辽西地区春玉米农田N_2O排放特征与固碳减排机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮肥在保障我国粮食安全中起着不可替代的支撑作用,氮肥施用量也在逐年持续增长,且在粮食主产区普遍偏高,对生态环境带来了安全隐患。春玉米是我国东北地区主要的粮食作物,该区春玉米农田氮肥投入通常超出氮肥推荐施用量;由于氮肥过量投入和不合理的耕作,地力呈下降趋势,也成为重要的温室气体排放源。如何优化田间管理措施在保障作物产量的同时实现固碳减排,对于该地区农业的可持续发展具有现实意义。本研究采用田间原位试验、土壤微生物测定试验和生物地球化学循环模型模拟相结合的方法,研究辽西地区春玉米农田主要温室气体(N_2O)排放和土壤呼吸特征,定量分析不同施氮措施和秸秆还田对春玉米产量、N_2O排放、土壤呼吸以及硝化和反硝化菌种群的影响,并在此基础上利用DNDC模型探讨既能保障产量又能实现固碳减排的优化管理措施。主要研究内容与结果如下:
     (1)2009-2012年连续4年的田间试验观测表明,在农民习惯施肥措施(FP)下,辽西地区春玉米农田土壤N_2O排放通量与高峰出现主要受施肥和降雨影响,且呈现较一致的规律性;N_2O季节排放总量均值为1.14±0.19kg N ha~(-1),年际间变异系数为17%;土壤呼吸季节总量均值为2019±264kg C ha~(-1),年际间变异系数为13%。进一步分析表明农田土壤N_2O排放和土壤呼吸动态与环境因子密切相关,土壤N_2O排放与土壤无机氮含量正相关(P <0.01),土壤呼吸强度与土壤温度呈指数相关,与土壤湿度显著负相关(P <0.01)。
     (2)不同施氮措施和秸秆还田对N_2O减排效果的田间原位观测试验结果表明,减施20%氮肥处理(OPT)与FP处理相比,2009-2012年4个春玉米生长季中农田土壤N_2O均有减排效果,且减幅在逐年增大,但减排效果不显著。而在减氮20%的基础上改施缓释肥处理(CRF)或添加硝化抑制剂处理(OPT+DCD),可在不影响春玉米产量的同时显著降低供试农田土壤N_2O排放。与FP处理相比,CRF处理下2009年和2010年春玉米生长季N_2O排放总量降低幅度分别为10%和13%,OPT+DCD处理在2011年和2012年N_2O季节排放总量降幅分别达到22%和31%,均具有较显著的减排效果。在OPT基础上加秸秆还田处理(OPTS)的4个春玉米生长季N_2O排放总量在所有处理中均为最高,秸秆还田措施明显促进了N_2O排放。
     (3)不同施氮措施和秸秆还田对土壤呼吸影响的田间试验结果表明,供试农田土壤呼吸季节变化与作物生长进程、土壤温度变化、秸秆还田等密切相关。在秸秆还田措施下,生长季前期土壤呼吸强度显著高于其他处理。CK、FP、OPT、OPTS处理在2009-2012年4个春玉米生长季农田土壤呼吸季节总量均值分别为1891.2±59.0kg C ha~(-1)、1939.3±39.6kg C ha~(-1)、1945.2±46.3kgC ha~(-1)、2096.4±156.8kg C ha~(-1);CRF、OPT+DCD处理在2009-2010年和2011-2012年的结果分别为2320.8±102.5kg C ha~(-1)、1759.2±78.0kg C ha~(-1);不同施氮措施对土壤呼吸无显著影响。
     (4)2012年春玉米生长季追肥前后不同处理下土壤硝化、反硝化菌群大小的微生物测定试验结果表明,CK处理下所采土壤样品中AOB和AOA amoA基因拷贝数平均值分别为0.1×105(g SDW~(-1))和0.2×105(g SDW~(-1)),反硝化细菌nirS基因拷贝数平均值为0.5×107(g SDW~(-1)),均显著低于其它施氮处理;氮肥施用通过促进氨氧化细菌(AOB)、氨氧化古菌(AOA)和具有nirS基因的反硝化细菌种群数量增长,进而促进N_2O排放。与其他施氮处理(FP、OPT、OPTS)相比,OPT+DCD处理下供试农田土壤中AOA和AOB amoA基因拷贝数与反硝化细菌nirS基因拷贝数均为最低,可见DCD对参与硝化和反硝化反应的微生物具有抑制作用,从而实现N_2O减排。
     (5)利用2010和2011年实测的田间试验数据对DNDC模型的验证结果表明,DNDC模拟的不同处理下土壤呼吸季节总量、N_2O排放季节总量、春玉米产量与田间观测较一致,模拟值与观测值的均方根误差(RMSE)基本控制在8%以内;且能较准确的模拟再现土壤呼吸和N_2O排放动态。表明应用DNDC模型进一步评价春玉米农田固碳减排措施具有可靠性。
     (6)应用DNDC模型评价不同管理措施固碳减排长期效果的结果表明,在50年时间尺度上,优化施氮措施(OPT、CRF、OPT+DCD)不会显著影响作物产量(与FP相比),并可以不同程度降低N_2O排放(分别减少8%、13%、12%),但这些措施下土壤有机碳增加较小。在优化施氮措施基础上采取秸秆还田,能在保障产量的同时有效增加土壤固碳,大幅减少春玉米种植系统温室气体净排放,从长期看是一项有效的固碳减排措施。
In China, amounts of nitrogen (N) fertilizer applied in croplands have been increasing to maintainoptimum yield. The use of N fertilizer plays an important role in ensuring food security. However,overuse of N fertilizer is widespread in crop productions, which has caused severe damages toenvironment. Spring maize is one of the most important crops in Northeastern China. To increase soilfertility and sustain high maize yield, overuse of N fertilizer is widespread in the maize fields in thisregion. The overuse of N fertilizer and intensive tillage could stimulate high emissions of greenhousegases from the maize production in Northeastern China. Therefore, it is crucial for sustaining the maizeproduction systems to reduce emissions of greenhouse gases meanwhile maintain the optimum yields byoptimizing farming management practices. In this study, we focus on mitigating emissions ofgreenhouse gases from maize fields in Western Liaoning Province through optimizing farmingmanagement practices. Field studies, soil microbiology experiments and modeling approach have beenadopted to achieve the research objectives. The results and conclusions from our study were descried asfollowing.
