表面引发自由基聚合法制备聚离子液体刷
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
润湿性是材料表面的重要特征之一。影响材料表面润湿性的主要因素有:材料表面能、表面粗糙度以及表面微细结构,其中低表面能材料是制备超疏水性的基本条件,表面粗糙度和表面微细结构是决定性因素。寻求和制备高表面自由能或低表面自由能的固体表面成为制备超亲水和超疏水的前提条件。
     本文以季铵盐型离子液体为研究对象,利用自由基聚合方法在固体硅片表面制备了微纳米结构的聚离子液体刷,对硅片表面润湿性进行了改性。
     1.对离子液体的种类、物理化学性质及其应用研究进展进行了综述,简要介绍了常见的活性自由基聚合方法在材料改性中的应用。
     2.合成了季铵型离子液体单体烯丙基三乙基六氟磷酸铵,利用表面引发反向原子转移自由基聚合(Surface initiate reverse atom transfer radical polymerization)方法,以CuCl_2/Bpy/AIBN作为催化体系,将其接枝于硅片表面,制得了聚合季铵型离子液体刷。利用凝胶渗透色谱仪(GPC)、椭圆偏光仪、静态接触角测定仪、傅里叶变换衰减红外光谱(ATR-FTIR)、X射线光电子能谱(XPS)、原子力显微镜(AFM)对聚合物分子量,聚合物膜等进行了表征。结果表明,聚合离子液体膜表面的润湿性与离子液体的种类及取代基碳链长度密切相关。
     3.通过氮氧自由基聚合法,在硅片表面成功聚合了ADMBA-Cl离子液体。结果表明,此种离子液体修饰的硅片表现出亲水性,通过氮氧自由基聚合法在硅片表面制备的聚离子液体薄膜与原子转移自由基聚合法制得的薄膜,表面形貌有很大不同,后者空隙较大,表面呈现均匀而致密的刷型,称之为聚合物刷,而前者表面空隙非常小,表面致密而且平整,可以将其称为聚合物膜。
     4.通过表面引发原子转移自由基聚合或表面引发反向原子转移自由基聚合,将ATEA-PF_6,VBTEA-PF_6,ADMBA-PF_6,和VBDMBA-PF_6四种季铵型离子液体,自组装在硅片表面。结果表明,聚合离子液体刷表面的静态水接触角因离子液体种类的不同而不同。
Wettability is an important feature of surface. The main factors influencing the surface wettability are surface energy, surface roughness, and surface micro-nano structure, in which low surface energy is the basic conditions for preparing super-hydrophobic surface, surface roughness and surface micro-nano structure are decisive factors.
     In this thesis, some quaternary ammonium ionic liquid brushes have been successfully grafted by surface-initiated radical polymerizations on single crystal silicon surface, their surface wettability was discussed in detail.
     Part one: Types, physical and chemical properties, and relative application investigation advances of ionic liquids including several living radical polymerization were reviewed.
     Part two: Quaternary ammonium poly(ionic liquid) brushes have successfully been grafted onto silicon surface by surface initiate reverse atom transfer radical polymerization with CuCl_2/Bpy/AIBN as catalytic system and N-allyl-N,N,N-triethyl ammonium hexafluorophosphate as monomer. Surface properties of the polymer film and the polymer molecular weight are characterized by the ellipsometry,static water contact angle measurement , fourier transform infrared spectroscopy(ATR-FTIR) , X-ray photoelectron spectroscopy(XPS), atomic force microscope(AFM) and gel permeation chromatography (GPC). The results showed that the surface wettability of the poly(ionic liquid) films was closely related to the type of ionic liquids and length of the substitutes.
     Part three: poly(N-Allyl-N,N-dimethylbenzenaminium chloride, ADMBA-Cl) film was successfully grafted on silicon surface by NMP. The silicon surface modified with this ionic liquid showed hydrophilic. Compared with the film prepared by atomic transfer radical polymerization, this fim was more dense, smooth and homogeneous.
     Part four: Four kinds of quaternary ammonium ionic liquids monomers, allyltriethylamine hexafluorophosphate(ATEA-PF_6), (p-vinylbenzyl)triethylammonium hexafluorophosphate (VBTEA-PF_6), N-allyl-N,N-dimethyl-N-benzenammonium hexafluorophosphat(eADMBA-PF_6) and (p-vinylbenzyl)- N,N- dimethylbenzenaminium hexafluorophosphate(VBDMBA-PF_6) were synthesized and grafted on silicon surface The results indicated that the surface wettability of the films was closely related to the structures of the ionic liquids.
