    [79]L. L. Cao, H. H. Hu, D. Gao. Design and Fabrication of Micro-textures for Inducing a Superhydrophobic Behavior on Hydrophilic Materials[J]. Langmuir 2007,23:4310-4314.
    [80]J. Bico, U. Thiele, D. Quere. Wetting of Textured Surfaces[J]. Colloids Surf., A 2002, 206:41-46.
    [81]X. Yao, Q. W. Chen, L. Xu, Q. K. Li, Y. L. Song, X. F. Gao, D. Quere, L. Jiang. Bioinspired Ribbed Nanoneedles with Robust Superhydrophobicity[J]. Adv. Funct. Mater.,2010,20: 656-662.
    [82]郑黎俊,乌学东,楼增,吴旦.表面微细结构制备超疏水表面[J].科学通报,2004,49(17):1691-1699.
    [83]Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto. Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets[J].Langmuir 2002,18:5818-5822.
    [84]B. Liu, F. F. Lange. Pressure Induced Transition Between Superhydrophobic States: Configuration Diagrams and Effect of Surface Feature Size [J]. J. Colloid Interface Sci.2006, 298:899-909.
    [85]E. Bormashenko, Y. Pogreb, G. Whyman, M. Erlich. Cassie-Wenzel Wetting Transition in Vibrating Drops Deposited on Rough Surfaces:Is the Dynamic Cassie-Wenzel Wetting Transition a 2D or 1D Affair? [J].Langmuir 2007,23:6501-6503.
    [86]G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton,H. Y. Erbil. Analysis of Droplet Evaporation on a Superhydrophobic Surface[J]. Langmuir,2005,21:11053-11060.
    [87]R. D. Narhe, D. A. Beysens. Water Condensation on a Super-hydrophobic Spike Surface[J]. Europhys. Lett.2006,75:98-104.
    [88]G. M. Liu. L. Fu, A. V. Rode, V. S. J. Craig. Water Droplet Motion Control on Superhydrophobic Surfaces:Exploiting the Wenzel-to-Cassie Transition[J]. Langmuir,2011, 27:2595-2600.
    [89]R. J. Vrancken. H. Kusumaatmaja, K. Hermans, A. M. Prenen, O. Pierre-Louis, C. W. M. Bastiaansen, D. J. Broer. Fully Reversible Transition from Wenzel to Cassie-Baxter States on Corrugated Superhydrophobic Surfaces[J]. Langmuir,2010,26:3335-3341.
    [90]F. G. Wang, S. Y. Song, J. Y. Zhang. Surface Texturing of Porous Silicon with Capillary Stress and Its Superhydrophobicity[J]. Chem. Commun.,2009,28:4239-4241.
    [91]Y. B. Park, M. Im, H. Im, Y. K. Choi. Superhydrophobic Cylindrical Nanoshell Array [J]. Langmuir 2010,26:7661-7664.
    [92]A. Tuteja, W. Choi, M. L. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, R. E. Cohen. Designing Superoleophobic Surfaces[J].Science 2007,318:1618-1622.
    [93]A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, T. N. Krupenkin. Nanonails:A Simple Geometrical Approach to Electrically Tunable Superlyophobic Surfaces[J]. Langmuir 2008,24:9-14.
    [94]L. L. Cao, T. P. Price, M. Weiss, D. Gao. Super Water- and Oil-Repellent Surfaces on Intrinsically Hydrophilic and Oleophilic Porous Silicon Films [J]. Langmuir 2008,24: 1640-1643.
    [95]S. M. M. Ramos, A. Benyagoub, B. Canut, C. Jamois. Superoleophobic Behavior Induced by Nanofeatures on Oleophilic Surfaces[J]. Langmuir 2010,26:5141-5146.
    [96]Y. Liu, Y. H. Xiu, D. W. Hess, C. P. Wong. Silicon Surface Structure-Controlled Oleophobicity[J]. Langmuir 2010,26:8908-8913.
    [97]K. Ellinas, A. Tserepi, and E. Gogolides. From Superamphiphobic to Amphiphilic Polymeric Surfaces with Ordered Hierarchical Roughness Fabricated with Colloidal Lithography and Plasma Nanotexturing[J]. Langmuir 2011,27:3960-3969.
    [98]K. Ellinas, A. Tserepi, E. Gogolides. From Superamphiphobic to Amphiphilic Polymeric Surfaces with Ordered Hierarchical Roughness Fabricated with Colloidal Lithography and Plasma Nanotexturing[J]. Langmuir,2011,27:3960-3969.
    [99]Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Y. Tang, L. Zhang, S. Y. Zhang, B. Yang. Bioinspired Silica Surfaces with Near-Infrared Improved Transmittance and Superhydrophobicity by Colloidal Lithography[J]. Langmuir,2010,26:9842-9847.
    [100]M. H. Sun, C. X. Luo, L. P. Xu, H. Ji, O. Y. Qi, D. P. Yu, Y. Chen. Artificial Lotus Leaf by Nanocasting[J].Langmuir,2005,21:8978-8981.
    [101]L. Feng, Y. N. Zhang, J. M. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang. Petal Effect:A Superhydrophobic State with High Adhesive Force[J]. Langmuir 2008,24:4114-4119.
    [102]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社,2007:159-160.
    [103]B. He, N. A. Patankar, J. Lee. Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces [J].Langmuir,2003,19:4999-5003.
    [104]C. H. Su, Y. Q. Xu, F. Gong, F. S. Wang, C. F. Li. The Abrasion Resistance of a Superhydrophobic Surface Comprised of Polyurethane Elastomer [J]. Soft Matter,2010,6: 6068-6071.
    [105]H. Y. Erbil, A. L. Demirel, Y. Avci, O. Mert. Transformation of a Simple Plastic into a Superhydrophobic Surface [J].Science,2003,299:1377-1380.