     (1) The field observations indicate that the high N_2O fluxes were mainly induced by applications ofN fertilizer or rainfall events. The means of seasonal cumulative N_2O emissions and soil respirationswere1.14±0.19kg N ha~(-1)and2019±264kg C ha~(-1), respectively, under farmer's conventionalfertilization practice (FP) during2009to2012. The inter-seasonal coefficient of variation of seasonalcumulative N_2O emissions and soil respirations were17%and13%, respectively. Further investigationsindicate that the N_2O fluxes were positively correlated (P <0.01) with soil mineral N contents and thesoil respirations were exponentially correlated (P <0.01) with soil temperatures and negativelycorrelated with soil moistures (P <0.01).
     (2) Field studies were performed to quantify impacts of alternative N fertilization andincorporation of maize straw on emissions of greenhouse gases and maize yields. In comparison withFP, reducing N application rates by20%(OPT) didn’t significantly mitigate N_2O emissions from thetested field, although slightly reduction can be found under OPT. The treatments with slow-releasefertilizer (CRF) or nitrification inhibitor (OPT+DCD) significantly mitigated N_2O emissions from thetested field, while the crop yields remained unchanged. In comparison with FP, the seasonal cumulativeN_2O emissions in2009and2010were significantly reduced by10%and13%, respectively, under theCRF treatment; the seasonal N_2O emissions in2011and2012were significantly reduced by22%and31%, respectively, under the OPT+DCD treatment. The N_2O emissions under the treatment with maizestraw incorporation (OPTS) were highest among all the treatments in this study, indicating that theincorporation of maize straw increased N_2O emissions from the tested field.
     (3) The seasonal variation of soil respirations was mainly controlled by crop growth, soiltemperature and incorporation of maize straw in this study. In comparison with the treatments withoutincorporation of crop straw, OPTS obviously stimulated the rates of soil respiration during early stage of maize growing seasons. The means of seasonal cumulative soil respirations during the maize growingperiods from2009to2012were1891.2±59.0kg C ha~(-1),1939.3±39.6kg C ha~(-1),1945.2±46.3kg C ha~(-1),and2096.4±156.8kg C ha~(-1), respectively, under CK, FP, OPT, and OPTS. The mean of seasonalcumulative soil respirations was2320.8±102.5kg C ha~(-1)under CRF during the maize growing periodsin2009and2010. For the OPT+DCD treatment, the mean of seasonal cumulative soil respirations was1759.2±78.0kg C ha~(-1)during the maize growing periods in2011and2012. Our study indicates thatalternative management practices on N application didn’t obviously affect soil respirations.
     (4) Soil microbiology experiments were performed during the top-dressing periods in2012. Soilnitrifying and denitrifying bacteria were quantified at the field plots under different treatments toinvestigate the mechanisms resulting in different N_2O emissions among the treatments. The results fromthe soil microbiology experiments show that the average copy numbers of AOB amoA, AOA amoA, andnirS were0.1×105(g SDW~(-1)),0.2×105(g SDW~(-1)),0.5×107(g SDW~(-1)) under CK treatment, respectively;and these values were obviously lower than that under all the treatments with N additions. The soilmicrobiology experiments indicate that the addition of N fertilizer can stimulate the growth of AOB,AOA and nirS gene of denitrifying bacteria, and subsequently stimulate the N_2O emissions. The soilnitrifying and denitrifying microorganism under OPT+DCD were lowest among all the treatments withaddition of N fertilizer, indicating that the OPT+DCD treatment can restrict soil nitrifying anddenitrifying microorganism, and thereby mitigate N_2O emissions.
     (5) The DNDC model was tested against the filed observations from2010to2011. The resultsfrom the model validation indicate that the simulations of maize yields and seasonal cumulative soilrespirations and N_2O emissions are consistent with the observations. The RMSEs between thesimulations and field observations are less than14%. In addition, DNDC can generally capture thetemporal pattern of daily soil respirations and N_2O emissions. These results indicate the reliability ofusing DNDC to assess the impacts of alternative management practices on crop production andemissions of CO2and N_2O from spring maize fields.
