微液滴的表面张力驱动及其自运动行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,微流体的驱动控制技术引起了越来越多人的注意。表面张力驱动是微流体器件中流体驱动的一种重要方式,其实现依赖于润湿性表面的可控性。本文利用自组装单分子膜的光响应性,通过真空紫外光照,制备了能使液滴自发运动的梯度表面能表面,进而研究了不同液滴在各种梯度表面上的运动情况。同时还研究了氧化锌薄膜表面的润湿性可逆转变特性。经研究发现:
     (1)随着光照时间的增加,自组装单分子膜的刻蚀作用逐渐增强,从而导致接触角逐渐减小,表面能逐渐增大。利用这一特性,通过对十七氟癸基三甲氧基硅烷单分子膜(FAS-SAM)进行连续光照,制备出了梯度表面能表面。
     (2)液滴在梯度表面能表面可以由低表面能区域向高表面能区域运动,其运动过程可分为加速阶段和减速阶段。对于体积为2μl的水滴,在上述梯度表面能表面上的接触角在4.23mm的距离内变化了约39°,由55.82°减小到了16.74°,其最大运动速度约为23.28mm/s。
     (3)液滴的运动速度与液滴的体积成正比,与挡板的运动速度成反比,即液滴体积越大,挡板速度越小,液滴运动速度越快。此外,水滴在水平梯度表面上的运动速度要高于倾斜梯度表面上的运动速度,而且水滴的运动速度要大于相同体积的甲酰胺和二甘醇液滴在同一梯度表面上的运动速度。
     (4)改变光照距离同样也可以制备出梯度表面能表面。液滴在该种梯度表面的运动情况与改变光照时间得到的梯度表面上的运动情况相似。
     (5)通过真空紫外光照十八烷基三甲氧基硅烷单分子膜(ODS-SAM)表面和粗糙的FAS-SAM表面也可以形成梯度,但液滴在这些表面却不能自发的运动。
     (6)玻璃基底上制备的氧化锌薄膜具有亲水特性,经过低温加热转变为疏水状态;然后再经过高温加热处理,又会转变为亲水状态,即该种薄膜具有疏水/亲水的可逆转变特性。而且经实验证明:氧化锌薄膜表面发生润湿性转变的临界温度为165℃。这种可控润湿性的氧化锌薄膜有望制备梯度表面能表面。
In recent years, the preparation of microfluidic driving technology has attract more and more attention, and controllable surface wettability plays a key role in its realization. In this thesis, we fabricated surfaces with gradient surface energy by VUV irradiation, which can make liquid droplets move on it. Then the movement of different liquid on gradient surfaces was studied in detail. Finally, it was studied that the characteristics of reversible change between superhydrophilic and superhydrophobic on ZnO film. The result revealed that:
     (1) Along with the illumination time increasing, the etching strengthened gradually, which resulted in the decreasing of contact angle and the increasing of surface energy. Base on this effect, surfaces with gradient surface energy were prepared on FAS-SAM.
     (2) The droplet could move from low surface energy regions to the high ones. The motion of the droplet on the gradient surface was divided into the accelerating stage and the decelerating stage. The change of contact angle was about 39°in the range of 4.23mm, which is from 55.82°to 16.74°. The maxium velocity of the water droplet (2μl) is about 23.28mm/s.
     (3) The velocity of droplet was proportional to the size of the liquid droplet and was inversely proportional to the velocity of the baffle. That is to say, the larger of the drop size was and the slower of the baffle moved, the quicker of the droplet moved. In addition, the velocity of droplet on the horizontal surface was larger than that on the inclined surface, the velocity of water was larger than the velocity of the form amide droplet and the diglycol droplet on the same horizontal surface.
     (4) The gradient surface also could be fabricated by changing the illumination distance. The movement station was similar to that fabricated by changing the illumination time.
     (5) The gradient surface also could be fabricated on ODS-SAM surface and FAS-SAM surface, but the droplet could not move spontaneously.
     (6) The ZnO film was hydrophilic in the beginning. After stored in the dark for many days or heated by low temperature, the film could turn to hydrophobic state ; then treated by vacuum ultraviolet (VUV) or high temperature, the ZnO film would be superhydrophilic with the contact angle of 0°. That is to say, this film could be reversed between hydrophilic and hydrophobic state. It has been demonstrate that the critical temperature of wetting transition was 165℃. This ZnO film can fabricate gradient energy surface.
     Surface tension-driven has many potential applications in MEMS. The research about Surface tension change controllably and droplet motion will be significant for our study of MEMS.
引文
[1]江雷.从自然到仿生的超疏水纳米界面材料[J].化工进展, 2003, 22: 1258-1264.
    [2]王庆军,陈庆民.超疏水膜表面构造及构造控制研究进展[J].高分子通报, 2005, 2: 63-70.
