激光纹理加工Ti6Al4V的润湿性及抗空蚀特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛以其轻质、高比强、高比刚、高耐蚀、无磁性等优异性能被称为“海洋金属”,成为海洋工程,尤其是海洋军事工程中的重要材料。钛合金材料的使用可以大大提高舰船的整体性能,因此开发高性能的钛合金材料可以增强舰船作战能力和降低舰船服役期的成本。
     空化和空蚀对船舶螺旋桨、海洋工程结构物的有害作用已被充分证明,并且进行了广泛研究。由于超疏水表面具有自清洁、减阻、抑制表面腐蚀和氧化等优点,其在海洋工程领域存在巨大优势。制备超疏水钛合金表面并运用于船体,有望在船舶的抗空蚀方面实现新的突破。但有关表面的润湿性对表面抗空蚀特性的影响的研究还鲜有报道。
     本文利用激光表面纹理加工和自组装分子膜改变钛合金表面润湿性,研究表面的润湿性对表面抗空蚀特性的影响,为制备新型抗空蚀钛合金材料提供理论依据和技术支持。本文主要工作如下:
     1、利用激光加工技术在Ti6A14V表面加工点阵状纹理并分别沉积1H,1H,2H,2H-全氟十二烷基三氯硅烷(FDTS)、1H,1H,2H,2H-全氟辛烷基三氯硅烷(FOTS)、三氯十八硅烷(OTS)和3-巯基丙基三甲氧基硅烷(MPS)四种自组装分子膜,从而改变了Ti6A14V的表面润湿性。接触角由大到小的排序为:FDTS>FOTS>OTS>MPS。接触角最大可达到164.5°,形成超疏水钛合金表面。
     2、将实测接触角与Wenzel模式和Cassie模式计算出的理论接触角比较发现,实测接触角大于150°时接近Cassie模型计算出的接触角,而小于150°时接近Wenzel模型计算出的接触角。改变纹理的间距和选择不同的自组装分子膜,可以控制表面接触角的大小。
     3、为研究表面润湿性和纹理结构对表面抗空蚀特性的影响,利用激光加工技术在Ti6A14V表面分别加工出直线和网格纹理。沉积FOTS自组装分子膜后,表面疏水性增强,抗空蚀能力提高,且网格纹理的表面抗空蚀能力强于直线纹理的。
As having many advantages, Titanium is called "metal of sea". It is the important material in Marine Engineering, especially in the military engineering. It can improve the overall performance of the vessels, Hence, Titanium's high property can improve capabilities and reduce the cost of the ship.
     It has been fully proved that cavitation and cavitation erosion are harmful effects for propellers of the ships and the project structure of maritime, and has been extensive studied. In recent years, hydrophobic surface has many advantages, for example, self-cleaning, friction reduction, prevent the surface oxidation corrosion. Especially, it has huge advantages in ocean engineering. Preparing and using superhydrophobicity in vessels is becoming new discover in cavitation about the vessels. But it is few research about the influence of cavitation characteristics of surface wettability.
     In this paper, Surface wettability of cavitation was transformed by laser surface texture processing and self-assembly molecular membrane, in order to change surface wettability and provide the theory basis and the technical support for making the new cavitation erosion resistance titanium work were did as follows:
     1、In order to change the surface wettability of Ti6A14V, the Ti6A14V was treated into regular dot matrix structure with lattice structure by laser manufacturing, self-assembled monolayers of FDTS、FOTS、OTS and MPS were prepared on texturing surface by self-assembled method. The contact angle is ranked from big to small: FDTS>FOTS>OTS>MPS. and the maximum angle can reach 164.5°, superhydrophobic surfaces are prepared.
     2、Comparation of measured contact angles with the contact angles calculated with both models shows that the measured contact angles larger than 150°are close to the contact angles calculated with Cassei model, however, the measured contact angles less than 150°approach the contact angles calculated with Wenzel model. Contact angles can be controlled by adjusting spacing of texture and choosing different self-assembled monolayers.
     3、in order to explore the effects of surface wettability and laser manufacturing on the characterisitics of cavitation erosion resistance of materials. Line and grid texture are manufactured to Ti6A14V alloy with laser surface modification method. preparing FOTS self-assembled monolayers, the Hydrophobic of the surface was increased, he cavitation erosion resistances of the specimen was improved, and the grid texture is stronger than the line texture.
引文
[1]孟祥军,汪汀.船用钛合金发展概况.钛工业进展,2000,5:7-8.
    [2]黄继汤.空化与空蚀的原理及应用.北京:清华大学出版社,1991.
    [3]Hiromi M, Motohiro Y, Shuji H. Effect of materials and solution temperatures on cavitation erosion of pure titanium and titanium alloy in seawater. Wear,2007,262:522-528.
    [4]Man H C, Cui Z D, Cheng F T. Cavitation erosion behavior of laser gas nitrided Ti and Ti6A14V alloy. Materials Science and Engineering A,2003,355:167-173.
