钙钛矿型多铁体LuFeO_3材料合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年来,多铁体成为新兴热门自旋电子学学科的研究热点。磁电耦合效应作为多铁体的最重要的特性更加引起了研究者们的极大兴趣,并且磁电效应在磁电传感器、多态存储器、多铁性内存以及磁读电写硬盘中都已经得到应用。然而目前在室温条件下单相的多铁性材料极为稀有。本学位论文选取LuFeO3这一还存在争议的多铁体为研究对象,从块材陶瓷到薄膜材料展开研究。从四个方面展开研究,取得了如下创新性成果:
     1.LuFeO3陶瓷的制备以及光学性质和磁学性质的研究。实验发现,正交钙钛矿相的陶瓷的光学禁带宽度为2.78eV,由反铁磁转变为顺磁的尼尔温度为620K。
     X射线衍射结果表明传统的固相烧结法合成的LuFeO3陶瓷为扭曲的正交钙钛矿结构。通过对椭圆偏振光谱的分析,结合Kamers-Kronig关系获得折射率与带宽的关系,进而得到陶瓷的光学禁带宽度为2.78eV。从漫反射光谱的分析中,指认出位于1.22eV和1.73eV的吸收峰是由于晶体场的d-d的跃迁而引起,而2.73eV处的吸收,即光学禁带宽度是由于Fe3d向O2p(t1g(π)-t2g)电荷转移而产生。M-T以及M-H曲线表明LuFeO3陶瓷为反铁磁氧化物,其由反铁磁转变为顺磁的温度为620K。室温条件下陶瓷表现的弱铁磁性可能是由于Fe自旋结构的排列发生了一定倾斜。
     2.运用L-MBE系统在Si(100)、LaNiO3/Si(l00)和不同单晶衬底上生长LuFeO3薄膜。研究了Si(100)衬底上生长的薄膜的光学性质以及LaNiO3衬底上薄膜的电学性质。
     X射线衍射分析结果表明,以Si(100)为衬底生长的薄膜呈六方钙钛矿相结构;而以LaNiO3为衬底,随着衬底温度的升高,薄膜从正交钙钛矿相结构在一定程度上向六方钙钛矿相结构转变。这说明衬底对薄膜的结晶起着较明显的诱导作用。通过Lorentze拟合椭圆偏振光谱数据,获得LuFeO3薄膜的折射率和消光系数与光子能量之间的关系,进而得到薄膜的光学禁带宽度为3.0eV。在LaNiO3覆盖的Si(100)基底上制备的薄膜,发现衬底温度650℃可以获得晶化良好的LuFeO3薄膜,而700℃结晶的薄膜可以进一步改善薄膜的电学性能,其剩余极化值(Pr)约为121μC/cm2,高于文献报导的掺杂LuFeO3陶瓷的Pr值。
     3.运用溶胶-凝胶(sol-gel)法成功制备多铁性Lu(1-x)BixFeO3薄膜和MgFe2O4薄膜。实验发现,Bi掺杂的薄膜表现出良好的介电性能,标准的蝶形曲线从实验角度证明了薄膜的铁电性;退火温度的升高改善了MgFe2O4的铁磁性。
     深入研究了生长在LaNiO3/Si(100)衬底上的Bi掺杂薄膜的电学性质。发现未掺杂的薄膜的剩余极化值(2Pr)为2.2μC/cm2,矫顽场(2Ec)为242kV/cm,高于之前由L-MBE法制备的薄膜的剩余极化值。在介电测试中,获得Bi掺杂薄膜的标准蝶形曲线,这从电滞回线之外的另一角度证明了LuFeO3的铁电性。随着退火温度升高,MgFe2O4薄膜表现出良好的铁磁性,饱和磁化强度分别为30.3emu/cm3、61.0emu/cm3和134.7emu/cm3。
     4. LuFeO3-MgFe2O4(LFO-MFO)复合薄膜的制备及磁学性质研究。
     首先分别运用固相反应法和液相反应法合成MgFe2O4陶瓷。并用L-MBE法成功制备MgFe2O4薄膜。通过XRD测试分析发现,由固相法合成的陶瓷更适合作为靶材进行之后的实验。然后运用L-MBE系统在Si(100)、STO(100))、Al2O3(006)和MgO(100)衬底上生长LFO-MFO多层膜并研究了LFO/MFO/Si(100)复合薄膜的M-H曲线,发现复合薄膜10K的M-H曲线表现出较优的磁学性质。
Multiferroic have became one hotspots of emerging disciplines spintronics in recent years, In particular, the magnetoelectric coupling mechanism have received much attention among scientists who are in the field of highly correlated electron systems. In this work, we select LuFeO3material as the object, and report it in four parts, such as ceramics of LuFeO3synthesis by solid state reaction, films of LuFeO3prepared by L-MBE, doped films of LuFeO3prepared by Sol-gel method and compound films (LuFeO3-MgFe2O4). The innovative results are showed here:
     1. Preparation and properties of LuFeO3ceramics.o The optical band gap of orthoferrites LuFeO3was2.78eV which was determined by spectroscopic ellipsometry. The magnetic ordering temperature is considered to be620K.
