微生物发酵及酶解烟梗物料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟梗物料在烟草行业中的利用率不高,普遍认为是因为烟梗物料中以果胶质为主的细胞壁物质、淀粉和蛋白质等会对卷烟的吸食品质产生不利影响。降低烟梗中的果胶质、纤维素、蛋白质、淀粉等物质的含量,将会提升烟梗物料的利用空间,达到资源充分利用的目的。
     本课题以烟梗及梗丝为原料分别进行黑曲霉菌发酵和外加酶处理,部分降低烟梗物料中的果胶质、纤维素和淀粉等物质的含量,改善烟梗物料的内在品质,从而有效提高烟梗及梗丝在卷烟配方中的适用性。
     将重量法和高效液相色谱法相结合,建立了适合于发酵及酶解后烟草样品中果胶质含量的检测方法。研究结果表明,采用该方法可使果胶质提取更充分,酶解后烟梗及梗丝中各种形态的果胶质都能得到检测,检测结果更准确,且操作简单。
     优化了黑曲霉液态发酵烟梗降解果胶质的工艺条件,优化后的发酵条件为:装料量20 g(干基)/500 mL三角瓶,接种量15%(v/v),料水比1∶1 2,发酵温度30℃,摇床转速180 r/min,发酵时间72 h,在此条件下得到烟梗收率为40.89%。发酵后烟梗中的果胶质的降解率为83.99%。
     比较了不同类型的烟梗物料的酶解效果,酶解效果从高到低依次为:烟梗丝>烟梗粉末>完整烟梗。
     利用单一酶酶解烟梗丝,确定了在酶解梗丝中所需的酶种类,结果表明,有些酶的加入并无效果;采用果胶酶、淀粉酶、糖化酶和纤维素酶酶解烟梗物料即符合要求。优化了单一酶酶解烟梗丝的处理条件和酶用量,优化后的结果为:果胶酶用量为300 U/g烟梗丝,酶解时间为5 h,酶解温度为50℃。优化后纤维素酶的用量为200 U/g烟梗丝,淀粉酶的用量为200 U/g烟梗丝,糖化酶的用量为1000 U/g烟梗丝。
     将果胶酶、淀粉酶、糖化酶和纤维素酶复配成复合酶,并优化了复合酶用量及酶解条件,优化后的结果显示:以复合酶配方1酶解烟梗丝时,吸食品质最佳。复合酶配方1的酶用量如下:果胶酶200 U/g烟梗丝,淀粉酶133 U/g烟梗丝,糖化酶667 U/g烟梗丝,纤维素酶133 U/g烟梗丝。复合酶酶解时间为4 h,料水比为3∶4,酶解温度为47.5℃。与空白相比,在此条件下酶解烟梗丝,酶解后烟梗丝中果胶质的降解率为13.08%,淀粉的降解率为37.59%,还原糖含量增加了76.71%,水溶性总糖含量增加了68.48%。
     感官评吸结果表明:外源酶制剂在改善烟梗丝吸食品质方面有较显著的效果。
     鉴于处理烟梗物料需操作简单、高效、设备投入少等因素,选择外加商品酶酶解的方式处理烟梗物料。
The utilization of tobacco stems in the tobacco industry was not used effectively. Some substances, such as the main cell wall materials, especially the pectin, starch and protein had adverse effects on the quality of smoke. Obviously, decreasing these substances could raise the utilization rate of tobacco stems and reduce the loss of resource.
     Microbial fermentation and enzyme hydrolysis of tobacco stems and cut-stems were investigated in this study. The contents of pectin, cellulose, starch and the like in the tobacco stems and cut-stems were degraded partially. Thus the quality and the applicability of tobacco stems in the cigarette will be improved.
     A new analysis method for various pectin substances in enzyme-hydrolysed tobacco samples was established by combining the gravimetric method with HPLC method. Using this new method, the coefficient of variation of the content of the total pectin acid was lower than traditional gravimetric method. The pectin substances would be fully extracted. The new method is comprehensive and with good reproducibility, and easy operations.