    [5]Duraiselvam M, Galun R, Wesling V et al. Cavitation erosion resistance of Ti6A14V laser alloyed with TiC-reinforced dual phase intermetallic matrix composites. Materials Science and Engineering A,2007,454-455:63-68.
    [6]Sun Z, Annergren I, Pan D et al. Effect of laser surface remelting on the corrosion behavior of commercially pure titanium sheet. Materials Science and Engineering A,2003,345(1-2):293-300.
    [7]Kwok C T, Man H C,Leung L K et al. Effect of temperature pH and sulphide on the cavitation. Wear,1997,211:84-93.
    [8]Howard R L, Ball A. The solid particle and cavitation erosion of titanium aluminized intermetallic alloys. Wear,1995,186:123-128.
    [9]李根生,沈晓明,施立德等.空化和空蚀机理及其影响因素.石油大学学报(自然科学版).1997,21(1):97-102
    [10]蒋娜娜,徐臻,周刚等.加工方法和材料种类对空蚀的影响.润滑与密封,2007,32(5):12-15.
    [11]吕文斐,方亮.润滑条件下激光加工纹理的摩擦磨损.摩擦学学报,2009,29(1):1-4.
    [12]柳伟,郑玉贵,姚治铭等.金属材料的空蚀研究进展.中国腐蚀与防护学报,2001,21(4):250-255.
    [13]庞佑霞,刘厚才,唐果宁.离心泵叶轮材料HT200的空蚀磨损机理研究.润滑与密封,2003,6:26-31.
    [14]王再友,龙霓东,朱金华.抗空蚀材料研究应用进展.材料开发与应用,2001,16(6):34-38.
    [15]Feng X. Jiang L. Design and Creation of Superwetting/Antiwetting Surfaces. Adv. Mater.2006, 18,3063-3068.
    [16]Ma M.L., Hill R.M. Superhydrophobic Surfaces. Curr.Opin.Colloid In.2006,11,193-220.
    [17]施政余,李梅,赵燕.润湿性可控智能表面的研究进展.材料研究学报,2008,22(6):561-571.
    [18]叶霞,周明,李健等.从自然到仿生的超疏水表面的微观结构.纳米技术与精密工程,2009,7(5):381-386.
    [19]Cottin-Bizonne C, Barrat J L, Bocquet L et al. Low-Friction Flows of Liquid at Nanopattern-ed Interfaces. Nat. Mater.2003,2,237-242.
    [20]Sun T.L., Feng L., Gao X.F et al. Surfaces with Special Wettability. Acc. Chem. Chem. Res. 2005,38,644-650.
    [21]Mauro Sbragaglia, Alisia M. Pteters, Christophe Pirat et al. Spontaneous Breakdown of Superhydrophobicity. Physical Review Letters,2007,99:156001-156007.
    [22]Nicolas Bremond, Manish Arora, Stephan M. Dammer et al. Interaction of cavitation bubbles on a wall. Physics of Fluids,2006,18:121505-121514.
    [23]Nataliya Mishchuk. The role of hydrophobicity and dissolved gases in non-equilibrium surface phenomena. Colloid and Surfaces 2005,267:139-152.
    [24]He Y, Luo J B, Xie G X. Characteristics of thin liquid film under an external electric field. Tribol Inter,2007,40:1718-1723.
    [25]凌智勇,刘勇,丁建宁等.亲水性和疏水性微管道中流动滑移特性的实验研究.中国机械工程,2006,17(22):2326-2329.
    [26]蒋娜娜,刘诗汉,陈大融.硅片空蚀实验中表面粗糙度和润湿性的影响.科学通报,2008,53(5):598-604.
    [27]郑黎俊,乌学东,楼增等.表面微细结构制备超疏水表面.科学通报.2004,49(17):1691-1699.
    [28]Gu Z-Z, Uetsuka H, Takahashi K. Structure color and the lotus effect. Angew Chem Int Ed, 2003,42(8):894-897.
    [29]M.Thieme, R.Frenzel, V.Hein, H.Worch. Metal surfaces with ultra-hydrophobic properties; perspectives for corrosion protection and self-cleaning. J.Corros.Sci.Eng.2003,6,113-119.
    [30]R.Furstner, W.Barthlott, C.Neinhuis et al. Wetting and self-cleaning properties of artificial super-hydrophobic surfaces.Langmuir.2005,21(3):956-961.
    [31]T.Sun, H.Tan, D.Han et al. No platelet can adhere-largely improved blood compatibility on nano-structured super-hydrophobic surfaces. Small.2005,1(10):959-963.
    [32]T.Kako, A.Nakajima, H.Irie et al. Adhesion and sliding of wet snow on o super-hydrophobic surface with hydrophilic channels. J.Mater.Sci.2004,39:547-555.