    [106]Q. D. Xie, J. Xu, L. Feng, L. Jiang, W. H. Tang, X. D. Luo, C. C. Han. Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure [J].Adv. Mater.,2004,16, 302-305.
    [107]X. Y. Lu, J. L. Zhang, C. C. Zhang, Y. C. Han. Low-Density Polyethylene (LDPE) Surface With a Wettability Gradient by Tuning its Microstructures [J]. Macromol.Rapid Commun., 2005,26:637-642.
    [108]H. Yabu, M. Shimomura. Single-Step Fabrication of Transparent Superhydrophobic Porous Polymer Films [J]. Chem. Mater.,2005,17,5231-5234.
    [109]Z.J.Wei, W.L.Liu, D.Tian, C.L.Xiao, X.Q.Wang. Preparation of Lotus-like Superhydrophobic Fluoropolymer Films[J].Appl. Surf. Sci.,2010,256:3972-3976.
    [110]A. Steele, I. Bayer, E. Loth. Inherently Superoleophobic Nanocomposite Coatings by Spray Atomization[J]. Nano Lett.,2009,9:501-505.
    [111]B. B. J. Basu,A. K. Paranthaman. A simple Method for the Preparation of Superhydrophobic PVDF-HMFS Hybrid Composite Coatings[J]Appl. Surf.Sci.,2009,255:4479-4483.
    [112]P. N. Manoudis, I. Karapanagiotis, A. Tsakalof, I. Zuburtikudis, C. Panayiotou. Superhydrophobic Composite Films Produced on Various Substrates[J]. Langmuir,2008,24: 11225-11232.
    [113]L. L. Cao, A. K. Jones, V. K. Sikka, J. Z. Wu, D. Gao. Anti-Icing Superhydrophobic Coatings [J]. Langmuir,2009,25:12444-12448.
    [114]F. C. Wang, C. R. Li, Y. Z. Lv, F. C. Lv, Y. F. Du. Ice Accretion on Superhydrophobic Aluminum Surfaces under Low-temperature Conditions.[J]. Cold Reg. Sci. Technol.,2010,62: 29-33.
    [115]C. J. Brinker, G. W. Scherer. Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing[M]. San Diego:Academic Press.1990.
    [116]A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, A. Fujishima. Transparent Superhydrophobic Thin Films with Self-Cleaning Properties [J].Langmuir 2000,16: 7044-7047.
    [117]H. F. Hou, Y. Q. Chen. Preparation of Super-hydrophobic Silica Films with Visible Light Transmission Using Phase Separation[J]. J Sol-Gel Sci Technol 2007,43:53-57.
    [118]Y. H. Xiu, F. Xiao, D. W. Hess, C.P. Wong. Superhydrophobic Optically Transparent Silica Films Formed with a Eutectic Liquid[J]. Thin Solid Films 2009,517:1610-1615.
    [119]H. M. Shang, Y. Wang, S. J. Limmer, T. P. Chou, K. Takahashi, G. Z. Cao. Optically Transparent Superhydrophobic Silica-based Films[J]. Thin Solid Films 2005,472:37-43.
    [120]M. Hikita, K. Tanaka, T. Nakamura, T. Kajiyama, A. Takahara. Super-Liquid-Repellent Surfaces Prepared by Colloidal Silica Nanoparticles Covered with Fluoroalkyl Groups [J].Langmuir,2005,21:7299-7302.
    [121]M. Manca, A. Cannavale, L. De Marco, A. Arico, R. Cingolani, G. Gigli. Durable Superhydrophobic and Antireflective Surfaces by Trimethylsilanized Silica Nanoparticles-Based Sol-Gel Processing[J].Langmuir 2009,25,6357-6362.
    [122]N. J.Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry. Intrinsically Superhydrophobic Organosilica Sol-Gel Foams [J].Langmuir,2003,19:5626-5631.
    [123]T. Soeno, K. Inokuchi, S. Shiratori. Ultra Water-Repellent Surface Resulting from Complicated Microstructure of SiO2 Nano Particles [J].Trans. Mater. Res. Soc. Jpn.,2003, 28,1207-1210.
    [124]X. Zhang, F. Shi, X. Yu, H. Liu, Y. Fu, Z. Q. Wang, L. Jiang, X. Y. Li. Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters:Toward Super-Hydrophobic Surface [J].J. Am. Chem. Soc.,2004,126:3064-3065.
    [125]F. Shi, Z. Q. Wang, X. Zhang. Combining a Layer-by-Layer Assembling Technique with Electrochemical Deposition of Gold Aggregates to Mimic the Legs of Water Striders [J]. Adv. Mater.,2005,17:1005-1009.
    [126]L. Zhai, F. C. Cebeci, R. E. Cohen, M. F. Rubner. Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers [J]. Nano Lett.,2004,4:1349-1353.
    [127]R. M. Jisr, H. H. Rmaile, J. B. Schlenoff, Hydrophobic and Ultrahydrophobic Multilayer Thin Films from Perfluorinated Polyelectrolytes [J].Angew. Chem., Int. Ed.,2005,44: 782-785.
    [128]J. Ji, J. Fu, J. C. Shen. Fabrication of a Superhydrophobic Surface from the Amplified Exponential Growth of a Multilayer [J]. Adv. Mater.,2006,18:1441-1444.
    [129]B. Qian, Z. Shen. Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates [J].Langmuir,2005,21: 9007-9009.
    [130]Z. G. Guo. F. Zhou, J. C. Hao, W. M. Liu. Stable Biomimetic Super-Hydrophobic Engineering Materials [J].J. Am. Chem. Soc.,2005,127:15670-15671.