    [3] J.Lahann, S.Mitragotri, T.N.Tran, et al. A reversibly switching surface[J]. Science, 2003, 299(5605): 371-374.
    [4] J.L.Zhang, J.Li, Y.C.Han. Superhydrophobic PTFE surfaces by extension[J]. Macromolecular Rapid Communications, 2004, 25: 1105-1108.
    [5] W.H.Jiang, G.J.Wang, Y.A.He, et al. Photoswitched wettability on an electrostatic self-assembly azobenzene monolayer[J]. Chem.commun, 2005, 28: 3550-3552.
    [6]施政余,李梅,赵燕等.润湿性可控智能表面的研究进展[J].材料研究学报, 2008, 22(6): 561-570.
    [7] W.Rong, H.Kazuhito, F.Akira, et al. Light-induced amphiphilic surfaces[J]. Nature, 1997, 388: 431-432.
    [8] K.Ichimura, S.K.Oh, M.Nakagawa. Light-Driven motion of liquids on a photoresponsive surface[J]. Science, 2001, 288 (5471):1624–1626.
    [9] R.D.Sun, A.Nakajima, A.Fujishima, et al. Photoinduced surface wettability conversion of ZnO and TiO2 thin films[J]. J.Phys.Chem.B 2001, 105: 1984-1990.
    [10] N.Sakai, R.Wang, A.Fujishima, et al. Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces[J]. Langmuir, 1998, 14: 5918-5920.
    [11] P.Mali, N.Bhattacharjee, P.searson. Electrochemically programmed release of biomolecules and nanoparticles[J]. Nano Lett, 2006, 6(6): 1250-1253.
    [12] H.Kaji, M.Hashimoto, M.Nishizawa. On demand patterning of protein matrixes inside a microfluidicdevice[J]. Anal.chem, 2006, 78(15): 5469-5473.
    [13]韩杰才,徐丽,王保林等.梯度功能材料的研究进展及展望[J].固体火箭技术, 2004, 27(3): 207-215.
    [14]王英姿,张虹,吴波.功能梯度材料的研究现状与展望[J].河南建材, 2002, 2: 16-19.
    [15]王宏.梯度表面能材料表面特性及液滴运动原理[D].重庆大学, 2005, 3.
    [16] M.K.Chaudhury, G.M.Whitesides. How to make water run uphill[J]. Science, 1992, 256 (6): 1539–1541.
    [17] D.T.Wasan, A.D.Nikolov, H.Brenner. Droplets speeding on surfaces[J]. Science, 2001, 291(5504): 605–606.
    [18] S.H.Choi, B.Z.Newby. Alternative method for determining surface energy by utilizing polymer thin film dewetting[J]. Langmuir, 2003, 19(4): 1419–1428.
    [19] S.Hitoshi, Y.Satoshi. Force measurements for the movement of a water drop on a surface with a surface tension gradient[J]. Langmuir, 2003, 19(3): 529–531.
    [20] H.P.Greenspan. On the motion of a small viscous droplet that wets a surface[J]. Journal of Fluid Mechanics, 1978, 84(1): 125–143.
    [21] F.Brochard. Motions of droplets on solid surfaces induced by chemical or thermal gradient[J]. Langmuir, 1989,5(2): 432–438.
    [22] S.Daniel, M.K.Chaudhury, J.C.Chen. Fast drop movements resulting from the phase change on a gradient surface[J].Science, 2001, 291(5504): 633–636.
    [23] B.S.Gallardo, V.K.Gupta, F.D.Eagerton, et al. Electrochemical principles for active control of liquids on submillimeter scales[J]. Science, 283 (5398): 57–60.
    [24] J.Ouellette. Bioinformatics moves into the mainstream[J]. Indus. Phys, 2003, 9 (5): 14–18.
    [25]廖强,王宏,朱恂等.水平梯度表面能材料表面上的液滴运动[J].中国科学E辑:技术科学, 2007, 37(3): 402-408.
    [26] Y.Ito, M.Heydari, A.Hashimoto, et al. The movement of a water droplet on a gradient surface prepared by Photodegradation[J]. Langmuir, 2007, 23: 1845-1850.
    [27] S.H.Choi, B.Z.Newby. Micrometer-scale gradient surfaces generated using contact printing of octadecyltrichlorosilane[J]. Langmuir, 2007, 19 (18): 7427–7435.
    [28] A.L.Yarin, L.Wenxia, D.H.Reneker. Motion of droplets along thin fibers with temperature gradient[J]. J. Appl. Phys, 2002, 91 (7): 4751–4760.
    [29] Y.T.Tseng, F.G.Tseng, Y.F.Chen, et al. Fundamental studies on micro-droplet movement by Marangoni and capillary effects[J]. Sensors and Actuators A: Physical, 2004, 114 (2–3): 292–301.