引文
[1] Welton T. Room-temperature ionic liquid. Solvents for synthesis and catalysis[J]. Chem Rev, 1999, 99(8): 2071-2083.
    [2] Walden P. Molecular weights and electrical conductivity of several fused salts[J]. Bull Acad Imper Sci (St. Petersburg), 1914, 1800: 405-422.
    [3] Sugden S, Wilkins H. The parachor and chemical constitutionⅫ: Fused metals and salts[J]. J Chem Soc, 1929: 1291-1298.
    [4]张晓果,周庆祥.离子液体及其在萃取分离中的应用.河南师范大学学报(自然科学版), 2001, 38(1): 109-112.
    [5] Seddon K R. Ionic liquids for clean technology[J]. J Chem Technol Biotechnol, 1997, 68: 351-356.
    [6] Dean J. A.. Lange’s handbook of chemistry[M]. McGraw Hill Book Co., New York, NY, 1985: 1477-1484.
    [7]李汝雄,王建基.离子液体与相关聚合物电解质研究进展[J].化工新型材料,2002, 30(9): 13-16.
    [8] Wikes J. S, Zaworotko M. J. Air and water stable1, ethyl-3-methylimidazolium based ionic liquids[J]. J Chem Soc, Chem Commun, 1992: 965-967.
    [9] Olivier H.. Recent developments in the use of non-aqueous ionic liquids for two-phase catalysis[J]. J Mol Catal A:Chem, 1999, 146: 285-289.
    [10] Wasserscheid P., Keim W.. Ionic liquids—New“solutions”for transition metal catalysis[J]. Angew Chem, Int Ed, 2000, 39(21): 3772-3789.
    [11] Earle M.J., Seddon K. R.. Ionic liquids: Green solvents for the future[J]. Pure Appl Chem, 2000, 72: 1391-1398.
    [12] Sheldon R. Catalytic reactions in ionic liquids[J]. Chem Commun, 2001, 399-2407.
    [13] Olivier B.H., Magan L.. Ionic liquids: perspectives for organic and catalytic reactions[J]. J Mol Catal A:Chem, 2002, 182-183: 419-437.
    [14] Gordon C.M.. New developments in catalysis using ionic liquids[J]. Appl Catal A: Gen, 2001, 222: 101-117.
    [15]翁建阳.新型季铵性离子液体的合成及其应用[D].浙江大学硕士学位论文, 2006.
    [16]王均凤,张锁江,陈慧萍,等.离子液体的性质及其在催化反应中的应用[J].过程工程学报, 2003, 3(2): 177-185.
    [17]周雅文,邓宇,尚海萍,韩德新.离子液体的性质及其应用[J].杭州化工, 2009, 39(3): 7-10.
    [18]李淑彩.离子液体数据库及结构-性质关系研究[D].河南大学研究生硕士学位论文, 2007.
    [19]石家华,孙逊,杨春和,等.离子液体研究进展[J].化学通报, 2002, 4: 243-250.
    [20]姜勇.胺型离子液体合成及其在纳米材料制备中的应用[D].江苏大学硕士学位论文. 2010.
    [21]桑潇.离子液体的物理化学性质研究[J].科技信息, 2008, 6: 257-258.
    [22] Crofts D, Dyson P J, Sanderson K M, et al. Chlorouminate(Ⅲ) ionic liquid medioated synthesis of transition metal-cyclophane; complexes: their role as solvent and lewis acid catalyst[J]. J Organomet Chem, 1999, 573: 292-298.
    [23] Wasserscheid P, Keim W. Ionic liquids—new“solutions”for transition metal catalysis[J]. Angew Chem Int Ed, 2000, 39: 3772-3789.
    [24] Tang J. B., Tang H. D., Sun. W. L., et al. Low-pressure CO2 sorption in ammonium-based poly (ionic liquid)s[J]. Polymer, 2005, 46: 12460-12467.
    [25] Tang J. B., Shen Y. Q., Radosz M., et al. Isothermal carbon dioxide sorption in poly (ionic liquid)s[J]. Ind Eng Chem Res, 2009, 48: 9113-9118.