    [131]M. F. Wang, N. Raghunathan, B. Ziaie. A Nonlithographic Top-Down Electrochemical Approach for Creating Hierarchical (Micro-Nano) Superhydrophobic Silicon Surfaces[J]. Langmuir,2007,23:2300-2303.
    [132]Y. H. Xiu, L. B. Zhu, D. W. Hess, C. P. Wong. Hierarchical Silicon Etched Structures for Controlled Hydrophobicity/Superhydrophobicity[J]. Nano Lett.,2007,7:3388-3393.
    [133]J. P. Lee, S. Choi, S. J. Park. Extremely Superhydrophobic Surfaces with Micro- and Nanostructures Fabricated by Copper Catalytic Etching[J]. Langmuir,2011,27:809-814.
    [134]S. T. Wang, L. Feng, L. Jiang. One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Surfaces [J]. Adv. Mater.,2006,18:767-770.
    [135]T. Darmanin, E. T. de Givenchy, S. Amigoni, F. Guittard. Hydrocarbon versus Fluorocarbon in the Electrodeposition of Superhydrophobic Polymer Films[J]. Langmuir,2010,26: 17596-17602.
    [136]K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W.I. Milne, G. H. McKinley, K. K. Gleason. Superhydrophobic Carbon Nanotube Forests[J]. Nano Lett.,2003, 3:1701-1705.
    [137]J. Zimmermann, F. A. Reifler, G. Fortunato, L. Gerhardt, S. Seeger, A Simple, One-Step Approach to Durable and Robust Superhydrophobic Textiles [J].Adv. Funct. Mater.2008, 18:3662-3669.
    [138]M. L. Ma, R. M. Hill, J. L. Lowery, S. V. Fridrikh, G. C. Rutledge. Electrospun Poly (Styrene-block-dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity, [J].Langmuir,2005,21:5549-5554.
    [139]J. P. Youngblood, T. J. McCarthy. Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene) Using Radio Frequency Plasma[J]. Macromolecules,1999,32:6800-6806.
    [140]B. Bhushan, Y. C. Jung, K. Koch. Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces[J]. Langmuir 2009,25:3240-3248.
    [141]R. Furstner, W. Barthlott, C. Neinhuis, P. Walzel. Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces[J]. Langmuir,2005,21:956-961.
    [142]N. Yoshida, M. Takeuchi, T. Okura, H. Monma, M. Wakamura,H. Ohsaki, T. Watanabe. Super-hydrophobic Photocatalytic Coatings Utilizing Apatite-based Photocatalyst[J]. Thin Solid Films 2006,502:108-111.
    [143]A. J. Meuler, G. H. McKinley, R. E. Cohen. Exploiting Topographical Texture To Impart Icephobicity[J]. ACS Nano,2010,4:7048-7052.
    [144]P. Tourkine, M. Le Merrer, D. Quere. Delayed Freezing on Water Repellent Materials[J]. Langmuir 2009,25:7214-7216.
    [145]L. Mishchenko, B. Hatton, V. Bahadur, J. A. Taylor, T. Krupenkin, J. Aizenberg. Design of Ice-free Nanostructured Surfaces Based on Repulsion of Impacting Water Droplets[J]. ACS Nano,2010,4:7699-7707.
    [146]S. A. Kulinich, S. Farhadi, K. Nose, X. W. Du. Superhydrophobic Surfaces:Are They Really Ice-Repellent?[J]. Langmuir 2011,27:25-29.
    [147]S. Farhadi, M. Farzaneh, S.A. Kulinich. Anti-icing Performance of Superhydrophobic Surfaces[J].Appl.Surf.Sci.,2011,257:6264-6269.
    [148]S. A. Kulinich, M. Farzaneh. How Wetting Hysteresis Influences Ice Adhesion Strength on Superhydrophobic Surfaces[J]. Langmuir,2009,25:8854-8856.
    [149]S. Jung, M. Dorrestijn, D. Raps, A. Das, C. M. Megaridis, D. Poulikakos. Are Superhydrophobic Surfaces Best for Icephobicity? [J].Langmuir,2011,27:3059-3066.
    [150]M. Zoua, S. Beckford, R. Wei, C. Ellis, G. Hatton, M.A. Miller. Effects of Surface Roughness and Energy on Ice Adhesion Strength[J].Appl.Surf.Sci.,2011,257:3786-3792.
    [151]K. K. Varanasi, T. Deng, J. D. Smith, M. Hsu, N. Bhate. Frost Formation and Ice Adhesion on Superhydrophobic Surfaces[J]. Appl. Phys. Lett.,2010,97:234102.
    [152]T. He, Y. C. Wang, Y. J. Zhang, Q. Iv, T. G. Xu, T. Liu. Super-hydrophobic Surface Treatment as Corrosion Protection for Aluminum in Seawater[J].Corros.Sci.,2009,51:1757-1761.
    [153]P. M. Barkhudarov, P. B. Shah, E. B. Watkins, D. A. Doshi,C. J. Brinker, J. Majewski. Corrosion Inhibition Using Superhydrophobic Films[J]. Corros. Sci.,2008,50:897-902.
    [154]L. Feng, Z. Y. Zhang, Z. H. Mai, Y. M. Ma, B. Q. Liu, L. Jiang, D. B. Zhu. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water[J]. Angew. Chem., Int. Ed.,2004,43:2012-2014.
    [155]C. X. Wang, T. J. Yao, J. Wu, C. Ma, Z. X. Fan, Z. Y. Wang, Y. R. Cheng, Q. Lin, B. Yang. Facile Approach in Fabricating Superhydrophobic and Superoleophilic Surface for Water and Oil Mixture Separation[J]. ACS Appl. Mater. Interfaces,2009,1:2613-2617.
