Al-Mg合金表面润湿性及其水润滑摩擦学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
A1-Mg合金具有密度小,质量轻,导电导热性好,抗腐蚀性好等优点,是目前工业领域中应用较为广泛的一类有色金属。但是由于A1-Mg合金表面耐磨性能较差,一直制约着该材料的应用。本文旨在通过改变Al-Mg合金表面润湿性,从而提高A1-Mg合金表面在水润滑条件下的摩擦学性能,为制备新型超疏水耐磨A1-Mg合金表面提供理论依据和技术支持。主要研究工作及结果如下:
     1、利用激光加工技术在Al-Mg合金表面加工圆台、凹坑及棱台形微结构,并沉积自组装分子膜,制备出了超疏水A1-Mg合金表面。根据三种微结构的形态建立数学模型,定量分析微结构尺寸参数对润湿性的影响。结果表明:制备的超疏水A1-Mg合金最大接触角为156。,沉积长链分子膜时的接触角随微结构间距增大而减小,沉积短链分子膜时的接触角随微结构间距增大而增大。
     2、在抛光Al-Mg合金表面沉积自组装分子膜,得到不同润湿性的表面,分别在干摩擦、浸水润滑、喷水润滑条件下,研究不同润湿性的A1-Mg合金表面的摩擦学性能,结果表明:对于疏水或亲水的Al-Mg合金采用喷水润滑更有利于增强表面的耐磨性,其中摩擦系数最小可达0.2239,并且三种润滑方式下的摩擦系数对比符合:干摩擦>浸水润滑>喷水润滑。研究还发现,在同种润滑方式下,疏水的A1-Mg表面耐磨性强于亲水的Al-Mg表面。
     3、利用环氧树脂溶液将Si02颗粒粘滞在抛光Al-Mg和摩擦偶件Si3N4表面,制备了接触角为156。的超疏水抛光Al-Mg合金和125。的疏水Si3N4,同样在干摩擦、浸水润滑、喷水润滑条件下,研究超疏水A1-Mg合金的摩擦学性能。结果表明:对超疏水Al-Mg合金采用浸水润滑方式更有利于增强表面耐磨性,其中摩擦系数最小可达0.3342,并且三种润滑方式下的摩擦系数对比符合:干摩擦>喷水润滑>浸水润滑。对于同种润滑方式下,疏水表面的耐磨性最优,超疏水表面次之,亲水表面最差。研究还发现,在摩擦与被摩擦介质之间涂覆相同材料或性能的介质时,摩擦过程中容易产生同性吸引的粘滞现象,降低了材料的耐磨性。
Al-Mg alloy has a low density, light weight, good thermal conductivity, good corrosion resistance, it is a class of ferrous metals widely used in industrial areas in the current. However, due to surface wear resistance of Al-Mg alloy is poor, application of this material has been restricted. This article aims to change the surface wettability of Al-Mg alloy, thus, to improve the surface tribological properties of Al-Mg alloy under water lubrication, provide a theoretical basis and technical support for manufacture Al-Mg alloy of super-hydrophobic and wear. The main research work and results are as follows:
     1、Micro-structures were processed on surface of Al-Mg alloy by laser processing technology, such as frustum of a cone、notch of taper hole and pyramid, and self-assembled monolayers were deposited, Al-Mg alloy surface of superhydrophobic was prepared. The mathematical model was built according to three kinds of micro-structure morphology, quantitative analysis the affect of micro-structural size parameters on wettability. The results show that the biggest contact angle of superhydrophobic Al-Mg alloy can reach156°, the contact angles tend to smaller as the increment of the spacing of surface texture when the long-chain self-assembled monolayers were deposited, the contact angles tend to biger as the increment of the spacing of surface texture when the short-chain self-assembled monolayers were deposited.
     2、Self-assembled monolayers were deposited on surface of polished Al-Mg alloy, get different surfaces of wettability technology, study tribological properties of different wettability on Al-Mg alloy surface in conditions of dry friction, soaking lubrication, water-jet lubrication respectively, the results show that:more conducive to enhancing the wear resistance in water-jet lubrication for the hydrophobic or hydrophilic Al-Mg alloys, the smallest friction coefficient can reach0.2239, and contrast to coefficient of friction in three kinds of lubrications:dry friction> soaking lubrication> water-jet lubrication. The study also found that surface wear resistance of hydrophobic Al-Mg better than hydrophilic surface of Al-Mg alloy in same kinds of lubrication mode.