     In order to degrade pectins, submerged fermentation of tobacco stems by Aspergillus niger was carried out. The optimized fermentation conditions were as follows: adding 20 g tobacco stems in a 500 mL Erlenmeyer flask; inoculum volume:15%(v/v); solid to liquid ratio: 1∶12; fermentation temperature: 30℃; fermentation time: 72 h.The recovery yield of tobacco stems was 40.89%. The degradation rates of the total pectin were 83.99%.
     The effects of the enzyme hydrolysis on various kinds of tobacco stem substances were compared. The results were described as follows: cut-stem> stem powders> tobacco stem.
     The enzymes suitable for enzyme hydrolysis of tobacco stems were tested. Some enzymes are useless, and some enzymes, such as pectinase, amylase, saccharifying enzyme and cellulase were appropriate for the treatment of tobacco stems.The enzyme hydrolysis conditions of cut-stems by single enzyme and the dosages of enzyme were investigated. The optimized results were as follows: for 1 gram of tobacco cut-stems, the dosage of pectinase is 300 U; enzymolysis time: 5 h; digesting temparature: 50℃; the dosage of amylase is 200 U; the dosage of cellulose is 200 U; and the dosage of saccharifying enzyme is 1000 U.
     The formula of compound enzymes were established. The dosage of compound enzymes and the condition of enzymolysis were as follows: for 1 gram of cut-stem, the dosage of pectinase is 200 U; the dosage of amylase is 133 U; the dosage of cellulose is 133 U; and the dosage of saccharifying enzyme is 667 U. The optimized results were as follows: enzyme hydrolysis time: 4 h; digesting temparature: 47.5℃.When the intact cut-stems were hydrolyzed by the compound enzymes, the degradation rates of the pectin were 13.08%; and the degradation rates of starch were 37.59%; and the reducing sugar was increased by 76.71%; and the soluble sugar was increased by 68.48%, respectively. Sensory assessment results showed that the quality of cut-stems in the cigarette can be improved.
     As the requirements of simple operation, high efficiency, lower investment and other factors, the method of enzyme hydrolysis was selected.
引文
[1]董占能,白聚川,张皓东.烟草废弃物资源化[J].中国烟草科学, 2008, 29(1): 39-42.
    [2]李军,李吉昌,吴晓华.烟草废弃物利用研究[J].云南化工, 2010, 37(2): 44-45.
    [3]王先义,郭汉华,宋翠英.烟草废弃物环保处理、生物能利用技术研究开发与应用[J].现代企业文化, 2010(12): 184.
    [4]赵铭钦,李芳芳.微生物和酶学技术在烟草发酵中的应用及展望[J].食品科学, 2007(1): 314-317.
    [5]杨虹琦,周冀衡,罗泽民,等.微生物和酶在烟叶发酵中的应用[J].湖南农业科学, 2003(6): 63-66.
    [6]唐兴平,陈学榕,戴达松,等.烟草废弃物造纸法制烟草薄片[J].福建农林大学学报(自然科学版), 2007, 36(2): 205-207.
    [7]朱国成.酶处理技术在造纸法烟草薄片中的应用研究[D]: [硕士学位论文].北京:中国农业大学, 2006.
    [8] Antonio L, Pablo C, Miguel A, et al. Recovery of nicotine from aqueous extracts of tobacco wastes by an H+-form strong-acid ion exchanger [J]. Industrial & Engineering Chemistry Research. 1998, 37(12): 4783-4791.
    [9] Narasimha C V, Chakraborty M K. Solanesol from tobacco waste [J]. Research And Industry, 1979(24): 83-86.
    [10]古君平,魏万之.废次烟叶中绿原酸的提取与分离[J].烟草科技/烟草化学, 2010(2): 43-46.
    [11]魏霞.烟草中绿原酸的分离纯化及烟草废料的生物转化[D]: [硕士学位论文].南京:南京师范大学, 2008.
    [12]苏贤坤,张晓海,廖德智.烟草综合利用现状及其前景[J].贵州农业科学, 2006, 34(5): 120-122.
    [13]周国华,万端极,张艳.废烟梗制备纤维素黄原酸酯及其吸附Cu2+研究[J].化学工程师, 2007(11): 54-58.
    [14]鲁蕾,付敏,郭宝星.烟梗成分提取及其应用研究[J].四川化工, 2004, 7(1): 9-11.