    [156]R. Parker, C. R. Lawrence. Water Capture by a Desert Beetle [J].Nature,2001,414:33-34.
    [157]R. P. Garrod. L. G. Harris, W. C. E. Schofield, J. McGettrick,L. J. Ward, D. O. H. Teare, J. P. S. Badyal. Mimicking a Stenocara Beetle's Back for Microcondensation Using Plasmachemical Patterned Superhydrophobic-Superhydrophilic Surfaces[J]. Langmuir, 2007,23:689-693.
    [158]F. Mumm, A. T. J. van Helvoort and P. Sikorski. Easy Route to Superhydrophobic Copper-Based Wire-Guided Droplet Microfluidic Systems [J]. ACS Nano,2009,3: 2647-2652.
    [159]T. Ishizaki, N. Saito, O. Takai. Correlation of Cell Adhesive Behaviors on Superhydrophobic, Superhydrophilic, and Micropatterned Superhydrophobic/Superhydrophilic Surfaces to Their Surface Chemistry[J]. Langmuir,2010,26:8147-8154.
    [160]F. Xia, Y. Zhu, L. Feng, L. Jiang. Smart Responsive Surfaces Switching Reversibly Between Super-hydrophobicity and Super-hydrophilicity[J]. Soft Matter,2009,5:275-281.
    [161]Z. G. Guo, W. M. Liu, B. L. Su. Superhydrophobic Surfaces:From Natural to Biomimetic to Functional[J]. J. Colloid Interface Sci.,2011,353:335-355.
    [162]T. P. N. Nguyen, P. Brunet, Y. Coffinier, R. Boukherroub. Quantitative Testing of Robustness on Superomniphobic Surfaces by Drop Impact[J]. Langmuir 2010,26:18369-18373.
    [163]X. Zhang, F. Shi, J. Niu. Y. G. Jiang, Z. Q. Wang. Superhydrophobic Surfaces:From Structural Control to Functional Application [J]. J. Mater. Chem.,2008,18:621-633.
    [164]C. W. Extrand, S. I. Moon. Contact Angles of Liquid Drops on Super Hydrophobic Surfaces: Understanding the Role of Flattening of Drops by Gravity [J]. Langmuir 2010,26: 17090-17099.
    [165]Y. Xiu, Y. Liu, D. W. Hess, C. P. Wong. Mechanically Robust Superhydrophobicity on Hierarchically Structured Si Surfaces [J]. Nanotechnology 2010,21:155705.
    [166]Y. Jung, B. Bhushan. Mechanically Durable Carbon Nanotube-Composite Hierarchical Structures with Superhydrophobicity, Self-Cleaning, and Low-Drag [J]. ACS Nano 2009,3: 4155-4163.
    [167]T. Yanagisawa, A. Nakajima, M. Sakai, Y. Kameshima, K. Okada, Preparation and Abrasion Resistance of Transparent Super-hydrophobic Coating by Combining Crater-like Silica Films with Acicular Boehmite Powder[J]. Mater. Sci. Eng. B 2009,161:36-39.
    [168]T. Verho, C. Bower, P. Andrew, S. Franssila, O. Ikkala, R. H. A. Ras. Mechanically Durable Superhydrophobic Surfaces [J]. Adv. Mater.2011,23:673-678.
    [169]I. S. Bayer, A. Brown, A. Steele, E. Loth. Transforming Anaerobic Adhesives into Highly Durable and Abrasion Resistant Superhydrophobic Organoclay Nanocomposite Films:A New Hybrid Spray Adhesive for Tough Superhydrophobicity [J]. Appl. Phys. Express 2009,2:125003.
    [170]S. Hohne, C. Blank, A. Mensch, M. Thieme, R. Frenzel, H. Worch, M. Muller, F. Simon. Superhydrophobic Alumina Surfaces Based on Polymer-Stabilized Oxide Layers [J]. Macromol. Chem. Phys.2009,210:1263-1271.
    [171]M. Sasaki, N. Kieda, K. Katayama, K. Takeda, A. Nakajima, Processing and Properties of Transparent Super-hydrophobic Polymer Film with Low Surface Electric Resistance[J].J. Mater. Sci.2004,39:3717-3722.
    [172]J. Zimmermann, F. A. Reifler, U. Schrade, G. Artus, S. Seeger. Long Term Environmental Durability of a Superhydrophobic Silicone Nanofilament Coating[J]. Colloids Surf. A,2007, 302:234-240.
    [173]H. F. Meng, S. T. Wang, J. M. Xi, Z. Y. Tang, L. Jiang. Facile Means of Preparing Superamphiphobic Surfaces on Common Engineering Metals [J]. J. Phys. Chem. C,2008, 112:11454-11458.
    [174]T. Darmanin, F. Guittar. Molecular Design of Conductive Polymers To Modulate Superoleophobic Properties[J]. J. Am. Chem. Soc.,2009,131:7928-7933.
    [175]C. H. Xue, S. J. Jia, J. Zhang, J. Z. Ma. Large-area Fabrication of Superhydrophobic Surfaces for Practical Applications:an Overview[J].Sci.Technol.Adv.Mater..2010,11:033002.
    [176]M. J. Liu, S. T. Wang, Z. X. Wei, Y. L. Song, L. Jiang. Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface [J]. Adv. Mater.,2009,21:665-669.
    [177]J. P. Youngblood. N. R. Sottos, C. Extrand. Bioinspired Materials[J].MRS Bull. 2008.33:732-741.
    [178]M. Nosonovsky, B. Bhushan. Surface Self-organization:From Wear to Self-healing in Biological and Technical Surfaces [J].Appl. Surf. Sci.2010,256:3982-3987.
    [179]Y. Li, L. Li, J. Q. Sun. Bioinspired Self-Healing Superhydrophobic Coatings [J]. Angew. Chem.2010,122:6265-6269.