     The crystallographic structure of the ceramic was determined by X-ray diffraction and Raman scattering. Both the measurement indicates distorted orthorhombic perovskite structure with space group Pbnm. We obtain the optical band gap of LuFeO3by Kramers-Kronig and Tauc relation,2.78eV and2.76eV by spectroscopic ellipsometry. Mainly mechanism of LuFeO3ceramics for the bandgap, possibly arising from the electronic transitions between the majority channel Fe3d to O2p (t1g (∏) to t2g) charge transfer excitation, is studied using diffuse reflectance spectroscopy. The field cooled (FC) and zero filed cooled (ZFC) magnetization-temperature curves of the ceramic indicates it is an antiferromagnetic (AFM) and the Neel temperature is620K, which is in accordance with other research group.
     2. LuFeO3films are successfully prepared on Silicon wafer, conductive oxide and single crystalline substrates by L-MBE system. We Study the optical properties of LuFeO3film on Si (100) substrate, and the electrical properties of the film grown on LaNiO3/Si (100) substrate.
     The substrate temperature and gas pressure are very important in L-MBE system, the film on silicon with substrate temperature of800℃and oxygen pressure of lPa showed the optical structure and microtopography. We obtained the OBG of the film also by SE; it is3.0eV, which is higher than the ceramic. The conductive oxide LaNiO3used as bottom electrode, the remnant polarization of LFO films is about1.21μC/cm2, which is higher than the ferroelectric properties of LuFeO3ceramics.
     3. The thin films of Lu1-xBixFeO3(LBFOx,0≤x≤0.10) and MgFe2O4were prepared on LaNiO3coating silicon substrates by sol-gel method. The butterfly loops of LBFOx imply the typical characteristics of ferroelectric materials. The influence of annealing temperature on the magnetic properities of MgFe2O4thin films is studied at room temperature.
     Structural and morphological characterization of the LBFOx thin films was investigated by X-ray diffraction and atomic force microscopy, respectively. The remnant polarization of Bi-doped LuFeO3thin film at room temperature reached to3.1and3.6μC/cm2for x=0.05and0.10at the electric field of700kV/cm, respectively. The ferroelectric polarization measurements indicate that the potential role of Bi doping in increasing the value of the polarization of LuFeO3film, and the mechanisms for the U shaped frequency loss tangent curves was discussed. Magnesium ferrite thin films were directly fabricated on Silicon substrate by Sol-gel method. The specific saturation magnetization (Ms) values of MgFe2O4(annealed at700,800and900℃) are30.3,61.0, and134.7emu/cm3, respectively.
     4. Preparation and magnetic properties of LuFeO3-MgFe2O4(LFO-MFO) compound films
     The target of MgFe2O4was synthesized by both solid state reacation and liquid phase reaction method. High quality MFO thin films with c-preferred were successfully fabricated on silicon substrates by L-MBE. LFO-MFO compound films are fabricated on Si (100), STO (100), A12O3(006) and MgO (100) also by L-MBE system. The magnetic hysteresis loops indicate exceptionally high coercivity and saturation.