     (6) We utilized the DNDC model to assess the long-term impacts of alternative managementpractices on maize production and emissions of CO2and N_2O. The modeled impacts of alternativefertilization and crop residue management practices can be summarized as follows: a) optimizing Nfertilization (OPT, CRF, and OPT+DCD) can decrease N_2O emissions (8%,13%, and12%, respectively,for OPT, CRF, and OPT+DCD) while maintain maize yields, however, only slightly increase of soilcarbon can be achieved by optimizing N fertilization; b) optimizing N fertilization in combination withcrop straw amendment may significantly increase soil carbon sequestration, and decrease emissions ofgreenhouse gases while maintain maize yields.
引文
1.白雪,夏宗伟,郭彦玲,等.硝化抑制剂对不同旱地农田土壤N2O排放的影响.生态学杂志,2012,31(9):2319-2329.
    2.保琼莉,巨晓棠.夏玉米根系密集区与行间N2O浓度及与氨氧化细菌和反硝化细菌数量的关系.植物营养与肥料学报,2011,17(5):1156-1165.
    3.鲍士旦.土壤农化分析.北京:中国农业出版社,2000.
    4.陈述悦,李俊,陆佩玲,等.华北平原麦田土壤呼吸特征.应用生态学报,2004,15:1552-1560.
    5.程叶青,张平宇.中国粮食生产的区域格局变化及东北商品粮基地的响应.地理科学,2005,25:513-520.
    6.董红敏,李玉娥,陶秀萍,等.中国农业源温室气体排放与减排技术对策.农业工程学报,2008,24(10):269-273.
    7.黄国宏,陈冠雄,吴杰,等.东北典型旱作农田N2O和CH4排放通量研究.应用生态学报,1995,6(4):383-386.
    8.黄晶,刘宏斌,王伯仁.长期施肥下红壤旱地CO2、N2O排放特征.中国农学通报,2009,25:428-433.
    9.黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机碳分解的影响.应用生态学报,2002,13:709-714.
    10.黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势.科学通报,2006,51(7):750-763.
    11.黄耀.地气系统碳氮交换—从实验到模型.北京:气象出版社,2003.
    12.黄耀.中国的温室气体排放、减排措施与对策.第四纪研究,2006,26(5):722-732.
    13.季加敏,喻瑶,陆星,等.肥料添加剂降低N2O排放的效果与机理.植物营养与肥料学报,2012,18(6):1436-1442.
    14.李琳,张海林,陈阜,等.不同耕作措施下冬小麦生长季农田二氧化碳排放通量及其与土壤温度的关系.应用生态学报,2007,18(12):2765-2770.
    15.刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响.生态学报,1997,17:469-476.
    16.孟磊,丁维新,蔡祖聪,等.长期定量施肥对土壤有机碳储量和土壤呼吸影响.地球科学进展,2005,20:687-692.
    17.裴雪霞,周卫,梁国庆,等.长期施肥对黄棕壤性水稻土氨氧化细菌多样性的影响.植物营养与肥料学报,2011,17(3):724-730.
    18.邱建军,王立刚,唐华俊,等.东北三省耕地土壤有机碳储量变化的模拟研究.中国农业科学,2004,37(8):1166-1171.
    19.邱建军,王立刚,李虎,等.农田土壤有机碳含量对作物产量影响的模拟研究.中国农业科学,2009,42(1):154-161.
    20.唐孝炎,张远航,邵敏.大气环境化学.北京:高等教育出版社,2006.
    21.王立刚,李虎,邱建军.黄淮海平原典型农田土壤N2O的排放特征.中国农业科学,2008,41:248-1254.
    22.王亚男,曾希柏,俄胜哲,等.施肥对设施菜地氨氧化细菌群落和丰度的影响.农业环境科学学报,2012,31(12):2425-2432.
    23.辛亮,武传东,曲东.长期施肥对旱地土壤中氨氧化微生物丰度和分布的影响.西北农业学报,2012,21(6):41-46.
    24.熊毅,李庆奎.中国土壤(第二版).北京:科学出版社,1990.
    25.徐祝龄.气象学.北京:气象出版社,1994.
    26.许信旺,潘根兴,汪艳林,等.中国农田耕层土壤有机碳变化特征及控制因素.地理研究,2009,28(3):601-612.
    27.闫湘.我国化肥利用现状与养分资源高效利用研究[中国农业科学院博士学位论文].北京:中国农业科学院,2008.
    28.杨平,杜宝华.国外土壤二氧化碳释放问题的研究动态.中国农业气象,1996,17(1):48-50.
    29.张付申.长期施肥条件下娄土和黄绵土有机质氧化稳定性的研究.土壤肥料,1996,6:32-34.
    30.张国盛,黄高宝, Y N Chan.农田土壤有机碳固定潜力研究进展.生态学报,2005,25(2):351-357.
    31.张庆忠,吴文良,王明新,等.秸秆还田和施氮对农田土壤呼吸的影响.生态学报,2005,25:2883-2887.
    32.郑循华.农田N2O产生与排放过程研究[中科院大气物理研究所博士学位论文].北京:中国科学院,1996.