    [26] Bonh?te P, Dias A P, Papageorigiou N, et al. Hydrophobic, highly conductive ambient-temperature molten salts[J]. Inorg Chem, 1996, 35(5): 1168-1178.
    [27] Katayama Y, Dan S., Miura t., et al. Electrochemical behavior of silver in 1-ethyl-3-methylimidazolium tetrafluoroborate molten salt[J]. J Electrochem Soc, 2001, 148: C102-C105.
    [28] Huddleston J. G., Rogers R. D.. Room temperature ionic liquids as novel media for‘clean’liquid-liquid extraction[J]. Chem Commun, 1998, 16: 1765-1766.
    [29] Fei Z F, geldbach T J, zhao D B,et al. From dysfunetion to Bis-funetion: on thedesign and applications of fuctionalised ionic liquids[J]. Chem Eur J, 2006, 12(8): 2122-2130.
    [30]王强.离子液体的应用及功能型离子液体的合成[D].浙江大学硕士学位论文, 2004.
    [31]付新梅,戴树桂,张余.离子液体与传统有机溶剂萃取性能的比较研究[J].分析化学研究报告, 2006, 34(5): 598-602.
    [32] Fadeev A G, Meagher M M. Opportunities for ionic liquids in recovery of biofuels[J]. Chem Commun, 2001(3): 295-296.
    [33] Dai S, Ju Y. H., Barnes C. E.. Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids[J]. J Chem Soc, Dalton Trans, 1999: 1201-1202
    [34] Chun S, Dzyuba S V, Bartsch R A. Influence of Structural Variation in Room-Temperature Ionic Liquids on the Selectivity and Efficiency of Competitive Alkali Metal Salt Extraction by a Crown Ether[J]. Anal Chem, 2001,73(15): 3737-3741.
    [35] Armstrong D W, He L F, Liu Y S. Examination of Ionic Liquids and Their Interaction with Molecules, When Used as Stationary Phases in Gas Chromatography[J]. Anal Chem, 1999, 71(17): 3873-3876.
    [36] Berthod A., He L F, Armstrong D. W.. Ionic liquids as stationary phase solvents for methylated cyclodextrins in gas chromatography[J]. Chromatographla, 2001, 53: 63-68
    [37]孙伟,高瑞芳,焦奎.离子液体在分析化学中的应用研究进展[J].分析化学评述与进展, 2007, 35: 1813-1819.
    [38]上官小东,汤宏胜,刘锐晓,等.离子液体及其在电分析化学中的应用[J].分析化学评述与进展, 2010, 38(10): 1510-1516.
    [39]丘坤元.自由基聚合近20年的发展[J].高分子通报, 2008, 7: 15-28.
    [40]丘坤元.控制/活性自由基聚合的进展[J].大学化学, 2006, 21(4): 11-14.
    [41] Otsu T. Iniferter Concept and Living Radical Polymerization[J]. J Polym Sci Part A: Polym Chem, 2000, 38: 2121-2136.
    [42] Otsu T., Yoshida M., Makromol. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: polymer design by organic disulfides as iniferters[J]. Makromo Chem, Rapid Commun, 1982, 3(2): 127-132.
    [43] Otsu T., Yoshida M., Tazaki T., et al. A model for living radical polymerization[J]. Makromol Chem, Rapid Commun, 1982, 3(2): 133-140.
    [44]杨文君,李俊柏,沈家骢.大分子引发—转移—终止剂[J].高分子学报,1994, 5: 636-640.
    [45] Georges M K,Veregin R P N, Kazmaier P M, et al. Narrow molecular weight resins by a free radical polymerization[J]. Macromolecules, 1993, 26(11): 2987-2988.
    [46]黎宝恩,卢江.活性自由基聚合在高分子合成中的应用.中山大学学报(自然科学版), 2001, 40(5): 68-71.
    [47]张兆斌,应圣康.“活性”自由基聚合的研究现状及发展趋势[J].上海化工, 1999, 13: 26-27.
    [48] Wang J S,Matyjaszewski K. Controlled/“living”radical polymerization in the presence of transition-metal complexes[J]. J Am Chem Soc, 1995, 117(20): 5614-5615.
    [49] Matyjaszewski K, Xia J H. Atom transfer radical polymerization[J]. Chem Rev, 2001, 101(9): 2921-2990.