引文
[1]施敏.超大规模集成电路技术[M].北京:科学出版社,1987.
    [2]J. R. Anderson. Electr Engineering [J],1952,71,916-922.
    [3]J. F. Scott, C. a. P. Araujo. Science [J],1989,246,1400-1405.
    [4]钟维烈.铁电体物理学[M].北京:科学出版社,1996.
    [5]符春林.铁电薄膜材料及其应用[M].北京:科学出版社,2009.
    [6]B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, W. Jo. Nature [J],1999,401, 682-684.
    [7]H. M. Jang, M. G. Kim, C. H. Chang. Phys Rev Lett [J],2002,89, 087601-087604.
    [8]O. Auciello, J. F. Scott, R. Ramesh. Phys Today [J],1998,51,22-27.
    [9]Y. Tokura. JMagn Magn Mater [J],2007,310,1145-1150.
    [10]J. C. Maxwell. Phil Trans R Soc Lond [J],1865,155,459-512.
    [11]段纯钢.物理学进展[J],2009,29,215-238.
    [12]H. Schmid. Ferroelectrics [J],1994,162,317-338.
    [13]U. Chon, J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wutting, R. Ramesh. Science [J],2003,299,1719.
    [14]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura. Nature [J], 2003,426,55-58.
    [15]刘俊明,南策文.物理[J],2014,43,88-98.
    [16]N. A. Spaldin, M. Fiebig. Science [J],2005,309,391-392.
    [17]W. Eerenstein, N. D. Mathur, J. F. Scott. Nature [J],2006,442,759-765.
    [18]K. F. Wang, J. M. Liu, Z. F. Ren. Adv Phys [J],2009,58,321-448.
    [19]S. W. Cheong, M. Mostovoy. Nat Mater [J],2007,6,13.
    [20]M. Fiebig. J Phys D:Appl Phys [J],2005,38, R123-R152.
    [21]N. A. Spaldin, M. Fiebig, M. Mostovoy. J Phys:Condens Matter [J],2008,20, 434203.
    [22]J. V. Suchtelen. Philips Res Rep [J],1972,27,28-37.
    [23]C. W. Nan. Phys Rev B [J],1994,50,6082-6088.
    [24]D. Khomskii. JMagn Magn Mater [J],2006,306,1-8.
    [25]N. A. Hill. JPhys Chem B [J],2000,104,6694-6709.
    [26]R. Blinc, P. Cevc, A. Zorko, J. Hole, M. Kosec, Z. Trontelj, J. Pimat, N. Dalai, V. Ramachandran, J. Krzystek. J Appl Phys [J],2007,101,033901.
    [27]X. S. Gao, X. Y. Chen, J. Yill, J. Wu, Z. G. Liu, M. Wang. J Mater Sci [J],2000, 35,5421-5425.
    [28]B. B. V. Aken, T. T. M. Palstra, A. Filippetti, N. A. Spaldin. Nature Mater [J], 2004,3,164-170.
    [29]M. Fiebig, T. Lottermoser, D. Frohlich, A. V. Goltsev, R. V. Pisarev. Nature [J], 2002,419,818-820.
    [30]N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito. Nature [J],2005,436,1136-1138.
    [31]T. Portengen, T. Ostreich, L. J. Sham. Phys Rev B [J],1996,54,17452-17463.
    [32]D. Khomskii. Physics [J],2009,2,20-27.
    [33]N. Leo, D. Meier, R. V. Pisarev, N. Lee, S. W. Cheong, M. Fiebig. Phys Rev B [J], 2012,85,094408.
    [34]C. Wilkinson, P. J. Brown, T. Chatterji. Phys Rev B [J],2011,84,224422.
    [35]M. Mochizuki, N. Furukawa, N. Nagaosa. Phys Rev Lett [J],2010,105,037205.
    [36]Y. Zhang, H. X. Yang, C. Ma, H. F. Tian, J. Q. Li. Phys Rev Lett [J],2007,98, 247602.
    [37]N. Ikeda. J Phys:Condens Matter [J],2008,20,434218.
    [38]N. Ikeda, S. Mori, K. Yoshii. Ferroelectrics [J],2007,348,38-47.