    [15] Briki F, Horgas N, Vukovi M, et al. Aerobic composting of tobacco industry solid waste-simulation of the process [J]. Clean technologies and environmental policy, 2003, 5 (3/4): 295-301.
    [16]宋荣渊,朱春燕.烟草废弃物在畜牧业中的开发利用[J].上海畜牧兽医通讯,2009(4): 78-79.
    [17]李放,唐莉娜,蔡海洋.废弃烤烟茎秆与鸡粪堆肥化利用的研究[J].农业环境科学学报, 2009, 28(1): 194-198.
    [18]朱大恒,袁红星,席宇,等.一种烟梗有机肥及其制造、使用方法[P].中国专利, 101613222. 2009-12-30.
    [19]宋光富,李刚,李东亮,等.蒸汽爆破对烟梗化学成分含量及显微结构的影响[J].烟草科技, 2011(8): 35-38.
    [20] Leffingwell J C. Chemical constituent of tobacco and differnence among tobacco types [J]. Leffingwell Reports, 2001, 1(2): 1-56.
    [21]王月侠,葛善礼,贾涛,等.烟梗化学组成的分析[J].烟草科技, 1996(30): 16-17.
    [22]宋鹏.微生物发酵降低卷烟烟气中有害成分及提高卷烟质量的研究[D]: [博士学位论文].西安:西北大学, 2008.
    [23]王津军,李永忠,文国松,等.微生物技术在烟草生产上应用研究进展[J].耕作与栽培, 2004(6): 4-6.
    [24]邓国宾,李雪梅,李成斌,等.降果胶菌改善烟叶品质研究[J].烟草科技, 2003(11): 17-20.
    [25]艾继涛.双菌种发酵提高烟草薄片和废次烟叶品质研究[D]: [硕士学位论文].中国农业大学, 2006.
    [26]吕品,李丹,黄龙,等.烟叶产香菌的分离及其在烟用香料制备中的应用[J].烟草科技, 2009(1): 37-42.
    [27]李雪梅,杨伟祖,祝明亮,等.烟碱降解菌的选育及改善上部烟叶品质研究[J].工业微生物, 2006, 36(1): 16-21.
    [28] Wada E, Yamasaki K. Mechanism of microbial degredation of nicotine [J]. Science, 1953(117): 152-153.
    [29] Gravely, Lawrence E, Louisville K Y, et a1. Process for reduction of nitrate and nicotine content of tobacco by microbial treatment[P]. US Patent, 4557280, 1985-10-10.
    [30] Enders C, Windisch S. The decomposition of nicotine by yeast [J]. Biochem, 1947(318): 54-62.
    [31] Maeda S, Kisaki T. Microbial degradation of nicotine-1'-N-oxide[J]. Agric Biol Chem, 1981, 45(3): 565-569.
    [32]周瑾,李雪梅,许传坤,等.利用微生物发酵改良烤烟碎片品质的研究[J].烟草科技, 2002(6): 3-5.
    [33]周锦龙,汤珍瑶.雪茄烟发酵技术进展与展望[J].农技服务, 2009, 26(11): 119-120.
    [34]郭晓雪,金保锋,沈光林.烟叶发酵研究进展[J].烟草科技, 2004(11): 7-14.
    [35]赵铭钦,李芳芳.微生物和酶学技术在烟草发酵中的应用及展望[J].食品科学, 2007, 23(1): 314-318.
    [36]于建军,马海燕,杨寒文,等.利用果胶酶降解烟叶中果胶的研究[J].江西农业学报, 2009, 21(3): 136-138.
    [37]李少鹏.利用生物技术降解烟叶淀粉和蛋白质含量研究[D]: [硕士学位论文].河南:河南农业大学, 2006.
    [38] Bradley J P, Mua T V, Baker K J, et a1. Reduced protein reconstituted tobacco and method of making same [P]. US Patent, 6508254. 2003-01-21.
    [39]颜春雷.生物酶制剂改善烟叶品质的研究[D]: [硕士学位论文].安徽:中国科学技术大学, 2007.
    [40] Civilini M, Domenis C, Sebastianutto N, et a1. Nicotine decontamination of tobacco agro-industrial waste and its degradationby micro-organisms [J]. Waste Management and Research, 1997(15): 349-358.