    [50]张兆斌,应圣康.原子转移自由基聚合及可控自由基聚合[J].高分子通报, 1999, 3: 138-144.
    [51] Xia J. H., Matyjaszewski K. Controlled/“Living”radical polymerization. Homogeneous reverse atom transfer radical polymerization using AIBN as the initiator[J]. Macromolecules, 1997, 30(25): 7692-7696.
    [52]郭立娟,刘义刚,郭拥军,等.反向原子转移自由基聚合反应体系及其研究进展[J].广州化工,2010, 38(6): 5-12.
    [53]唐燕春,艾长军,马敬红,等.原子转移自由基聚合机理及其应用[J].合成技术及应用, 2007, 22(4): 38-40.
    [54]秦东奇,丘坤元.含有热引发转移终止剂的引发体系在反向原子转移自由基聚合中的应用[J].高分子学报, 2001, 3: 281-287.
    [55] Qin D Q , Qin S H, Qiu K Y. A reverse ATRP process with a hexasubstituted ethane thermal iniferter diethyl 2,3-dicyano-2,3-di(p-tolyl)succinate as the initiator[J]. Macromolecules, 2000, 33(19): 6987-6992.
    [56] Qin D Q, Qin S H, Chen X P,et al. Living/controlled radical polymerization of methyl methacrylate by reverse ATRP with DCDPS/FeCl3/PPh3 initiating system[J]. Polymer, 2000, 41: 7347-7353.
    [57] Min K, Gao H F, Matyjaszewski K. Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron t ransfer ( AGET ) [J]. J Am Chem Soc, 2005, 127(11): 3825-3830.
    [58] Jakubowski W, Matyjaszewski K. Activator Generated by Electron Transfer for Atom Transfer Radical Polymerization[J]. Macromolecules, 2005, 38(10): 4139-4146.
    [59]张立斌,熊邦虎,冯新泸,等.用电子转移活化再生原子转移自由基聚合制备含氟丙烯酸酯共聚物及其表征[J].合成橡胶工业, 2010, 33(1): 24-28.
    [60]王银豪,蒋学,黄丹.原子转移自由基聚合的研究新进展—AGET ATRP[J].现代化功, 2010, 30(1): 15-19.
    [61] Hawthorne D G, Moad G, Rizzardo E, et al . Living radical polymerization with reversible addition?fragmentation chain transfer (RAFT): direct ESR observation of intermediate radicals[J]. Macromolecules, 1999, 32(16): 5457-5459.
    [62] Lowe A B., McCormick C L.. Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media[J]. Prog Polym Sci, 2007, 32(3): 283–351.
    [63]吴晓明,霍冀川,雷永林.可逆加成-断裂链转移(RAFT)聚合的研究进展[J].广东化工, 2010, 37(3): 9-11.
    [64]王平华,张斌,唐龙祥,等.可逆加成-断裂链转移活性自由基聚合[J].高分子材料科学与工程, 2006, 22(5): 109-112.
    [65]施政余,李梅,赵燕,等.润湿性可控智能表面的研究进展[J].材料研究学报, 2008, 22(6): 561-571.
    [66] Nakajima A, Hashimoto K, Watanabe T . Recent studies on super-hydrophobic films[ J]. Monatsh Chem, 2001, 132: 31- 41.
    [67]江雷.从自然到仿生的超疏水纳米界面材料[J].化工进展, 2003, 22(12): 1258-1 264.
    [68] Liu B, He Y N, Fan Y, et al. Fabricating Super-hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting[J]. Communication, 2006, 27(21): 1859-1864.
    [69]李小兵,刘莹.材料表面润湿性的控制与制备技术[J].材料工程, 2008, 4: 74-80.
    [70]宣明,刘承烈.改善表面润湿性的研究[J].光学机械, 1992, 3: 63-69.
    [71] Chen T.H., Chuang Y.J., Chieng C.C., et al. A wettability switchable surface by microscale surface morphology change[J]. J Micromech Microeng, 2007, 17, 489-495.
    [72] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind Eng Chem, 1936, 28(8): 988-994.
    [73] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans Faraday SOC. 1944, 40: 546-551.
    [74] Jopp J., Grüll H., Yerushalmi-Rozen R.. Wetting behavior of water droplets on hydrophobic microtextures of comparable size[J]. Langmuir, 2004, 20(23): 10015-10019.