    [39]M. A. Subramanian, T. He, J. Chen, N. S. Rogado, T. G. Calvarese, A. W. Sleight. Adv Mater [J],2006,18,1737-1739.
    [40]J. F. Scott. Nat Mater [J],2007,6,256-257.
    [41]W. M. Xu, O. Naaman, G. K. Rozenberg, M. P. Pasternak, R. D. Taylor. Phys Rev B [J],2001,64,094411.
    [42]H. C. Gupta, M. Kumar Singh, L. M. Tiwari. J Raman Spectrosc [J],2002,33, 67-70.
    [43]A. A. Bossak, I. E. Graboy, O. Y. Gorbenko, A. R. Kaul, M. S. Kartavtseva, V. L. Svetchnikov, H. W. Zandbergen. Chem Mater [J],2004,16,1751-1755.
    [44]M. Iglesias, A. Rodriguez, P. Blaha, V. Pardo, D. Baldomir, M. Pereiro, J. Botana, J. E. Arias, K. Schwarz. J Magn Magn Mater [J],2005,290-291,396-399.
    [45]G. K. Rozenberg, M. Pasternak, W. Xu, L. Dubrovinsky, S. Carlson, R. Taylor. Europhys Lett [J],2005,71,228.
    [46]A. R. Akbashev, A. S. Semisalova, N. S. Perov, A. R. Kaul. Appl Phys Lett [J], 2011,99,122502.
    [47]V. V. Pavlov, A. R. Akbashev, A. M. Kalashnikova, V. A. Rusakov, A. R. Kaul, M. Bayer, R. V. Pisarev. J Appl Phys [J],2012,111,056105.
    [48]H. X. Yang, Y. Zhang, C. Ma, H. F. Tian, Y. B. Qin, Y. G. Zhao, J. Q. Li. arXiv.08030819 [J],
    [49]M. S. Vijaya Kumar, K. Nagashio, T. Hibiya, K. Kuribayashi. J Am Ceram Soc [J],2008,91,806-812.
    [50]C. Israel, N. D. Mathur, J. F. Scott. Nat Mater [J],2008,7,93-94.
    [51]M. Bibes, A. Barthelemy. Nat Mater [J],2008,7,425-426.
    [52]R. E. Jeager, L. Egerton. J Am Ceram Soc [J],1962,45,209-213.
    [53]冯海波,周玉,贾德昌.材料科学与工艺[J],2003,11,327-331.
    [54]张磊.xLi0.05Ni0.95O(1-x)SrTiO3-复相陶瓷与LuFeO3陶瓷的巨介电效应硕士学位论文,浙江:浙江大学,2008,
    [55]R. Riedel, G. Passing, H. Schonfelder, R. J. Brook. Nature [J],1992,355, 714-717.
    [56]M. M. Lencka, R. E. Riman. Chem Mater [J],1993,5,61-70.
    [57]X. M. Fan, J. S. Lian, Z. X. Guo, H. J. Lu. Appl Surf Sci [J],2005,239,176-181.
    [58]J.H.Neave,B. A. Joyce,P. J.Dobson,N.Norton.Appl Phys A [J],1983,A31, 1-8.
    [59]K. H. Kim, K. C. Park, D. Y. Ma. JAppl Phys [J],1997,81,7764-7772.
    [60]H. Windischmann. JAppl Phys [J],1987,62,1800-1807.
    [61]D. W. Brenner. Phys Rev B [J],1990,42,9458-9471.
    [62]M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. a. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, W. I. Milne. JAppl Phys [J],2001,90, 5308-5317.
    [63]R. W. Schwartz. Chem Mater [J],1997,9,2325-2340.
    [64]R. W. Schwartz, T. Schneller, R. Waser. Comptes Rendus Chimie [J],2004,7, 433-461.
    [65]P. M. Petroff, S. P. Denbaars. Superlattices Microstruct [J],1994,15,15-21.
    [66]G. J. Snyder, R. Hiskes, S. Dicarolis, M. R. Beasley, T. H. Geballe. Phys Rev B [J],1996,53,14434-14444.