    [180]X. L. Wang, X. J. Liu, F. Zhou, W. M. Liu. Self-healing Superamphiphobicity[J]. Chem. Commun.,2011,47:2324-2326.
    [181]G. Blanco-Gomez, L. M. Flendrig, J. M. Cooper. Hysteresis and Reversibility of a Superhydrophobic Photopatternable Silicone Elastomer[J]. Langmuir 2010,26:7248-7253.
    [182]Q. Wang, J. L.Li, C. L. Zhang, X. Z. Qu, J. G. Liu, Z. Z. Yang.[J]. Regenerative Superhydrophobic Coating From Microcapsules[J]. J. Mater. Chem.,2010,20:3211-3215.
    [183]X. H. Men, Z. Z. Zhang, J. Yang, X. T. Zhu, K. Wang, W. Jiang. Spray-coated Superhydrophobic Coatings with Regenerability[J]. New J. Chem.,2011,35:881-886
    [1]R.H.Baney,M.Itoh,A.Sakakibara, T.Suzuki.Silsesquioxanes [J].Chem.Rev.,1995,95:1409-1430.
    [2]沈新春,王大喜,栗秀刚.聚倍半硅氧烷的研究现状和发展趋势[J].有机硅材料,2004,18,22-26.
    [3]李光亮.有机硅高分子化学[M].北京:科学出版社,1998:103.
    [4]刑文涛.酸催化聚倍半硅氧烷涂层的制备及其耐腐蚀性的研究[D].上海:复旦大学,2008.
    [5]刘磊.几种倍半硅氧烷的合成及其聚苯乙烯复合材料燃烧性能的研究[D].合肥:中国科学技术大学,2007.
    [6]Y. H. Xiu. Fabrication of Surface Micro and Nanostructures for Superhydrophobic Surfaces in Electric and Electronic Applications [D].Atlanta:Georgia Institute of Technology,2008.
    [7]N.J.Shirtcliffe, G.McHale, M.I.Newton, C.C.Perry.Intrinsically Superhydrophobic Organosilica Sol-Gel Foams [J].Langmuir,2003,19:5626-5631.
    [8]A.V.Rao, M. M. Kulkarni, D. P. Amalnerkar, T. Seth. Superhydrophobic Silica Aerogels Based on Methyltrimethoxysilane Precursor [J].J. Non-Cryst. Solids,2003,330:187-195.
    [9]A. V.Rao, S.D.Bhagat, H. Hirashima, G. M. Pajonk.Synthesis of Flexible Silica Aerogels Using Methyltrimethoxysilane (MTMS) Precursor[J].J.Colloid Interface Sci.,2006,300:279-285.
    [10]D. Y. Nadargi, S. S. Latthe, H. Hiroshima, A. V. Rao. Studies on Rheological Properties of Methyltriethoxysilane (MTES) Based Flexible Superhydrophobic Silica Aerogels [J]. Micropor.Mesopor. Mat.2009,17:617-626.
    [11]K. Nakanishi, N. Tanaka. Sol-Gel with Phase Separation. Hierarchically Porous Materials Optimized for High-Performance Liquid Chromatography Separations [J].Acc. Chem. Res., 2007,40:863-873.
    [12]H. S. Lim, J. H. Baek, K. Park, H.S. Shin, J. Y. Kim, J. H. Cho.Multifunctional Hybrid Fabrics with Thermally Stable Superhydrophobicity[J]. Adv. Mater.2010,22:2138-2141.
    [13]G. R. J. Artus. S. Jung, J. Zimmermann, H.P. Gautschi, K. Marquardt, S. Seeger. Silicone Nanofilaments and Their Application as Superhydrophobic Coatings [J].Adv. Mater.2006,18: 2758-2762.
    [14]L. C. Gao, T. J. McCarthy. A Perfectly Hydrophobic Surface (θA/θR=180°/180°) [J]. J. Am. Chem. Soc.2006,128:9052-9053.
    [15]M. M.Kulkarni, R.Bandyopadhyaya, A.Sharma.[J] J. Mater.Chem.,2008,18:1021-1028.
    [16]K.Kanamori, K.Nakanishi.Controlled Pore Formation in Organotrialkoxysilane-derived Hybrids:From Aerogels to Hierarchically Porous Monoliths [J]. Chem. Soc. Rev.,2011,40: 754-770.
    [17]K. Kanamori. M. Aizawa, K. Nakanishi, T. Hanada. New Transparent Methylsilsesquioxane Aerogels and Xerogels with Improved Mechanical Properties [J].Adv.Mater.,2007, 19:1589-1593.
    [18]K. Nakanishi. Pore Structure Control of Silica Gels Based on Phase Separation [J]. J. Porous Mater.,1997.4:67-112.
    [19]H. Kaji, K. Nakanishi, N.Soga. Polymerization-induced Phase Separation in Silica Sol-gel Systems Containing Formamide[J]. J. Sol-Gel Sci. Technol.1993,1:35-46.
    [20]G. Hasegawa, K. Kanamori, K. Nakanishi, T. Hanada. Facile Preparation of Transparent Monolithic TitaniaGels Utilizing a Chelating Ligand and Mineral Salts [J]. J. Sol-Gel Sci. Technol.,2010,53:59-66.
    [21]J. Konishi, K. Fujita, K. Nakanishi, K.Hirao. Phase-Separation-Induced Titania Monoliths with Well-Defined Macropores and Mesostructured Framework from Colloid-Derived Sol-Gel Systems [J]. Chem. Mater.,2006,18:864-866.
    [22]J. Konishi, K. Fujita, K. Nakanishi, K.Hirao. Monolithic TiO2 with Controlled Multiscale Porosity via a Template-Free Sol-Gel Process Accompanied by Phase Separation [J]. Chem. Mater.,2006,18:6069-6074.