    [75] Bico J., Thiele U., QuéréD.. Wetting of textured surfaces[J]. Colloids Surf A, 2002, 206: 41-46.
    [76] Johnson R. E., Dettre R. H.. Contact Angle Hysteresis. Contact Angle, Wettability, and Adhesion; Fowkes[M], F. M., Ed.; Advances in Chemistry Series 43; American Chemical Society: Washington, DC, 1964: 112-135.
    [77] QuéréD. Rough ideas on wetting[J]. Physica A. 2002, 313(1-2): 32-46.
    [78] QuéréD, Lafuma A, Bico J. Slippy and sticky microtextured solids[J], Nanotechnology, 2003, 14: 1109-1112.
    [79] He B., Patankar N.A., Lee J.. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces[J]. Langmuir, 2003,19(12): 4999-5003.
    [80] Bico J., Marzolin C., QuéréD.. Pearl drops[J]. Europhys Lett, 1999, 47(2): 220-226.
    [81] Patankar N.A.. On the modeling of hydrophobic contact angles on rough surfaces[J]. Langmuir, 2003, 19(4): 1249-1253.
    [82] Patankar N.A.. Transition between superhydrophobic states on rough surfaces[J]. Langmuir, 2004, 20(17): 7097-7102.
    [83]裴明德.铜铝表面的浸润改性研究[D].北京工业大学硕士学位论文, 201005.
    [84] Marmur A.. The lotus effect: Superhydrophobicity and metastability[J]. Langmuir, 2004, 20(9): 3517-3519.
    [85] Miwa M., Nakajima A., Fujishima A., et al. Effects of the surface roughness on siliding angles of water droplets on superhydrophobic surface[J]. Langmuir, 2000, 16(13): 5754-5760.
    [86] Furmidge C.G.L.. Studies at phase interfaces.I. The sliding of liquid drops on solid surface and a theory for spray retention[J]. J Colloid Sci, 1962, 17: 309-324.
    [87] Gu Z.Z., Uetsuka H., Takahashi K., et al. Structural color and the lotus effect[J]. Angew Chem Int Ed, 2003, 42(8): 894-897.
    [1] Walden P. Molecular Weights and Electrical Conductivity of Several Fused Salts[J]. Bull Acad Imper Sci (St. Petersburg), 1914, 1800: 405-422.
    [2] Seddon K R. Ionic liquids for clean technology[J]. J Chem Technol Biotechnol, 1997, 68: 351-356.
    [3]李汝雄,王建基.离子液体与相关聚合物电解质研究进展[J].化工新型材料, 2002, 30(9): 13-16.
    [4]石家华,孙逊,杨春和,等.离子液体研究进展[J].化学通报, 2002, 65(4): 243-250.
    [5]张星辰,等.离子液体——从理论基础到研究进展[M],北京:化学工业出版社, 2009.
    [6] Tang J B, Tang H D, Sun W L, et al. Low-pressure CO2 sorption in ammonium-based poly (ionic liquid)s[J]. Polymer, 2005, 46: 12460-12467.
    [7] Wang J S, Matyjaszewski K. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes[J]. J Am Chem Soc, 1995, 117(20): 5614-5615.
    [8]韩素玉,朱学旺,张妍,等.原子转移自由基聚合研究进展[J].河北化工, 2006, 29(8): 9-12.
    [9] Jennings G K, Brantley E L. Physicochemical properties of surface-initiated polymer films in the modification and processing of materials[J]. Adv Mater, 2004, 16(22): 1983-1994.
    [10] Milner S T. Polymer brushes[J]. Science, 1991, 251: 905-914.
    [11] Ingall M D K, Honeyman C H, Mercure J V, et al. Surface functionalization and imaging using monolayers and surface-grafted polymer layers[J]. J Am Chem Soc, 1999, 121: 3607-3613.
    [12]彭锦雯,邓卫星.亲水性聚合物刷通过原子转移自由基聚合以化学键接方式接枝在单晶硅表面[J].湖北大学学报(自然科学版), 2008, 30(3): 280-283.
    [13] Moineau G, Dubois Ph, Jér?me R, et al. Alternative atom transfer radicalpolymerization for MMA using FeCl3 and AIBN in the presence of triphenylphosphine: An easy way to well-controlled PMMA[J]. Macromolecules, 1998, 31: 545-547.