     3、SiO2particles were adhesived in the polished Al-Mg and surface of friction parts by epoxy resin solution, the contact angle of156°polished Al-Mg alloys of superhydrophobic and125°Si3N4of hydrophobicity were prepared, in conditions of dry friction, soaking lubrication, water-jet lubrication also, research on the friction properties of superhydrophobic Al-Mg alloy. The results showed that:more conducive to enhancing the wear resistance in water-jet lubrication for Al-Mg alloy superhydrophobic, the smallest friction coefficient can reach0.3342, and contrast to coefficient of friction in three kinds of lubrications:dry friction> water-jet lubrication> soaking lubrication. In same kinds of lubrication mode, the wear resistance of hydrophobic surface was best, followed by super-hydrophobic surface, hydrophilic surface was the worst. The study also found that the media of the same material or performance were coated between the friction and the friction medium, viscous phenomenon of same-sex attracted was appeared in the friction process, reducing the wear resistance of the material.
引文
[1]上海锴欣金属材料有限公司,铝镁合金组成及应用.技术文件,2010.
    [2]http://baike.baidu.com/view/64589.htm
    [3]叶霞,周明,李健,刘会霞,袁润,杨海峰,李保家,蔡兰.从自然到仿生的超疏水表面的微观结构[J].纳米技术与精密工程,2009,7(5):381-386.
    [4]狄志勇,何建平,周建华,孙盾,王涛.有机-无机自组装制备类荷叶结构超疏水涂层及其性能研究[J].无机材料学报,2010,25(7):765-769.
    [5]Gu Z-Z, Uetsuka H, Takahashi K. Structure color and the lotus effect. Angew Chem Int Ed.2003. 42(8):894-897.
    [6]江雷,冯琳.仿生智能纳米界面.材料化学工业出版社,2007.
    [7]R.Furstner, W. Barthlott, C. Neinhuis et al. Wetting and self-cleaning properties of artificial super-hydrophobic surfaces. Langmuir.2005,21(3):956-961.
    [8]Chen W, Fadeev AY, Hsieh M C, Thomas J McCarthy. Ultra-hydrophobic and ultra-hydrophobic surfaces:some comments and examples[J]. Langmuir,1999,15(10):3395-3399.
    [9]Lau K KS, Bico J, Gleason K K. Nano Lett.2003,3:1701-1705.
    [10]McHale G, Newton M I. Frenkel's method and the dynamic wetting of heterogeneous planar surfaces. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,206:193-201.
    [11]柯清平,李广录,郝天歌,何涛,李雪梅.超疏水模型及其机理[J].化学进展,2010,22(2/3):284-290.
    [12]Feng X, Jiang L. Design and Creation of Superwetting/Antiwetting Surfaces. Adv. Mater.2006, 18,3063-3068.
    [13]M.Thieme, R.Frenzel, V. Hein, H. Worch. Metal surfaces with ultra-hydrophobic properties; perspectives for corrosion protection and self-cleaning. J. Corros. Sci. Eng.2003,6:113-119.
    [14]K. Fukuda, J. Tokunaga, T. Nobunaga et al. Frictional drag reduction with air lubricant over a super-water-repellent surface. J. Mar. Sci. Technol.2000,5:123-130.
    [15]Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind Eng chem,1936,28: 988-994.
    [16]Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans Faraday Soc,1944,40: 546-511.
    [17]J. Ou, B.Perot, J. P. Rothstein. Laminar drag reduction in micro-channels using ultra-hydropho-bic surfaces. Phys, Fluids.2004,16:4635-4643.
    [18]B. Wang, J. Feng, C. Y. Gao. Surface wettability of compressed polyelec-trolytemultilayers. Colloids and Surfaces A:Physicochem Eng Aspects,2005,259:1-5.
    [19]施政余,李梅,赵燕,路庆华.润湿性可控智能表面的研究进展[J].材料研究学报,2008,22(6):561-571.
    [20]李艳峰,于志家,于跃飞,霍素斌,宋善鹏.铝合金基体上超疏水表面的制备[J].高校化学工程学报,2008,22(1):6-10.