    [30] A.Kumar, G.M.Whitesides. Patterned condensation figures as optical diffraction gratings[J]. Science, 1993, 263: 60-62.
    [31] H.Sugimura, K.Ushiyama, A.Hozumi et al. Micropatterning of alkyl-and fluoro alkylsilane SAMs using VUV light[J]. Langmuir, 2000, 16(3): 885-888.
    [32] L.Hong, H.Sugimura, T.Furukawa et al. Photoreactivity of alkyl silane self-assembled monolayers on silicon surfaces and its application to preparing micropatterned ternary monolayers[J]. Langmuir, 2003, 19(6): 1966-1969.
    [33]吴晓松,何平笙.微液滴的非机械驱动[J].化学通报, 2002, 5: 333-337.
    [34] C.M.Ho, Y.C.Tai. Micro-Electro-Mechanical System(MEMS) and fluid flows[J]. Annual review of fluid mechanics, 1998, 30: 579-612.
    [35] S.Daniel, M.K.Chaudhury. Rectified motion of liquid drops on gradient surfaces induced by vibration[J]. Langmuir, 2002, 18 (9): 3404–3407.
    [36] S.Daniel, S.Sircar, J.Gliem, et al. Ratcheting motion of liquid drops on gradient surfaces[J]. Langmuir, 2004, 20, 4085-4092.
    [37] J.B.Brzoska, F.Brochard-Wyart, F.Rondelez. Motions of droplets on hydrophobic model surfaces induced by thermal gradients[J]. Langmuir, 1993, 9(8): 2220-2224.
    [38] T.Young. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-85.
    [39] S.Meyyappan, M.R.Shadnam, A.Amirfazli. Fabrication of surface energy/ chemical gradients using self-assembled monolayer surfaces[J]. Langmuir, 2008, 24: 2892-2899.
    [40] H.Sugimura, K.Hayashi, O.Takai. Self-assembled monolayer on silicon[J]. Elsevier Science, 2002, 91: 1-4.
    [41] G.Y.Jung, Z.Li, W.Wu, et al. Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography[J]. Langmuir, 2005, 21(4): 1158-1161.
    [42]杨生荣,任嗣利,张俊彦等.自组装单分子膜的结构及其自组装机理[J].高等学校化学学报, 2001, 22: 470-476.
    [43]孟秀霞,杨乃涛,高芒来.自组装单分子膜的缺陷及修饰研究现状[J].山东理工大学学报, 2005, 9(1): 100-105.
    [44]张学群,韦钰.新的分子组装技术-自组装成膜及其应用[J].东南大学学报:自然科学版, 1994, 24(5): 17.
    [45]王沫然,李志信.基于MEMS的微流体机械研究进展[J].技术进展, 2002, 30(4): 23-28.
    [46]冯颖,周兆英,叶雄英等.微流体驱动与控制技术研究进展[J].力学进展, 2002, 32(1): 1-16.
    [47]程秀兰,蔡炳初,徐东等.基于硅结构的微流体控制系统[J].微细加工技术, 2002, 6(2): 58-66.
    [48] M.K. Chaudhury, G.M.Whitesides. How to make water run uphill[J]. Science, 1992, 256(6) : 1539–1541.
    [49] S. Daniels, M.K. Chaudhury, J.C. Chen. Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291 (1): 633–636.
    [50] S.H.Choi, B.Z.Newby. Micrometer-scaled gradient surfaces generated using contact printing of octadecyltrichlorosilane[J]. Langmuir, 2003, 19 (18): 7427–7435.
    [51] Y.Ito, M.Heydari, A.Hashimoto, et al. The movement of a water droplet on a gradient surface prepared by photodegradation [J]. Langmuir, 2007, 23 (4): 1845–1850.
    [52] A.L.Yarin, L.Wenxia, D.H.Reneker. Motion of droplets along thin fibers with temperature gradient[J]. J. Appl. Phys., 2002, 91 (7): 4751–4760.
    [53]江雷,冯琳.仿生智能纳米界面材料[M].化学工业出版社, 2007.
    [54] Y.J.Kim, K.H.Lee, H.Sano, et al. Surface chemical conversion of organosilane self-assembled monolayers with active oxygen species generated by vacuum ultraviolet irradiation of atmospheric oxygen molecules[J]. J J Appl Phys, 2008, 47(1): 307-312.
    [55] N.Serpon, Elizzetti. Photocatalysis fundamentals and applications[M]. Wiley-Interscience, Amsterdam, 1989.
    [56] D.E.Ollis, H.Al-Ekabi. Photocatalytic purification and treatment of water and air[M]. Elsevier, Amsterdam, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700