    [14] Li M, Min K, Matyjaszewski K. ATRP in waterborne miniemulsion via a simultaneous reverse and normal initiation process [J]. Macromolecules, 2004, 37: 2106-2112.
    [15] Sun Y, Ding X, Zheng Z, et al. Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles[J]. Eur Polym J, 2007, 43: 762-772.
    [16] He X Y, Yang W, Pei X W. Preparation, characterization, and tunable wettability of poly(ionic liquid) brushes via surface-initiated atom transfer radical polymerization[J]. Macromolecules, 2008, 41: 4615-4621.
    [17]杨武,何小敬,郭昊,等.反向原子转移自由基聚合法在铜表面接枝聚离子液体刷[J].西北师范大学学报(自然科学版), 2010, 46(3): 52-57.
    [18] Seddon K R, Stark A, Torres M J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids[J]. Pure Appl Chem, 2000, 72: 2275-2287.
    [19] Werne V, Patten T E. Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/“living”radical polymerizations from surfaces[J]. J Am Chem Soc, 2001, 123: 7497-7505.
    [20] Yi Z, Pan K, Jiang L, et al. Copper-based reverse ATRP process of styrene in mixed solvents[J]. Eur Polym J, 2007, 43: 2557-2563.
    [1]朱元右.等离子体技术在金属材料表面改性中的应用[J].机械, 2003, 30(6): 68-72.
    [2]沈钟.固体表面改性及其应用,第二讲:表面改性方法和机理[J].化工进展, 1993, 5: 44-50.
    [3] (a) Zhou Q Y, Wang S X, Fan X W, et al. Living anionic surface-initiated polymerization (LASIP) of a polymer on silica nanoparticles[J]. Langmuir, 2002, 18(8): 3324-3331. (b) Joubert M, Delaite C, Bourgeat-Lami E, et al. Ring-opening polymerization ofε-caprolactone and L-lactide from silica nanoparticles surface[J]. J Polym Sci Part A, 2004, 42: 1976-1984.
    [4] Low S M, Goh S H, Lee S T, et al. Miscible blends of poly(n-vinyl-2-pyrrolidone) with poly(3-chloropropyl methacrylate), poly(2-bromoethyl methacrylate) and poly(2-iodoethyl methacrylate) [J]. Polym Bull, 1994, 32:187-192.
    [5] (a) Prucker O, Ru¨he J. Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators[J]. Macromolecules, 1998, 31(3): 592-601. (b) Prucker O, Ru¨he J. Mechanism of Radical Chain Polymerizations Initiated by Azo Compounds Covalently Bound to the Surface of Spherical Particles[J]. Macromolecules, 1998, 31(3): 602-613.
    [6] Zheng G D, Sto..ver H.D.H.. Grafting of polystyrene from narrow disperse polymer particles by surface-initiated atom transfer radical polymerization[J]. Macromolecules, 2002, 35(18): 6828-6834.
    [7] Zheng G D, St?ver H.D.H.. Grafting of poly(alkyl (meth)acrylates) from swellable poly(DVB80-co-HEMA) microspheres by atom transfer radical polymerization[J]. Macromolecules, 2002, 35(20): 7612-7619.
    [8] Zheng G D, St?ver H.D.H.. Grafting of poly(ε-caprolactone) and poly(ε-caprolactone-block-(dimethylamino)ethyl methacrylate) from polymermicrospheres by ring-opening polymerization and ATRP[J]. Macromolecules, 2003, 36(20): 7439-7445.
    [9] He X Y, Yang W, Pei X W. Preparation, characterization, and tunable wettability of poly(ionic liquid) brushes via surface-initiated atom transfer radical polymerization[J]. Macromolecules, 2008, 41(13): 4615-4621.
    [10] Perrier S, Takolpuckdee P, Mars C.A. Reversible addition?fragmentation chain transfer polymerization mediated by a solid supported chain transfer agent[J]. Macromolecules, 2005, 38: 6770-6774.
    [11] Bian K., Cunningham M. F.. Surface-initiated nitroxide-mediated radical polymerization of 2-(dimethylamino)ethyl acrylate on polymeric microspheres[J]. Polymer, 2006, 47: 5744-5753.
    [12]倪刚,杨武,薄丽丽,等.表面引发氮氧自由基聚合反应制备聚苯乙烯/SiO2纳米复合材料[J].科学通报, 2006, 51(10): 1234-1236.