    33.朱兆良, D Norse,孙波.中国农业面源污染控制对策.北京:中国环境科学出版社,2006.
    34.朱兆良,金继运.保障我国粮食安全的肥料问题.植物营养与肥料,2013,19(2):259-273.
    35. Babu Y, C Li, S Frolking, et al. Field validation of DNDC model for methane and nitrous oxideemissions from rice-based production systems of India. Nutrient Cycling in Agroecosystems,2006,74(2):157-174.
    36. Baggs E, R Rees, K Smith, et al. Nitrous oxide emission from soils after incorporating cropresidues. Soil Use and Management,2000,16:82-87.
    37. Baggs E, M Stevenson, M Pihlatie, et al. Nitrous oxide emissions following application of residuesand fertiliser under zero and conventional tillage. Plant Soil,2003,254:361-370.
    38. Beheydt D, P Boeckx, S Sleutel, et al. Validation of DNDC for22long-term N2O field emissionsmeasurements. Atmospheric Environment,2007,41:6196-6211.
    39. Blackmer A M, M E Cerrato. Soil properties affecting formation of nitric oxide by chemicalreactions of nitrite. Soil Science Society of America Journal,1986,50(5):1215-1218.
    40. Bouwman A F. Direct emissions of nitrous oxide from agricultural soils. Nutrient Cycling inAgroecosystems,1996,46:53-70.
    41. Bouwman A F, L J M Boumans, N H Batjes. Emissions of N2O and NO from fertilized fields:Summary of available measurement data. Global Biogeochemical Cycles,2002a,16:1058.
    42. Bouwman A F, L J M Boumans, N H Batjes. Modeling global annual N2O and NO emissions from
    43. Boyer E W, R B Alexander, W J Parton, et al. Modeling denitrification in terrestrial and aquaticecosystems at regional scales. Ecological Applications,2006,16(6):2123-2142.
    44. Bruns M A, J R Stephen, G A Kowalchuk, et al. Comparative diversity of ammonia oxidizer16SrRNA gene sequences in native, tilled, and successional soils. Applied and EnvironmentalMicrobiology,1999,65:2994-3000.
    45. Buchmann N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. SoilBiology and Biochemistry,2000,32(11-12):1625-1635.
    46. Canfield D E, A N Glazer, P G Falkowski. The evolution and future of earth’s nitrogen cycle.Science,2010,330:192-196.
    47. Cassman K G, A Dobermann, D T Walters. Agroecosystems, nitrogen-use efficiency, and nitrogenmanagement. AMBIO,2002,31:132-140.
    48. Chen X P, Y G Zhu, Y Xia, et al. Ammonia-oxidizing archaea: Important players in paddyrhizosphere soil. Environmental Microbiology,2008,10:1978-1987.
    49. Davidson E A, W Kingerlee. A global inventory of nitric oxide emissions from soils. NutrientCycling in Agroecosystems,1997,48:37-50.
    50. Davidson E A, L V Verchot. Testing the hole-in-the pipe model of nitric and nitrous oxideemissions from soils using the TRAGNET database. Global Biogeochemical Cycles,2000,14(4):1035-1043.
    51. Davidson E A, I Janssens. Temperature sensitivity of soil carbon decomposition and feedbacks toclimate change. Nature,2006,440:165-173.
    52. Davidson E A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxidesince1860. Nature Geoscience,2009,2:659-662.
    53. Del Grosso S J, W J Parton, A R Mosier, et al. General model for N2O and N2gas emissions fromsoils due to dentrification. Global Biogeochemical Cycles,2000,14(4):1045-1060.
    54. Del Grosso S J, W J Parton, A R Mosier, et al. Simulated interaction of carbon dynamics andnitrogen trace gas fluxes using the DAYCENT model, in Modeling carbon and nitrogen dynamicsfor soil management. Amsterdam, Netherlands: CRC Press, Boca Raton, FL,2001a:303-332.
    55. Del Grosso S J, W J Parton, A R Mosier, et al. Simulated effects of land use, soil texture, andprecipitation on N gas emissions using DAYCENT, in Nitrogen in the Environment: Sources,Problems and Management. Amsterdam, Netherlands: Elsevier Science,2001b:413-432.
    56. Deng J, B Zhu, Z Zhou, et al. Modeling nitrogen loadings from agricultural soils in southwestChina with modified DNDC. Journal of Geophysical Research-biogeosciences,2011a,116,G02020, doi:10.1029/2010JG001609.
    57. Deng J, Z Zhou, B Zhu, et al. Modeling nitrogen loading in a small watershed in southwest Chinausing a DNDC model with hydrological enhancements. Biogeosciences,2011b,8:2999-3099.
    58. Di H J, K Cameron. Effects of temperatures and application rate of a nitrification inhibitor,dicyandiamide (DCD), on nitrification rate and microbial biomass in a grazed pasture soil. SoilResearch,2004,42:927-932.
    59. Duiker S W, R Lai. Crop residue and tillage effects on carbon sequestration in a Luvisol in centralOhio. Soil and Tillage Research,1999,52:73-81.
    60. Engel T, E Priesack, H J P Eijsackers, et al. Expert-N, a building block system of nitrogen modelsas a resource for advice, research, water management and policy, in Integrated Soil and SedimentResearch: A Basis for Proper Protection. Netherlands: Dodrecht,1993:503-507.