    [23]Y. Tokudome, K. Fujita, K. Nakanishi, K. Miura,K.Hirao.Synthesis of Monolithic Al2O3 with Well-Defined Macropores and Mesostructured Skeletons via the Sol-Gel Process Accompanied by Phase Separation [J]. Chem. Mater.,2007,19:3393-3398.
    [24]Y. Tokudome, K. Nakanishi, K. Kanamori, K. Fujita, H. Akamatsu, T.Hanada.Structural Characterization of Hierarchically Porous Alumina Aerogel and XerogelMonoliths [J].J. Colloid Interface Sci.,2009,338:506-513.
    [25]J. Konishi, K. Fujita, S. Oiwa, K. Nakanishi, K. Hirao. Crystalline ZrO2 Monoliths with Well-Defined Macropores and Mesostructured Skeletons Prepared by Combining the Alkoxy-Derived Sol-Gel Process Accompanied by Phase Separation and the Solvothermal Process [J]. Chem. Mater.,2008,20:2165-2173.
    [26]K. Kanamori, K. Nakanishi, T. Hanada. Rigid MacroporousPoly(divinylbenzene) Monoliths with a Well-Defined Bicontinuous Morphology Prepared by Living Radical Polymerization [J]. Adv.Mater.,2006,18:2407-2411.
    [27]J. Hasegawa, K.Kanamori, K. Nakanishi, T. Hanada, S. Yamago. Pore formation in Poly(divinylbenzene) Networks Derived from Organotellurium-Mediated Living Radical Polymerization [J]. Macromolecules,2009,42:1270-1277.
    [28]J. Hasegawa, K.Kanamori, K. Nakanishi, T. Hanada, S. Yamago. Rigid Cross-Linked Polyacrylamide Monoliths with Well-Defined Macropores Synthesized by Living Polymerization [J]. Macromol. Rapid Commun.,2009,30:986-990.
    [29]H. J. Dong, M. A. Brook, J. D. Brennan. A New Route to Monolithic Methylsilsesquioxanes: Gelation Behavior of Methyltrimethoxysilane and Morphology of Resulting Methylsilsesquioxanes under One-Step and Two-Step Processing [J]. Chem. Mater.2005,17: 2807-2816.
    [30]N. J. Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry, P. Roach. Superhydrophobic to Superhydrophilic Transitions of Sol-gel Filmsfor Temperature, Alcohol or Surfactant Measurement [J].Mater. Chem. Phys.,2007,103:112-117.
    [31]H. J. Dong, J. D. Brennan. Controlling the Morphology of Methylsilsesquioxane Monoliths Using a Two-Step Processing Method [J].Chem. Mater.2006,18:541-546.
    [32]H. Budunoglu, A. Yildirim, M. O. Guler, M. Bayindir. Highly Transparent, Flexible, and Thermally Stable Superhydrophobic ORMOSIL Aerogel Thin Films [J].ACS Appl. Mater. Interfaces,2011,3:539-545.
    [33]A. V. Rao, S. S. Latthe, S. A.Mahadik, C.Kappenstein. Mechanically Stable and Corrosion Resistant Superhydrophobic Sol-gel Coatings on Copper Substrate [J].Appl.Surf.Sci.,2011, 257:5772-5776.
    [34]S. S. Latthe, H. Imai, V. Ganesan, A. V. Rao.Porous Superhydrophobic Silica Films by Sol-gel Process [J]. Micropor.Mesopor. Mat.2010,130:115-121.
    [35]A. V. Rao, A. B. Gurav, S. S. Latthe, R.S. Vhatkar, H.Imai,C.Kappenstein, P.B. Wagh, S. C.Gupt. Water repellent porous silica films by sol-gel dip coating method[J]. J. Colloid Interface Sci.,2010,352:30-35.
    [36]Y. H. Xiu, D. W. Hess, C.P. Wong. UV and Thermally Stable Superhydrophobic Coatings from Sol-gel Processing[J]. J. Colloid Interface Sci.2008,326:465-470.
    [37]Y. H. Xiu, D. W. Hess, C.P. Wong.UV-Resistant and Superhydrophobic Self-CleaningSurfaces Using Sol-Gel Processes [J]. J.Adhes. Sci. Technol.,2008,22:1907-1917.
    [38]C. J. Brinker. G. W. Scherer. Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing [M]. San Diego:Academic Press,1990.
    [39]H. J. Dong, R. F. Reidy, J. D. Brennan. Shrinkage and Springback Behavior of Methyl Silsesquioxanes Prepared by an Acid/Base Two-Step Processing Procedure[J]. Chem. Mater. 2005,17,6012-6017.
    [40]G. Das, P.Bettotti, L.Ferraioli, R. Raj, G. Mariotto, L.Pavesi, G. D.Soraru. Study of the Pyrolysis Process of an Hybrid CH3SiO1.5Gel into a SiCO Glass [J].Vib. Spectrosc.,2007,45: 61-68.
    [1]N. Wang, J. M. Xi, S. T. Wang, H. Liu, L. Feng, L. Jiang. Long-term and Thermally Stable Superhydrophobic Surfaces of Carbon Nanofibers[J]. J. Colloid Interface Sci.,2008,320: 365-368.
    [2]H.S. Lim, J. H. Baek, K. Park, H.S. Shin, J. Y. Kim, J. H. Cho. Multifunctional Hybrid Fabrics with Thermally Stable Superhydrophobicity [J]. Adv. Mater.2010,22:2138-2141.
    [3]喻桂朋.含芳基均三嗪环耐高温聚合物的研究[D].大连:大连理工大学,2009.