    [21]商全义,彭竹琴,弓金霞等.灰铸铁激光表面处理硬化层的组织与性能[J].中原工学院学报,2002,13(2):1-5.
    [22]Song X, Zhai J, Wang Y, Jiang L. Fabrication of super-hydrophobic surfaces by self-assembly and their water-adhesion properties[J]. J. Phys. Chem. B.2005,109(9):4048-4052.
    [23]Oner D, McCarthy T J. Ultrahydrophobic surfaces. Effects of topography length scales on wettability [J]. Langmuir.2000,16:7777-7782.
    [24]Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets [J]. Langmuir,2002,18:5818-5822.
    [25]Gao L C, McCarthy T J. "Artificial lotus leaf" prepared using a 1945 patent and a commercial textile [J].Langmuir,2006,22 (14):59982-6000.
    [26]Michielsen S, Lee H J. Design of a superhydrophobic surface using woven structures[J]. Langmuir,2007,23(11):6004-6010.
    [27]陈颖.分子自组装膜在电分析化学中的应用进展[J].福建分析测试.2006,15(1):45-47.
    [28]薛群基,张军.分子有序体系超薄膜及其在摩擦学中的应用.沈阳:辽宁科学技术出版社,1996.
    [29]粟常红,肖怡,崔喆,刘承果,王庆军,陈庆民.一种多尺度仿生超疏水表面制备[J].无机化学学.2006,22(5):785-788.
    [30]王优强,李鸿琦,佟景伟.水润滑陶瓷轴承研究进展[J].润滑与密封,2003(6):92-94.
    [31]沈彬,孙方宏,张志明.CVD金刚石薄膜在水润滑条件下的摩擦磨损性能研究[J].摩擦学学 报.2008,28(1):112-117.
    [32]黄继汤.空化与空蚀的原理及应用.北京:清华大学出版社,1991.
    [33]管国锋,谭强,万辉.SO_4-(2-)/TiO_2-A1_20-3固体酸催化剂的表征及其催化合成均苯四甲酸四异辛酯[J].石油化工,2005(7).
    [34]杨致政,何艳,魏秦文,张明洪,王传斌.水润滑UHMW-PE轴承在特殊条件下的应用研究[J].山东冶金,2004(01).
    [35]余江波.基于资源节约与环境友好的高性能水润滑轴承关键技术研究[D].重庆:重庆大学,2009.
    [36]郑先君,付永,魏丽芳,许培援,谢冰,魏明宝.纳米Ti0_2光催化产氢的研究进展[J].河南化工,2007(2).
    [37]唐明扬.美国道康宁公司医用有机硅产品及其应用现状[J].化工新型材料,1987,(10).
    [38]万建新,李久明,郑小秋.水润滑轴承研究展望[J].煤矿机械.2008,29(7):9-10.
    [39]钱九娟,刘宪伟.水润滑技术理论研究进展[J].科协论坛.2009,7:104.
    [40]Kang Z X, Mori K, Oishi Y. Surface modification of magnesium alloys using dithiols[J]. Surface and Coatings Technology,2005,195(2-3):162-167.
    [41]Ren S L, Yang S R, Zhao Y P. Nano-tribological studr on a superhydrophobic film formed on rough aluminum substrates[J]. Acta Mechanica Sinica,2004,20(2):159-164.
    [42]Kang Z X, Ye Q, Sang J, et al. Fabrication of superhydrophobic surface on copper surface by polymer plating[J]. Journal of Materials Processing Technology,2009,209(9):4543-4547.
    [43]JungYC, BhushanB. Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophbicity[J]. Nanotechnology,2006,17:4970-4980.
    [44]Guo Z G, Zhou F, Hao J C, et al. Stable Biomimetic Super-Hydrophobic Engineering Materials[J]. J. AM. CHEM. SOC.2005,127:15670-15671.
    [45]Kang Z X, Liu Y H, Sang J, et al. Preparation and Tribological Behavior of Functional Polymeric Nano-films on a Mg-Mn-Ce Alloy Surface[J]. Tribology.2011,31(1):12-17.
    [46]Zhao W J, Huang D M, Wang L P, et al. Influence of Chain Length on the Micro/nano-tribological Properties of Ionic Liquid Ultra-thin films[J]. Tribology. 2010,30(6):614-619.