    61. Enwall K, L Philippot, S Hallin. Activity and composition of the denitrifying bacterial communityrespond differently to long-term fertilization. Applied and Environmental Microbiology,2005,71:8335-8343.
    62. Fang C, J B Monc. The dependence of soil CO2efflux on temperature. Soil Biology andBiochemistry,2001,33:155-165.
    63. Farahbakhshazad N, D L Dinnes, C Li, et al. Modeling biogeochemical impacts of alternativemanagement practices for a row-crop field in Iowa. Agriculture, Ecosystems and Environment,2008,123(1-3):30-48.
    64. Firestone M K, E A Davidson. Microbiological basis of NO and N2O production and consumptionin soil, In: Exchange of trace gases between terrestrial ecosystems and the atmosphere. New York:John Wiley&Sons,1989:7-21.
    65. Frimpong K A, E M Baggs. Do combined applications of crop residues and inorganic fertilizerlower emission of N2O from soil? Soil Use and Management,2010,26:412-424.
    66. Fr berg M, D K Berggren, B Bergkvist, et al. Concentration and fluxes of dissolved organic carbon(DOC) in three Norway spruce stands along a climatic gradient in Sweden. Biogeochemistry,2006,77:1-23.
    67. Fumoto T, K Kazuhiko, C Li, et al. Revising a process-based biogeochemistry model (DNDC) tosimulate methane emission from rice paddy fields under various residue management and fertilizerregimes. Global Change Biology,2008,14:382-402.
    68. Fumoto T, Y Tetsuji, S Takashi, et al. Assessment of the methane mitigation potentials ofalternative water regimes in rice fields using a processbased biogeochemistry model. GlobalChange Biology,2010,16:1847-1859.
    69. Gaius R S, J Canadell, F S Chapin III, et al. Global Warming and Terrestrial Ecosystems: AConceptual Framework for Analysis. BioScience,2000,50:871-882.
    70. Galloway J N, F J Dentener, D G Capone, et al. Nitrogen cycles: past, present, and future.Biogeochemistry,2004,70:153-226.
    71. Galloway J N, J D Aber, J W Erisman, et al. The nitrogen cascade. BioScience,2003,53(4):341-356.
    72. Garcia-Ruiz R, E M Baggs. N2O emission from soil following combined application of fertiliser-Nand ground weed residues. Plant Soil,2007,299:263-274.
    73. Giltrap D L, C Li, S Saggar. DNDC: a process-based model of greenhouse gas fluxes fromagricultural soils. Agriculture, Ecosystems and Environment,2010,136(2010):292-300.
    74. Godwin D C, C A Jones. Nitrogen dynamics in soil-plant systems, in Modeling plant and soilsystems. ASA-CSSA-SSSA, Madison,1991:287-321.
    75. Goulding K, J Steve, A Whitmore. Optimizing nutrient management for farm systems.Philosophical Transactions of The Royal Society of London Series Biological Sciences,2007,363:667-680.
    76. Grinsted A, C John, Moore, et al. Projected Atlantic hurricane surge threat from rising temperatures.Proceedings of the National Academy of Sciences,2013, DOI:10.1073/pnas.1209980110.
    77. Groffman P M, M A Altabet, J K B hlke, et al. Methods for measuring denitrification: Diverseapproaches to a difficult problem. Ecological Applications,2006,16:2091-2122.
    78. Halvorson A D, B J Wienhold, A L Black. Tillage, Ntrogen, and Cropping System Effects on soilcarbon sequestration. Soil Science Society of America Journal,2002,66:906-912.
    79. Hansen S, H E Jensen, N E Nielsen, et al. Simulation of nitrogen dynamics and biomass productionin winter wheat using the Danish simulation model DAISY. Nutrient Cycling in Agroecosystems,1991,27(2):245-259.
    80. Helena P, P Iris, B Franz, et al. Influence of a nitrification inhibitor and of placed N-fertilization onN2O fluxes from a vegetable cropped loamy soil. Agriculture, Ecosystems and Environment,2012,150:91-101.
    81. Henault C, X Devis, S Page, et al. Nitrous oxide emissions under different soil and landmanagement conditions. Biology and Fertility of Soils,1998,26(3):199-207.
    82. Hermansson A, P Lindgren. Quantification of ammonia-oxidizing bacteria in arable soil byreal-time PCR. Applied and Environmental Microbiology,2001,67:972-976.
    83. Huang Y, J W Zou, X H Zheng, et al. Nitrous oxide emissions as influenced by amendment of plantresidues with different C:N ratios. Soil Biology and Biochemistry,2004,36:973-981.
    84. Huang Y, Y Yu, W Zhang, et al. Agro-C: A biogeophysical model for simulating the carbon budgetof agroecosystems. Agricultural and Forest Meteorology,2009,149(1):106-129.