    [4]周其凤,范星河,谢晓峰.耐高温聚合物及其复合材料[M].北京:化学工业出版社,2004:9.
    [5]阎庆玲.杂萘联苯型聚芳醚耐高温绝缘漆和涂料的研究[D].大连:大连理工大学,2006.
    [6]Z.Z. Luo, Z. Z. Zhang, L.T. Hu, W. M. Liu, Z. G. Guo, H.J. Zhang, W. J. Wang. Stable Bionic Superhydrophobic Coating Surface Fabricated by a Conventional Curing Process [J]. Adv. Mater.2008,20,970-974.
    [7]杨逢春.新型系列化不对称芳香二胺及其可溶性聚酰亚胺的设计,合成与性能研究[D].兰州:兰州大学,2010.
    [8]蒋大伟,姜其斌,刘跃军,李强军.聚酰亚胺的研究及应用进展[J].绝缘材料2009,42(2):33
    [9]刘金刚,袁向文,尹志华,左立辉,杨士勇.正性光敏聚酰亚胺研究与应用进展(一)[J].电子与封装2008,8(12):1-6
    [10]刘金刚,袁向文,尹志华,左立辉,杨士勇.正性光敏聚酰亚胺研究与应用进展(二)[J].电子与封装2009,9(1):7
    [11]赵燕.具有特殊润湿性能的聚合物基界面材料的构筑:表面化学组成与微观几何结构[D].上海:上海交通大学,2008.
    [12]施政余.聚酰亚胺基超疏水涂层的制备及其润湿性能研究[D].上海:上海交通大学,2009.
    [13]H. Budunoglu, A. Yildirim, M. O. Guler, M. Bayindir. Highly Transparent, Flexible, and Thermally Stable Superhydrophobic ORMOSIL Aerogel Thin Films [J].ACS Appl. Mater. Interfaces,2011,3:539-545.
    [14]任忠杰.超分子构筑调控合成高规整梯形聚硅氧烷[D].北京:中国科学院化学研究所,2009.
    [15]K. Takahashi, K. Tadanaga, A. Hayashi, A. Matsuda, M. Tatsumisago. Glass Transition and Thermal Softening of Poly(phenylsilsesquioxane) Particles Prepared Using Two-step Acid-base Catalyzed Sol-gel Process[J]. J. Non-Crystalline Solids 2008,354:700-704.
    [16]Z. S. Xie, D. R. Dai, R. B. Zhang. Syntheses of the Soluble, High Molecular Weight and Ladderlike Polyphenylsilsesquioxane and Copolymethylphenylsilsesquioxanes by Preammino-lysis Method [J]. Chinese J. Polym. Sci.,1991,9:266-272.
    [17]曹建明,马志义.喷雾中液滴破裂机理的研究[J].车用发动机,1997(4):11-14.
    [18]王喜忠.喷雾干燥(第二版)[M].北京:化学工业出版社,2003.
    [19]姚悦.高粘度流体气力雾化机理及试验研究[D].杭州:浙江大学,2006.
    [20]C. H. Lee, R. D. Reitz. An Experimental Study of the Effect of Gas Density on the Distortion and Breakup Mechanism of Drops in High Speed Gas Stream[J]. Int. J. Multiphas. Flow,2000, 26:229-224.
    [21]M. Pilch, C.A. Erdman. Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-induced Breakup of a Liquid Drop[J]. Int. J. Multiphas. Flow,1987,13:741-757.
    [22]A. A. Ranger, J. A. Nicholls. Aerodynamic Shattering of Liquid Drops[J].AIAA J.1969,7:285-290.
    [23]J.O. Hinze. Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes[J]. AIChE. J.1955,1:289-295.
    [24]D. D. Joseph, J. Belanger, G. S. Beavers. Breakup of a Liquid Drop Suddenly Exposed to a High-speed Airstream[J]. Int. J. Multiphas. Flow,1999,25:1263-1303.
    [25]S. S. Hwang, Z. Liu, R. D. Reitz. Breakup Mechanisms and Drag Coefficients of High-speed Vaporizing Liquid Drops [J]. Atomization Spray,1996,6:353-376.
    [26]梅会波.喷涂过程参数及涂料微粒化对涂膜外观的影响[J].重庆电镀与涂料涂装,2007,89(2):38-40.
    [27]J. F. Brown Jr., L. H. Vogt Jr., A. Katchman, J. W. Eustance, K. M. Kiser, K. W. Krantz. Double Chain Polymers of Phenylsilsesquioxane[J]. J. Am. Chem. Soc.,1960,82:6194-6195.
    [28]X. S. Zhang, L. H. Shi, C. R. Huang. More on the Structure of Polyphenylsilsesquioxanes[J]. Chinese J. Polym. Sci.,1987,5:353-358.
    [29]X. S. Zhang, S. M. Chen, L. H. Shi. Studie on Regularity of Polyphenylsilsesquioxane Chains [J]. Chinese J. Polym. Sci.,1987,5:162-168.
    [30]张晓艳.耐高温有机硅树脂及其固化体系的研究[D]一北京:北京航空材料研究院,2000.
    [31]X. S. Zhang, L. H. Shi, S. Q. Li, Y. Z. Lin. Thermal Stability and Kinetics of Decomposition of Polyphenylsilsesquioxanes and Some Related Polymers[J].Polym. Degradation Stab.,1988, 20:157-172.
    [32]J. Macan, K. Tadanaga, M. Tatsumisago.Influence of Copolymerization with Alkytrialkoxysilanes on Condensation and Thermal Behaviour of Poly(phenylsilsesquioxane) Particles[J].J. Sol-Gel Sci. Technol.,2010,53:31-37.