    [47]Ratoi M, Spikes H A. Lubricating properties of aqueous surfactant solutions[J]. Tribol Trans.1999,42(3):479-486.
    [48]Boschkova K, Kronberg B, Rutland M, et al. Studr of thin surfactant films under shear using the tribological surface force apparatus[J]. Tribol Int.2001,34:815-822.
    [49]Sakuma H, Otsuki K, Kurihara K. Viscosity and Lubricity of Aqueous NaCl Solution Confined between Mica Surfaces Studied by Shear Resonance Measurement[J]. Phys Rev Lett.2006,96: 046104-8.
    [50]T. Kako, A. Nakajima, H. Irie et al. Adhesion and sliding of wet snow on o super-hydrophobic surface with hydrophilic channels. J. Mater. Sci.2004,39:547-555.
    [51]K. Fukuda, J. Tokunaga, T.Nobunaga et al. Frictional drag reduction with air lubricant over a super-water-repellent surface. J. Mar. Sci. Technol.2000,5:123-130.
    [52]K. Watanabe, H. Udagawa. Drag reduction of Newtonian fluid in a circular pipe with a highly water-pepellent wall. ALChE J.2001,47(2):256-262.
    [53]M. Thieme, R. Frenzel, V. Hein, H. Worch. Metal surfaces with ultra-hydrophobic properties, perspectives for corrosion protection and self-cleaning. J. Corros. Sci. Eng.2003,6:113-119.
    [54]李梦群.先进制造技术导论.北京:国防工业出版社,2005.
    [55]Anish Tuteja et al. Designing Superoleophobic Surfaces, Science 318,1618(2007).
    [56]孙昌国,张会臣.钛金属薄膜上两种短链自组装分子膜的制备与摩擦学特性[J].材料研究学报.2009,23(1).
    [57]李松梅,周思卓等.铝合金表面原位自组装超疏水膜层的制备及耐蚀性能[J].物理化学学报.2009,25(12):2581-2589.
    [58]Fadeev, A. Y. McCarthy, T. J. Langmuir,2000,16:7268.
    [59]Zhu, L. B, Xiu, Y. H, Xu, J, Tamirisa, P. A, Wong, C. P. Langmuir,2005,21:11208.
    [60]Li J G, He X M, Zhao R S, Wan C R, Zhang S C. Elect ro-chemical performance of Al2O3-coated LiNi1/3 Co1/3 Mn1/3O2 cat hode materials for Li-ion batteries[J]. Key Engineering Materials,2007,336-338:459-462.
    [61]Sun Y K, Han J M, Myung S T, Lee S W, Amine K. Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cat hode [J]. Elect rochemistry Communications,2006,8: 821-826.
    [62]Srinivasan U, HoustonM R, Howe R T, Maboudian R. Alkyltrichloro-silane-based self-assembled monolayer films for stiction reduction in silicon micromachines [J]. Journal of Microelectrom echanical Systems,1998,7:252-260.
    [63]连峰,张会臣等.干法刻蚀和自组装分子膜对Si表面润湿性的影响[J].2010.
    [64]郝巧玲,申超英,王守忠.活塞环槽的激光表面硬化研究.材料热处理技术,2009,38(6):150-152.
    [65]徐灏.疲劳强度[M],高等教育出版社,1988,1-5.
    [66]DONNET C, ERDEMIR A1 Historical development s and new trends in tribological and solid lubricant coatings[J]. Surface and Coatings T echnology,2004,180-181:76-841.
    [67]Tsukruk V V, Everson M P, Lander L M, et al. Nanotribo-logical properties of composite molecular films:C60 anchored to a self-assembled monolayer[J]. Langmuir.1996,12:3905-3911.
    [68]BHARAT B摩擦学导论[M].葛世荣,罗飞,等译.北京:机械工业出版社,2007:219.
    [69]罗飞,高克玮,陶春虎,李志.干摩擦及水润滑下氧化铬陶瓷薄膜的摩擦学性能[J].材料研究与应用.2009,3(1):14-18.
    [70]GEE M G, BU TTERFIELD D. The combined effect of speed and humidity on the wear and f riction of silicon nitride[J]. Wear,1993,1622164:2342245.
    [71]杨卓娟,韩志武,任露泉.激光处理凹坑形仿生非光滑表面试件的高温摩擦磨损特性研究[J].摩擦学学报,2005,25(4):375-377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700