    85. Hutson J L, R J Wagenet. LEACHM-leaching estimation and chemistry Model. New York:Cornell University,1992.
    86. IFA/FAO. Global Estimates of Gaseous Emissions of NH3, NO, and N2O from Agricultural Land.International Fertilizer Industry Association and the Food and Agriculture Organization of theUnited Nations, Rome, Italy106pp. Retrieved April14,2008, fromftp://ftp.fao.org/agl/agll/docs/globest.pdf
    87. IPCC. Climate Change2007: The Physical Science Basis; Contribution of Working Group I to theFourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UnitedKingdom and New York, NY, USA: Cambridge University Press,2007.
    88. Jacinthe P A, R Lal, J M Kimble. Carbon budget and seasonal carbon dioxide emission from acrntral Ohio Luvisol as influenced by wheat residue amendment. Soil and Tillage Research,2002,67(2):147-157.
    89. Jia Z J, R Conrad. Bacteria rather than archaea dominate microbial ammonia oxidation in anagricultural soil. Environmental Microbiology,2009,11(7):1658-1671.
    90. Kleineidam K, K Ko mrlj, S Kublik, et al. Influence of the nitrification inhibitor3,4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in rhizosphereand bulk soil. Chemosphere,2011,84:182-186.
    91. Kroeze C, A Mosier, L Bouwman. Closing the global N2O budget: A retrospective analysis1500-1994. Global Biogeochemical Cycles,1999,13:1-8.
    92. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science,2004,304:1623-1627.
    93. Leininger S, T Urich, M Schloter, et al. Archaea predominate among ammonia-oxidizingprokaryotes in soils. Nature,2006,442:806-809.
    94. Li C, S Frolking, K Butterbach-Bahl. Carbon sequestration in arable soils is likely to increasenitrous oxide emissions, offsetting reductions in climate radiative forcing. Climate change,2005,72:321-338.
    95. Li C, W Salas, R Zhang, et al. Manure-DNDC: a biogeochemical process model for quantifyinggreenhouse gas and ammonia emissions from livestock manure systems. Nutrient cycling inagroecosystems,2012,93:163-200.
    96. Li C, J Qiu, S Frolking, et al. Reduced methane emissions from large-scale changes in watermanagement of China's rice paddies during1980-2000. Geophysical Research Letters,2002,29(20): doi:10.1029/2002GL015370.
    97. Li C, N Farahbakhshazad, D B Jaynes, et al. Modeling nitrate leaching with a biogeochemicalmodel modified based on observations in a row-crop field in Iowa. Ecological Modelling,2006,196:116-130.
    98. Li C, S Frolking, R Harriss. Modeling carbon biogeochemistry in agricultural soils. GlobalBiogeochemical Cycles,1994,8:237-254.
    99. Li C, S Frolking, T A Frolking. A model of nitrous oxide evolution from soil driven by rainfallevents:1. Model structure and sensitivity, Journal of Geophysical Research-atmospheres,1992a,97(D9):9759-9776.
    100. Li C, S Frolking, T A Frolking. A model of nitrous oxide evolution from soil driven by rainfallevents:2. Model applications, Journal of Geophysical Research-atmospheres,1992b,97(D9):9777-9783.
    101. Li C, S Frolking, X Xiao, et al. Modeling impacts of farming management alternatives on CO2,CH4, and N2O emissions: A case study for water management of rice agriculture of China. GlobalBiogeochemical Cycles,2005,19(3): doi:10.1029/2004GB002341.
    102. Li C, V Narayanan, R Harriss. Model estimates of nitrous oxide emissions from agricultural landsin United States. Global Biogeochemical Cycles,1996,10:297-306.
    103. Li C, Y Zhuang, S Frolking, et al. Modeling soil organic carbon change in croplands of China.Ecological Applications,2003,13(2):327-336.
    104. Li C. Modeling trace gas emissions from agricultural ecosystems. Nutrient cycling inagroecosystems,2000,58(1-3):259-276.
    105. Li H, J Qiu, L Wang, et al. Modelling impacts of alternative farming management practices ongreenhouse gas emissions from a winter wheat-maize rotation system in China. Agriculture,Ecosystem and Environment,2010,135:24-33.
    106. Liu C Y, K Wang, S X Meng, et al. Effects of irrigation, fertilization and crop straw managementon nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China.Agriculture, Ecosystems and Environment,2011,140:226-233.
    107. Lupwayi N Z, W A Rice, G W Clayton. Soil microbial diversity and community structure underwheat as influenced by tillage and crop rotation. Soil Biology and Biochemistry,1998,30:1733-1741.
    108. Maeda K, R Morioka, D Hanajima, et al. The impact of using mature compost on nitrous oxideemission and the denitrifier community in the cattle manure composting process. Aquatic microbialecology,2010,59:25-36.
    109. McCarl B A, R D Sands. Competitiveness of terrestrial greenhouse gas offsets: Are they a bridge tothe future. Climatic Change,2007,80:109-1261.
    110. Miller M N, B J Zebarth, C E Dandie, et al. Crop residue influence on the denitrification, N2Oemissions and denitrifiers community abundance. Soil Biology and Biochemistry,2008,40:2553-2562.
    111. Morimoto S, M Hayatsu, Y T Hoshino, et al. Quantitative analyses of ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria (AOB) in fields with different soil types. Microbes andEnvironments,2011,26:248-253.
    112. Mosier A R, C Kroeze, C Nevison, et al. Closing the N2O budget: nitrous emission through theagricultural nitrogen cycle. Nutrient cycling in agroecosystems,1998,52:225-248.