    [33]L. A. S. De. A. Prado, E. Radovanovic, H. O. Pastore, I. V. P. Yoshida, I. L. Torriani, Poly(phenylsilsesquioxane)s:Structure and Morphological Characterization [J].J. Polym. Sci. Part A.,2000,38:1580-1589.
    [34]E. Lesniak, Z. M. Michalska, J. Chojnowski. One-Step Synthesis of Thermoplastic Phenylsilsesquioxane Polymer and Its Copolymers with Diphenylsiloxanes[J]. J. Inorg. Organomet. Polym.,1998,8:1-21.
    [35]顾惕人,朱步瑶,李外郎,马季铭,戴乐蓉,程虎民.表面化学[M].北京:科学出版社,1994:15.
    [36]H. Y. Erbil, A. L. Demirel, Y. Avci, O. Mert. Transformation of a Simple Plastic into a Superhydrophobic Surface [J].Science,2003,299:1377-1380.
    [37]Q. D. Xie, J. Xu, L. Feng, L. Jiang, W. H. Tang, X. D. Luo, C. C. Han. Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure [J].Adv. Mater.,2004,16, 302-305.
    [1]龚春红.特种形貌超细镍晶材料的制备及其电磁性能研究[D].开封:河南大学,2008.
    [2]郭鹞.漫谈电磁辐射生物效应[J].疾病控制杂志,2002,6(S):1-8.
    [3]韩毓旺,侯亚义,都有为.生物电磁特性与电磁生物学效应的概述及最新进展[J].自然杂志,2010,32(6):319-331.
    [4]管登高,防电磁信息泄密宽频带电磁波屏蔽集成复合材料研究[D].成都:四川大学,2004.
    [5]D. D. L. Chung. Electromagnetic Interference Shielding Effectiveness of Carbon Materials [J]. Carbon,2001,39:279-285.
    [6]X. P. Shui, D. D. L. Chung. Nickel Filament Polymer-matrix Composites with Low Surface Impedance and High Electromagnetic Interference Shielding Effectiveness[J]. J.Electron.Mater., 1997,26:928-934.
    [7]M. Sasaki, N. Kieda, K. Katayama, K. Takeda, A. Nakajuma. Processing and Properties of Transparent Super-hydrophobic Polymer Film with Low Surface Electric Resistance [J].J.Mater.Sci.,2004,39:3717-3722.
    [8]A. Das, H. T. Hayvaci, M. K. Tiwari, I. S. Bayer, D. Erricolo, C. M. Megaridis. Superhydrophobic and Conductive Carbon Nanofiber/PTFE Composite Coatings for EMI Shielding[J]. J. Colloid Interface Sci.,2011,353:311-315.
    [9]孙恒慧,包宗明.半导体物理实验[M].北京:高等教育出版社,1985:21.
    [10]S.P. Rwei, F. H. Ku, K. C. Cheng. Dispersion of Carbon Black in a Continuous Phase: Electrical, Rheological, and Morphological Studies [J]. Colloid Polym Sci,2002,280: 1110-1115.
    [11]袁霞,房宽峻.碳黑亲水性改性的研究进展[J].化工进展,2007,26(5):657-663.
    [12]H. Darmstadt, C. Roy. Surface Spectroscopic Study of Basic Sites on Carbon Blacks [J]. Carbon,2003,41:2662-2665.
    [13]叶宏.碳黑/PDMS复合渗透蒸发膜的制备及脱醇性能研究[D].北京:北京化工大学,2005.
    [14]BYK 9076/9077 Data Sheet.
    [15]章基凯.有机硅材料[M].北京:中国物资出版社,1999:227-231.
    [16]J. H. Zhang, J. M. Wang, Y. Zhao, L. Xu, X. F. Gao, Y. M. Zheng, L. Jiang. How Does the Leaf Margin Make the Lotus Surface Dry as the Lotus Leaf Floats on Water?[J]. Soft Matter, 2008,4:2232-2237.
    [17]X. D. Zhao, H. M. Fan, X. Y. Liu, H. H. Pan, H. Y. Xu. Pattern-Dependent Tunable Adhesion of Superhydrophobic MnO2 Nanostructured Film[J]. Langmuir 2011,27:3224-3228.
    [18]M.J. Liu, Y. M. Zheng, J. Zhai, L. Jiang. Bioinspired Super-antiwetting Interfaces with Special Liquid-Solid Adhesion[J]. Ace. Chem. Res.,2010,43:368-377.
    [19]M. K. Dawood, H. Zheng, T. H. Liew. Mimicking Both Petal and Lotus Effects on a Single Silicon Substrate by Tuning the Wettability of Nanostructured Surfaces[J]. Langmuir 2011, 27:4126-4133.
    [20]K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, R. J. Full. Adhesive Force of a Single Gecko Foot-hair[J].Nature,2000,405:681-685.
    [21]X. Hong, X. F. Gao, L. Jiang. Application of Superhydrophobic Surface with High Adhesive Force in No Lost Transport of Superparamagnetic Microdroplet [J]. J. Am. Chem. Soc.2007, 129:1478-1479.
    [22]L. Feng, Y. N. Zhang, J. M. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang. Petal Effect:A Superhydrophobic State with High Adhesive Force [J]. Langmuir 2008,24:4114-4119.
    [23]B. Bhushan, E. K. Her. Fabrication of Superhydrophobic Surfaces with High and Low Adhesion Inspired from Rose Petal [J]. Langmuir 2010,26:8207-8217.
    [24]李鹏.电磁波屏蔽橡胶的导电机理与屏蔽性能研究[D],大连:大连理工大学,2005.
    [25]杨士元.电磁屏蔽理论与实践.[M].北京:国防工业出版社,2006:126-128.
    [26]施政余.聚酰亚胺基超疏水涂层的制备及其润湿性能研究[D].上海:上海交通大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700