    [13] Ma J. W., Smitha J. A., McAuleya K. B., et al. Nitroxide-mediated radical polymerization of styrene in miniemulsion:model studies of alkoxyamine-initiated systems[J]. Chem Eng Sci, 2003, 58: 1163-1176.
    [14] Georges M K,Veregin R P N, Kazmaier P M, et al. Narrow molecular weight resins by a free radical polymerization[J]. Macromolecules, 1993, 26(11): 2987-2988.
    [15] Studer A., Schulte T.. Nitroxide-mediated radical processes[J]. The chemical record, 2005, 5(1): 27-35.
    [16] Sun Y, Ding X, Zheng Z, et al. Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles[J]. Eur Polym J, 2007, 43: 762-772.
    [17] Boonpangrak S., Whitcombe M. J., Prachayasittikul V., et al. Preparation of molecularly imprinted polymers using nitroxide-mediated living radical polymerization[J]. Biosens Bioelectron, 2006, 22: 349–354.
    [1] Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures[J]. Science, 1991, 254, 5036: 1312-1319.
    [2] Felh?si I., Kálmán E., Póczik P.. Corrosion protection by self-assembly[J]. Russ J Electrochem, 2002, 38(3): 230-237.
    [3] Bain C.D., Whitesides G.M.. Modeling organic-surfaces with self-assembled monolayers[J]. Angew Chem Int Ed Engl, 1989, 28(4): 506-512.
    [4] Laibinis P E, Whitesides G M. Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air[J]. J Am Chem Soc, 1992, 114: 9022-9028.
    [5] (a) Wan M X, Wei Z X, Zhang Z M, et al. Studies on nanostructures of conducting polymers via self-assembly method[J]. Synth Met, 2003, 135-136: 175-176. (b) Zhang L J, Wan M X. Self-assembly of polyaniline—from nanotubes to hollow microspheres[J]. Adv Funct Mater, 2003, 13(10): 815-820.
    [6] Claussen R.C., Rabatic B.M., Stupp S.I.. Aqueous self-assembly of unsymmetric peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces[J]. J Am Chem Soc, 2003, 125(42): 12680-12681.
    [7] Burke S E, Eisenberg A. Kinetics and mechanisms of the sphere-to-rod and rod-to-sphere transitions in the ternary system PS310-b-PAA52/dioxane/water[J]. Langmuir, 2001, 17(21): 6705-6714.
    [8] Pochan D.J., Chen Z Y, Cui H G, et al. Toroidal triblock copolymer assemblies[J]. Science, 2004, 306(5693): 94-97.
    [9] (a) Peng H S, Chen D Y, Jiang M . Self-assembly of perfluorooctanoic acid (PFOA) and PS-b-P4VP in chloroform and the encapsulation of PFOA in the formed aggregates as the nanocrystallites[J]. J Phys Chem B, 2003, 107(45): 12461-12464. (b) Chen X L, Jenekhe S A. Supramolecular self-assembly of threedimensional nanostructures and microstructures: Microcapsules from electroactive andphotoactive rod–coil–rod triblock copolymers[J]. Macromolecules, 2000, 33(13): 4610-4612. (c) Discher D E., Eisenberg A. Polymer vesicles[J]. Science, 2002, 297(5583): 967-973. (d) Choucair A, Lavigueur C, Eisenberg A. Polystyrene-b-poly (acrylic acid) vesicle size control using solution properties and hydrophilic block length[J]. Langmuir, 2004, 20(10): 3894-3900.
    [10](a) Cao L, Manners I, Winnik M.A.. Synthesis and self-assembly of the organic-organometallic diblock copolymer poly(isoprene- bferrocenylphenylphosphine): Shell cross-linking and coordination chemistry of nanospheres with a polyferrocene core[J]. Macromolecules, 2001, 34(10): 3353-3360. (b) Gu C F, Chen D Y, Jiang M. Short-life core–shell structured nanoaggregates formed by the self-assembly of PEO-b-PAA/ETC (1-(3-dimethylaminopropyl)-3- ethylcarbodiimide methiodide) and their stabilization [J]. Macromolecules, 2004, 37: 1666-1669. (c) Zhang L F, Eisenberg A. Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution[J]. J Polym Sci, Part B: Polym Phys, 1999, 37(13): 1469-1484. (d) Luo L B, Eisenberg A. Thermodynamic size control of block copolymer vesicles in solution[J]. Langmuir, 2001, 17(22): 6804-6811.