    [67]M. Meyyappan, L. Delzeit, A. Cassell, D. Hash. Plasma Sources Science & Technology [J],2003,12,205-216.
    [68]L. Spanhel,M. A.Anderson. JAm Ceram Soc [J],1991,113,2826-2833.
    [69]J. Y. Wen, G. L. Wilkes. Chem Mater [J],1996,8,1667-1681.
    [70]M. R. Nair, M. J. Kurian, C. P. Prabhakaran. Talanta [J],1981,28,395-396.
    [71]T. Ishibashi, A. Mizusawa, M. Nagai, S. Shimizu, K. Sato, N. Togashi, T. Mogi, M. Houchido, H. Sano, K. Kuriyama. J Appl Phys [J],2005,97,
    [72]K. T. Kim, C. I. Kim. Thin Solid Films [J],2005,478,6-12.
    [73]G. L. Messing, S. C. Zhang, G. V. Jayanthi. J Am Ceram Soc [J],1993,76, 2707-2726.
    [74]D. Damjanovic. Rep Prog Phys [J],1998,61,1267-1324.
    [75]卢亚峰,周廉.頹有金属快报[J],2005,24,4-11.
    [76]刘莹莹.L-MBE法制备GaN薄膜的外延生长研究硕士学位论文,四川:电子科技大学,2012,
    [77]C. J. Brinker, G. W. Scherer. Sol-gel Science:The physics and chemistry of sol-gel processing [M]. Boston San Diego New York London Sydney Tokyo Toronto: Academic Press, INC.,1990.
    [78]朱俊宇.钙钛矿型BiSc03-PbTi03/Lao.7Sro.3Mn03多铁复合薄膜的制备及其物理特性的研究博士学位论文,上海:华东师范大学,2012,
    [79]R. V. Pisarev, A. S. Moskvin, A. M. Kalashnikova, T. Rasing. Phys Rev B [J], 2009,79,235128.
    [80]Y. W. Li, Y. D. Shen, F. Y. Yue, Z. G. Hu, X. M. Ma, J. H. Chu. J Crys Gro [J], 2010,312,617-620.
    [81]Y. Qin, X. Qiang Liu, X. Ming Chen. JAppl Phys [J],2013,113,044113.
    [82]W. K. Zhu, L. Pi, S. Tan, Y. H. Zhang. Appl Phys Lett [J],2012,100,052407.
    [83]L. Zhang, X. M. Chen. Solid State Commmun [J],2009,149,1317-1321.
    [84]W. B. Wang, H. W. Wang, X. Y. Xu, L. Y. Zhu, L. X. He, E. Wills, X. M. Cheng, D. J. Keavney, J. Shen, X. F. Wu, X. S. Xu. Appl Phys Lett [J],2012,101,241907.
    [85]D. J. Adams, B. Amadon. Phys Rev B [J],2009,79,115114.
    [86]S. Venugopalan, M. M. Becker. JChem Phys [J],1990,93,3833-3836.
    [87]S. K. Loyalka, C. A. Riggs. Appl Spectrosc [J],1995,49,1107.
    [88]R. M. A. Azzam, N. M. Bashara. Ellipsometry and Polarized Light [M]. Amsterdam:North-Holland,1977.
    [89]J. H. Bahng, M. Lee, H. L. Park, I. W. Kim, J. H. Jeong, K. J. Kim. Appl Phys Lett[J],2001,79,1664.
    [90]L. F. Jiang, W. Z. Shen, H. Ogawa, Q. X. Guo. J Appl Phys [J],2003,94,5704.
    [91]J. H. Chu, A. Sher. Physics and Properties of Narrow Gap Semiconductors [M]. New York:Springer,2008.
    [92]T. Arima, Y. Tokura, J. B. Torrance. Phys Rev B [J],1993,48,17006-17009.
    [93]P. A. Usachev, R. V. Pisarev, A. M. Balbashov, A. V. Kimel, A. Kirilyuk, T. Rasing. Phys Solid State [J],2005,47,2292-2298.
    [94]J. Zaanen, G. A. Sawatzky, J. W. Allen. Phys Rev Lett [J],1985,55,418-421.
    [95]Kahn, F.J., P. S. Pershan, J. P. Remeika. Phys Rev [J],1969,186,891-918.