    [41]郑宝东.食品酶学[M].东南大学出版社, 2006. 140-141.
    [42]李鸿玉.果胶酶及其应用[M].知识产权出版社, 2010. 11-16.
    [43]黄俊丽,李常军,王贵学,等.微生物果胶酶的分子生物学及其应用研究进展[J].生物技术通讯, 2006, 17(6): 992-994.
    [44] Kapoor M, Beg Q K, Bhushan B, et al. Production and partial purification and characterization of a thermo-alkalistable polygalacturonase from Bacillus sp. MG-cp-2[J]. Process Biochem, 2000(36): 467.
    [45] Antier P, Mingares A, Roussos S, et al. Pectinase hyperproducing mutants of Aspergillus niger C28B25 for solid state fermentation of coffee pulp[J]. Enzyme Microbial Technol, 1993(15): 254.
    [46]高雯.食品酶学原理和分析方法[M].黑龙江科学技术出版社, 1991. 202-203.
    [47]张春红.食品酶制剂及应用[M].中国计量出版社, 2008. 128-129.
    [48]罗志刚,杨景峰,罗发兴.α-淀粉酶的性质及应用[J].食品研究与开发, 2007, 28(8): 163-166.
    [49]于宏伟,栗志丹,郝珊珊,等.蛋白酶产生菌的筛选及酶学性质研究[J].农产品加工, 2006(10): 67-70.
    [50]李伟,李少鹏.外加酶在烟草行业中的应用[J].食品科学, 2006: 66-69.
    [51]李晓,刘凤珠,姜凌,等.淀粉类酶在烟叶中降解条件的研究[J].生物技术, 2001, 11(2): 44-46.
    [52]刘燕,刘钟栋,潘珂,等.甘露聚糖酶水解烟草胶质的研究[J].河南工业大学学报(自然科学版), 2006, 27(6): 69-72.
    [53]李鲁,葛少林.烟草薄片中蛋白质的酶解研究[J].安徽农业科学, 2009, 37(27): 13079-13086.
    [54] Henri C S. Process for the treatment of tobacco stems [P]. US Patent, 3513857. 1970-05-26.
    [55]林凯.酶法对烟梗丝降解效果的研究[J].安徽农业科学, 2011, 39(11): 6500-6501.
    [56]林翔,陶红,沈光林,等.利用复合酶改善烟梗品质的研究[J].安徽农业科学, 2011, 39(4): 2064-2066.
    [57]李东亮.应用蒸汽爆破与微波辐射技术相结合改善烟梗品质的方法[P].中国专利, 101933656A. 2011-01-05.
    [58]陈晶铃,陈明功,汪晓艳,等.烟梗微波膨化基本规律的研究[J].安徽理工大学学报(自然科学版), 2008, 28(3): 61-64.
    [59] Theophilus E H, Pence D H, Meckley D R, et al. Toxicological evaluation of expanded shredded tobacco stems [J]. Food And Chemical Toxicology, 2004(4): 631-639.
    [60]李军,彭金辉,刘坚,等.溶剂处理对烟梗梗丝内在质量的影响[J].昆明理工大学学报(理工版), 2010, 35(5): 94-99.
    [61]苏同福,王战义,李永良,等.不同试剂对烟梗形貌特征和微区成分的影响[J].浙江农业科学, 2009(5): 979-983.
    [62]张槐苓,葛翠英.烟草分析与检验[M].河南科技出版社, 1994. 67-99.
    [63]吴玉萍,杨光宇,王东丹,等.高效液相色谱法测定烟草中的果胶含量[J].光谱实验室, 2004, 21(1): 183-185.
    [64]尹建雄,卢红,谢强,等. 3,5-二硝基水杨酸比色法快速测定烟草水溶性总糖、还原糖及淀粉的探讨[J].云南农业大学学报, 2007, 22(6): 829-838.
    [65] GB 5099.5-2010.食品中蛋白质的测定[S].北京:中国标准出版社, 2010.
    [66]陈洪章.现代固态发酵原理及应用[M].化学工业出版社, 2004. 4-6.
    [67]许赣荣,胡文锋.固态发酵原理、设备与应用[M].化学工业出版社, 2009. 1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700