    [11] Sharma R. Thermally controlled fluidic self-assembly[J]. Langmuir, 2007, 23: 6843-6849.
    [12]张星辰,等.离子液体——从理论基础到研究进展[M],北京:化学工业出版社, 2009, 4-5.
    [13] M Antonietti, Kuang D B, Smarsly B, et al. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures[J]. Angew Chem Int Ed, 2004, 43(38): 4988-4992.
    [14] Aliaga C, Santos C S, Baldelli S. Surface chemistry of room-temperature ionicliquids[J]. Phys Chem Chem Phys, 2007, 9: 3683-3700.
    [15] (a) Consorti C. S., Suarez P. A. Z., Souza R. F. de, et al. Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution[J]. J Phys Chem B, 2005, 109: 4341-4349. (b) Dupont J, Suarez P. A. Z.. Physico-chemical processes in imidazolium ionic liquids[J]. Phys Chem Chem Phys, 2006, 8: 2441-2452. (c) Dobbs W., Suisse J M, Douce L, et al. Electrodeposition of silver particles and gold nanoparticles from ionic liquid-crystal precursors[J]. Angew Chem Int Ed, 2006, 45: 4179-4182.
    [16] Zhao Y, Li M, Lu Q H. Tunable wettability of polyimide films based on electrostatic self-assembly of ionic liquids[J]. Langmuir, 2008, 24: 3937-3943.
    [17] Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis[J]. Chem ReV, 1999, 99(8): 2071-2084.
    [18] Dupont J, Souza R. F.de, Suarez P. A. Z.. Ionic liquid (molten salt) phase organometallic catalysis[J]. Chem ReV, 2002, 102(10): 3667-3692.
    [19] Huddleston J G, Willauer H. D., Swatloski R. P., et al. Room temperature ionic liquids as novel media for‘clean’liquid–liquid extraction[J]. Chem Commun, 1998: 1765-1766.
    [20] B?smann A, Datsevich L, Jess A, et al. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Chem Commun, 2001, 2494-2495.
    [21] Armstrong D W, Zhang L K, He L F, et al. Ionic liquids as Matrixes for matrix-assisted laser desorption/ionization mass spectrometry[J]. Anal Chem, 2001, 73(15): 3679-3686.
    [22] Yanes E G, Gratz S R, Baldwin M J, et al. Capillary electrophoretic application of 1-Alkyl-3-methylimidazolium-based ionic liquids[J]. Anal Chem, 2001, 73(16): 3838-3844.
    [23] Buzzeo M C, Evans R G, Compton R G. Non-haloaluminate room-temperature ionic liquids in electrochemistry—a review[J]. Chem Phys Chem , 2004, 5(8): 1106-1120.
    [24] Endres F, AbedinS Z E. Air and water stable ionic liquids in physical chemistry[J].Phys Chem Chem Phys, 2006, 8: 2101-2116.
    [25] Khatri Om P, Adachi K, Murase K, et al. Self-Assembly of Ionic Liquid (BMI-PF6)-Stabilized Gold Nanoparticles on a Silicon Surface: Chemical and Structural Aspects[J]. Langmuir, 2008, 24(15): 7785-7792.
    [26] He X Y, Yang W, Pei X W. Preparation, Characterization, and Tunable Wettability of Poly(ionic liquid) Brushes via Surface-Initiated Atom Transfer Radical Polymerization[J]. Macromolecules, 2008, 41(13): 4615-4621.
    [27] Sun Y B, Ding X B, Zheng Zh H, et al. Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles[J]. Eur Polym J, 2007, 43: 762-772.
    [28] Wasserscheid P, Keim W. Ionic liquids-new“solutions”for transition metal catalysis[J]. Angew Chem Int Ed, 2000, 39: 3772-3789.
    [29]王均凤,张锁江,陈慧萍,等.离子液体的性质及其在催化反应中的应用[J].过程工程学报, 2003, 3(2): 177-185.
    [30]武汉大学.分析化学[M](第五版),高等教育出版社, 180-197.
    [31] Kenneth R, Seddon, Stark A, et al. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids[J]. Pure Appl Chem, 2000, 72 (12): 2275-2287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700