    113. Mosier A R. Soil processes and global change. Biology and fertility of soils,1998,3:221-229.
    114. Neely C L, M H Beare, W L Hargrove, et al. Relationships between fungal and bacterialsubstrate-induced respiration, biomass and plant residue decomposition. Soil Biology andBiochemistry,1991,23(10):947-954.
    115. Nicolardot B, J A E Molina, M R Allard. C and N fluxes between pools of soil organic matter:Model calibration with long-term incubation data. Soil biology and biochemistry,1994,26(2):235-243.
    116. Papen H, R V Berg. A most probable number method (MPN) for the estimation of cell numbers ofheterotrophic nitrifying bacteria in soil. Plant and soil,1998,199:123-130.
    117. Parton W J, D S Ojima, C V Cole, et al. A general model for soil organic matter dynamics:sensitivity to litter chemistry, texture and management. SSSA special publication, USA,1994.
    118. Parton W J, A R Mosier, O D S jima, et al. Generalized model for N2and N2O production fromnitrification. Global biogeochemical Cycles,1996,10(3):401-412.
    119. Parton W J, M Hartman, D Ojima, et al. DAYCENT and its land surface submodel: description andtesting.Global and Planetary Change,1998,19(1):35-48.
    120. Parton W J, E A Holland, S J Del Grosso, et al. Generalized model for Noxand N2O emissionsfrom soils. Journal of geophysical research-atmospheres,2001,106:9869-9878.
    121. Philippot L, J Andert, C Jones, et al. Importance of denitrifiers lacking the genes encoding thenitrous oxide reductase for N2O emissions from soil. Global Change Biology,2011,17(3):1497–1504.
    122. Phillips C J, D Harris, S L Dollhopf, et al. Effects of agronomic treatments on structure andfunction of ammonia-oxidizing communities. Applied and Environmental Microbiology,2000a,66:5410-5418.
    123. Poulson D, A Whitmore, K Goulding. Soil carbon sequestration to mitigate climate change: acritical re-examination to identify the true and the false. European Journal of Soil Science,2011,62:42-55.
    124. Powlson D S, D S Jenkinson, G Pruden, et al. The effect of straw incorporation on the uptake ofnitrogen by winter wheat. Journal of the Science of Food and Agriculture,1985,36(1):26-30.
    125. Prosser J I, G W Nicol. Relative contributions of archaea and bacteria to aerobic ammoniaoxidation in the environment. Environmental Microbiology,2008,10:2931-2941.
    126. Prosser J. Autotrophic Nitrification in Bacteria. Advances in Microbial Physiology,1990,30:125.
    127. Qiu J, C Li, L Wang, et al. Modeling impacts of carbon sequestration on net greenhouse gasemissions from agricultural soils in China. Global Biogeochem. Cycles,2009,23:doi:10.1029/2008GB003180.
    128. Rasmussen P E, R R Allmaras, C R Rohde, et al. Crop residue influences on soil carbon andnitrogen in a wheat-fallow system. Soil science society of America journal,1980,44(3):596-600.
    129. Riley, W J, P A Matson. N Loss: a mechanistic model of denitrified N2O and N2evolution from soil.Soil Science,2000,165(3):237.
    130. Robertson G P, P M Groffman. Nitrogen transformations, in Soil microbiology and biochemistry.Academic Press Publications, USA,2007:341-364,3rd ed.
    131. Saggar S, D L Giltrap, C Li, et al. Modeling nitrous oxide emissions from grazed grasslands inNew Zealand. Agriculture, Ecosystems and Environment,2007,119:205-216.
    132. Shen J P, M L Zhang, Y G Zhu, et al. Abundance and composition of ammonia-oxidizing bacteriaand ammonia-oxidizing archaea communities of an alkaline sandy loam. EnvironmentalMicrobiology,2008,10:1601-1611.
    133. Shoji S, J Delgado, A Mosier, et al. Use of controlled release fertilizers and nitrification inhibitorsto increase nitrogen use efficiency and to conserve air and water quality. Communications in SoilScience and Plant Analysis,2001,32:1051-1070.
    134. Simunek J, K Huang, M T Van Genuchten. The HYDRUS code for simulating the one-dimensionalmovement of water, heat, and multiple solutes in variably-saturated media. Research Report144,United States Department of Agriculture,1998.
    135. Smith K, I P Mctaggart, H Tsuruta. Emissions of N2O and NO associated with nitrogenfertilization in intensive agriculture, and the potential for mitigation. Soil Use and Management,1997,13:296-304.
    136. Smith P, D Martino, Z C Cai, et al. Greenhouse gas mitigation in agriculture. PhilosophicalTransactions of the Royal Society Biological Sciences,2008,363:789-813.
    137. Smith W N, B Grant, R L Desjardins, et al. Estimates of the interannual variations of N2Oemissions from agricultural soils in Canada. Nutrient Cycling in Agroecosystems,2004,68:37-45.
    138. Snyder C S, T Bruulsema, T Jsensen, et al. Review of greenhouse gas emissions from cropproduction systems and fertilizer management effects. Agriculture, Ecosystems and Environment,2009,133:247-266.