    [33]K.Fukuda, J.Tokunaga, T.Nobunaga et al. Frictional drag reduction with air lubricant over a super-water-repellent surface. J.Mar.Sci.Technol.2000,5:123-130.
    [34]K. Watanabe, H.Udagawa. Drag reduction of Newtonian fluid in a circular pipe with a highly water-pepellent wall. ALChE J.2001,47(2):256-262.
    [35]N.A.Patankar. On the modeling of hydrophobic contact angles on rough surfaces. Langmuir, 2003,19:1249-1253.
    [36]李艳峰,于志家,于跃飞.铝合金基体上超疏水表面的制备.高校化学工程学报,2008,22(1):6-10.
    [37]粟常红,陈庆民.一种荷叶效应涂层的制备.无机化学学报,2008,24(2):298-302.
    [38]Shirtcliffe N J, McHale G, Newton M I. Dual-scale roughness produces unusually water-repe-llent surfaces.Adv.Mater.2004,16:1929-1932.
    [39]Zhang X, Sato O, Fujishima A. Langmuir,2004,20:6065-6067.
    [40]Han J T, Zheng Y, Cho K et al. J.Phys. Chem. B,2005,109:20773-20778.
    [41]Qian B T, Shen, Z Q. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir,2005,21(20):9007-9009.
    [42]李梦群.先进制造技术导论.北京:国防工:业出版社,2005.
    [43]郝巧玲,中超英,王守忠.活塞环槽的激光表面硬化研究.材料热处理技术,2009,38(6):150-152.
    [44]陈战乾.激光表面重熔对工业纯钛板腐蚀行为的影响.稀有金属快报,2004,4:41-41.
    [45]Suzuki H. Synthesis of polysiloxane-grafted fluoropolymers and their hydrophobic properties. J Appl Polym Sci,2000,78:1955-1958.
    [46]商全义,彭竹琴,弓金霞等.灰铸铁激光表面处理硬化层的组织与性能.中原工学院学报,2002,13(2):1-5.
    [47]花银群,陈瑞芳,杨继昌等.激光淬火和冲击复合强化处理40Cr钢的耐磨性能研究.摩擦学学报,2003,23(5):448-450.
    [48]J.Ou, B.Perot, J.P.Rothstein. Laminar drag reduction in micro-channels using ultra-hydropho-bic surfaces. Phys,Fluids.2004,16:4635-4643.
    [49]B.Wang, J.Feng, C.Y.Gao.Surface wettability of compressed polyelec-trolytemultilayers. Colloids and Surfaces A:Physicochem Eng Aspects,2005,259:1-5.
    [50]Patankar N A. On the modeling of hydrophobic contact angels on rough surfaces.Langmuir, 2003,19:1249-1253.
    [51]He B, Patankar N A, Lee J.Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir,2003,19:4999-5003.
    [52]曾鹏举,刘云圻,胡文平等.分子自组装成膜技术.物理,1999,28(12):713-719.
    [53]胡杰,刘白玲,汪地强.有机氟材料的结构与性能及其在涂料中的应用.高分子通报,2003,2:63-70.
    [54]Ulman A. Formation and structure of self assembled monoslaysers. Chem Rev,1996,96:1533-1554.
    [55]Bard A J, Abruna H D, Chidsy C E et al. J.Phys.Chem.1993,97:7147-7172.
    [56]Marmur A. From hygrophilic to superhygrophobic:Theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. Langmuir,2008,24:7573-7579
    [57]Ke Qingping, Li Guanglu, Hao Tiange et al. Superhydrophobicity:Theoretical Models and Mechanism. Progress N Chemistry,2010,22 (2/3):284-290
    [58]Herminghaus S. Roughness-induced non-wetting. Europhys Lett,2000,52 (2):165-170
    [59]李东升,吕功煊.制备导电聚合物-半导体纳米颗粒自组装膜.物理化学学报,2001,17(3):262-256.
    [60]D.Oner, T.J.McCarthy. Ultrahydrophobic surface. Effects of topography length scales on wettability, Langmuir,2000,16:7777-7782.
    [61]孔德军,华同曙,丁建宁等.激光淬火处理对灰铸铁残余应力与耐磨性能的影响.润滑与密封,2009,4:51-54.
    [62]李再光,郑启光,李家熔等.激光处理高磷铸铁表面对抗空蚀性的影响.应用激光,1984,1:1-5.
    [63]刘诗汉,陈大融.粗糙表面的空蚀机制研究.润滑与密封,2009,34(3):6-8.
    [64]Kwok C T, Man H C, Leung L K et al. Effect of temperature pH and sulphide on the cavitation. Wear,1997,211:84-93.
    [65]龙霓东,龙亚东,朱金华γ-TiAl合金的空蚀行为.中国有色金属学报,2003,13(5):1166-1170.
    [66]Diodati P, Marchesoni F. Time-evolving statistics of cavitation damage on metallic surfaces, Ultrasonics Sonochemistry,2002,9:325-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700