    [96]R. L. White. J Appl Phys [J],1969,40,1061.
    [97]D. Treves. J Appl Phys [J],1965,36,1033.
    [98]M. Eibschutz, S. Shtrikman, D. Treves. Phys Rev [J],1967,156,562-577.
    [99]覃莹.LuFe2O4及LuFeO3基陶瓷的结构与多铁性博士学位论文,浙江:浙江大学,2013,70.
    [100]A. D. Milliken, A. J. Bell, J. F. Scott. Appl Phys Lett [J],2007,90,112910.
    [101]W. Eerenstein, W. M., J. L. Prieto, J. F. Scott, N. D. Mathur. Nature Mater [J], 2007,6,348-351.
    [102]J. Ryu, S. Priya, K. Uchino, H.-E. Kim. J Electroceram [J],2002,8,107-119.
    [103]J. Liu, Y. Wang, J. Y. Dai. Thin Solid Films [J],2010,518,6909-6914.
    [104]W. Wang, Z. Gai, M. Chi, J. D. Fowlkes, J. Yi, L. Zhu, X. Cheng, D. J. Keavney, P. C. Snijders, T. Z. Ward, J. Shen, X. Xu. Phys Rev B [J],2012,85,155411.
    [105]郭鸣.铋基钙钛矿铁电材料的合成及性质研究博士学位论文,上海:华东师范大学,2009,
    [106]张金中.铋基低维结构氧化物的合成及其光学特性研究博士学位论文,上海:华东师范大学,2013,
    [107]Z. Liu, H. Deng, P. Yang, J. Chu. Mater Lett [J],2009,63,2622-2624.
    [108]W. Wang, J. Zhao, W. Wang, Z. Gai, N. Balke, M. Chi, H. N. Lee, W. Tian, L. Zhu, X. Cheng, D. J. Keavney, J. Yi, T. Z. Ward, P. C. Snijders, H. M. Christen, W. Wu, J. Shen, X. Xu. Phys Rev Lett [J],2013,110,237601.
    [109]M. Guo, H. M. Deng, P. X. Yang, J. H. Chu. Mater Lett [J],2009,63, 1535-1537.
    [110]X. J. Meng, J. L. Sun, J. Yu, H. J. Ye, S. L. Guo, J. H. Chu. Appl SurfSci [J], 2001,171,68-70.
    [111]Vipin Kumar, Sachin Kr. Sharma, T. P. Sharma, V. Singh. Opt Mater [J],1999, 12,115.
    [112]Y. W. Li, Z. G. Hu, F. Y. Yue, P. X. Yang, Y. N. Qian, W. J. Cheng, X. M. Ma, J.
    H. Chu. JPhys D:Appl Phys [J],2008,41,215403.
    [113]R. K. Gupta, F. Yakuphanoglu. Mater Lett [J],2011,65,3058-3060.
    [114]Y. J. Qi, C. J. Lu, Q. F. Zhang, L. H. Wang, F. Chen, C. S. Cheng, B. T. Liu. J Phys D:Appl Phys [J],2008,41,065407.
    [115]N. Z. Bao, L. M. Shen, Y. S. Wang, P. Padhan, A. Gupta. J Am Ceram Soc [J], 2007,129,12374-12375.
    [116]V. Sepelak, D. Baabe, D. Mienert, F. J. Litterst, K. D. Becker. Scripta Mater [J], 2003,48,961-966.
    [117]L. B. Kong, Z. W. Li, G. Q. Lin, Y. B. Gan. Acta Mater [J],2007,55, 6561-6572.
    [118]Q. Chen, A. J. Rondinone, B. C. Chakoumakos, Z. John Zhang. JMagn Magn Mater [J],1999,194,1-7.
    [119]A. Pradeep, P. Priyadharsini, G. Chandrasekaran. JMagn Magn Mater [J],2008, 320,2774-2779.
    [120]B. Antic, N. Jovic, M. B. Pavlovic, A. Kremenovic, D. Manojlovic, M. Vucinic-Vasic, A. S. Nikolic. JAppl Phys [J],2010,107,043525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700