    139. Stange F, K Butterbach-Bahl, H Papen, et al. A process-oriented model of N2O and NO emissionsfrom forest soils:2. Sensitivity analysis and validation. Journal of Geophysical Research,2000,105(D4):4385-4398.
    140. Stehfest E, L Bouwman. N2O and NO emission from agricultural fields and soils under naturalvegetation: summarizing available measurement data and modeling of global annual emissions.Nutrient Cycling in Agroecosystems,2006,74:207-228.
    141. Stevenson F J, M A Cole. Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients.Wiley, USA,1999.
    142. Sun W J, Y Huang, S T Chen, et al. Dependence of wheat and rice respiration on tissue nitrogenand the corresponding net carbon fixation efficiency under different rates of nitrogen application.Advances in Atmospheric Science,2007,24(1):55-64.
    143. Sun W J, Y Huang, W Zhang, et al. Carbon sequestration and its potential in agricultural soils ofChina. Global Biogeochemical Cycles,2010,24: GB3001, doi:10.1029/2009GB003484.
    144. Tang H, J Qiu, E Van Ranst, et al. Estimations of soil organic carbon storage in cropland of Chinabased on DNDC model. Geoderma,2006,134:200-206.
    145. Tilman D, J Fargione, B Wolff, et al. Forecasting agriculturally driven global environmentalchange. Science,2001,292:281-284.
    146. Tonitto C, C Li, R Seidel, et al. Application of the DNDC model to the Rodale Institute FarmingSystems Trial: Challenges for the validation of drainage and nitrate leaching in agroecosystemmodels. Nutrient Cycling in Agroecosystems,2010, doi:10.1007/s10705-010-9354-8.
    147. Tonitto C, M B David, L E Drinkwater, et al. Application of the DNDC model to tile-drainedIllinois agroecosystems: model calibration, validation, and uncertainty analysis. Nutrient Cyclingin Agroecosystems,2007,78(1):51-63.
    148. Vandenheuvel R N, S E Bakker, M S M Jetten, et al. Decreased N2O reduction by low soil pHcauses high N2O emissions in a riparian ecosystem. Geobiology,2011,9,294-300.
    149. Van Laar H H, J Goudriaan, H Van Keulen. Simulation of crop growth for potential andwater-limited production situations, as applied to spring wheat. CABO-DLO,1992.
    150. Wang Y S, Y H Wang. Quick measurement of CH4, CO2and N2O emissions from a short-plantecosystem. Advances in Atmospheric Sciences,2003,20:842-844.
    151. Weier K L, J W Doran, J F Power, et al. Denitrification and the dinitrogen/nitrous oxide ratio asaffected by soil water, available carbon, and nitrate. Soil Science Society of America Journal,1993,57:66-72.
    152. Werner C, K Butterbach-Bahl, E Haas, et al. A global inventory of N2O emissions from tropicalrainforest soils using a detailed biogeochemical model. Global Biogeochemical Cycles,2007,21:doi:10.1029/2006GB002909.
    153. Williams E J, G L Hutchinson, F C Fehsenfeld. NOx and N2O emissions from soil. GlobalBiogeochemical Cycles,1992,6(4):351-388.
    154. Wilts A R, D C Reicosky, R R Allmaras, et al. Long term corn residue effects: Harvest alternatives,soil carbon turnover, and root-derived carbon. Soil Science Society of America Journal,2004,68:1342-1351.
    155. Wolt J D. A meta-evaluation of nitrapyrin agronomic and environmental effectiveness withemphasis on corn production in the Midwestern USA. Nutrient Cycling in Agroecosystems,2004,69:23-41.
    156. Xu R, M Wang, Y Wang. Using a modified DNDC model to estimate N2O fluxes from semi-aridgrassland in China. Soil Biology and Biochemistry,2003a,35(4):615-620.
    157. Yamulki S, R M Harrison, K Goulding, et al. N2O, NO and NO2fluxes from a grassland: Effect ofsoil pH. Soil biology and biochemistry,1997,29(8):1199-1208.
    158. Yao Z S, X H Zheng, B H Xie, et al. Tillage and crop residue management significantly affectsN-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation. Soil Biologyand Biochemistry,2009,41:2131-2140.
    159. Zacherl B, A Amberger. Effect of the nitrification inhibitors dicyandiamide, nitrapyrin and thioureaon Nitrosomonas europaea. Fertilizer Research,1990,22:37-44.
    160. Zhang F, C Li, Z Wang, et al. Modeling impacts of management alternatives on soil carbon storageof farmland in Northwest China. Biogeosciences,2006,3:451-466.
    161. Zhang F, J Qi, F M Li, et al. Quantifying nitrous oxide emissions from Chinese grasslands with aprocess-based model. Biogeosciences,2010,7:2039-2050.
    162. Zhang Y, C Li, C C Trettin, et al. An integrated model of soil, hydrology and vegetation for carbondynamics in wetland ecosystems. Global Biogeochemical Cycles,2002,16(0):doi:10.1029/2001GB001838.
    163. Zheng X, S Han, Y Huang, et al. Re-quantifying the emission factors based on field measurementsand estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles,2004,18: GB2018, doi:10.1029/2003GB002167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700